
ORIGINAL RESEARCH
published: 19 June 2017

doi: 10.3389/fmars.2017.00189

Frontiers in Marine Science | www.frontiersin.org 1 June 2017 | Volume 4 | Article 189

Edited by:

Astrid Bracher,

Alfred-Wegener-Institute Helmholtz

Center for Polar and Marine Research,

Germany

Reviewed by:

Hongyan Xi,

Helmholtz-Zentrum Geesthacht

Centre for Materials and Coastal

Research (HZG), Germany

Guoqing Wang,

University of Massachusetts System,

United States

*Correspondence:

John R. Moisan

john.r.moisan@nasa.gov

†
Deceased 5 June, 2016.

Specialty section:

This article was submitted to

Ocean Observation,

a section of the journal

Frontiers in Marine Science

Received: 31 March 2017

Accepted: 31 May 2017

Published: 19 June 2017

Citation:

Moisan TA, Rufty KM, Moisan JR and

Linkswiler MA (2017) Satellite

Observations of Phytoplankton

Functional Type Spatial Distributions,

Phenology, Diversity, and Ecotones.

Front. Mar. Sci. 4:189.

doi: 10.3389/fmars.2017.00189

Satellite Observations of
Phytoplankton Functional Type
Spatial Distributions, Phenology,
Diversity, and Ecotones
Tiffany A. Moisan 1†, Kay M. Rufty 2, John R. Moisan 1* and Matthew A. Linkswiler 3

1Wallops Flight Facility, NASA Goddard Space Flight Center, Wallops Island, VA, United States, 2Global Science and

Technology, Inc., Wallops Flight Facility, NASA Goddard Space Flight Center, Wallops Island, VA, United States, 3 AECOM,

Wallops Flight Facility, NASA Goddard Space Flight Center, Wallops Island, VA, United States

Phytoplankton functional diversity plays a key role in structuring the ocean carbon

cycle and can be estimated using measurements of phytoplankton functional type

(PFT) groupings. Concentrations of 18 phytoplankton pigments were calculated using

a linear matrix inversion algorithm, with an average r2 value of 0.70 for all pigments with

p-values below the statistical threshold of 0.05. The inversion algorithm was then used

with a chlorophyll-based absorption spectra model and Moderate Resolution Imaging

Spectroradiometer (MODIS-Aqua) chlorophyll observations to calculate phytoplankton

pigment concentrations in an area of the Atlantic Ocean off the United States east coast.

Pigment distributions were analyzed to assess the distribution of PFTs. Five unique PFTs

were found and delineated into three distinct offshore, transition, and open ocean groups.

Group 1 (Diatoms) had highest abundance along the coast. Group 2 (prymnesiophytes,

prokaryotes, and green algae) was a year-round stable offshore community that extended

at reduced levels into the coast. Group 3 (dinoflagellates) dominated offshore between

the Groups 1 and 2. Phytoplankton communities were delineated into coastal and

offshore populations, with Group 2 having a dampened seasonal cycle, relative to the

coastal populations. Shannon Diversity Indices (H) for the PFTs showed both spatial and

temporal variability and had a clear non-linear relationship with chlorophyll. Diversity levels

varied seasonally with changes in chlorophyll a levels. Peak PFT H was observed on

the shelf where frontal features dominate, with diversity levels declining nearshore and

offshore. This region marks an ecotone for phytoplankton in the study domain, and is

associated with the coastal-side boundary of dinoflagellate dominance. Highest levels of

diversity were observed in the tidally well-mixed regions of the Gulf of Maine and along a

band that ran along the shelf region of the study area that was narrowest in the summer

periods and broadened during the winter. These peak diversity zones were associated

with moderate levels (∼0.8mg m−3) of chlorophyll a. While the sign in the linear trends

in chlorophyll between 2002 and 2016 varied depending on the region, the trends in

the PFT H values were nearly all negative due to the non-linear relationship between

chlorophyll levels and H.
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INTRODUCTION

Climate change will alter the timing and magnitude of oceanic
forcing conditions that affect phytoplankton biomass and
productivity, both critical elements of the ocean carbon cycle
(Levitus et al., 2000). Warmer ocean temperatures are expected
to alter primary production rates, vertical stratification, mixing,
and entrainment of nutrients from beneath deep mixed layers
(Sarmiento et al., 2004). There is now ample evidence on
the ecological impacts of recent climate change conditions
at all latitudes, but especially in polar environments. The
responses of both flora and fauna span an array of ecosystem
and organizational hierarchies in both terrestrial and marine
environments (Walther et al., 2002; Cermeño et al., 2008; Iglesias-
Rodriguez et al., 2008). These observed changes are strong
motivators for developing remote sensing approaches to observe
the base of the food chain in order to monitor alterations in
ecosystem function and to help improve biogeochemical and
primary productivity models (Edwards et al., 2006; Striebel et al.,
2009; Boyce et al., 2010).

Analysis of phytoplankton taxonomic composition in relation
to satellite-derived chlorophyll a (ChlSAT) provides an ecological
approach to understand the role of past and future climate
changes on ecosystem function (Boyce et al., 2010). Knowledge
of the spatial and temporal variability of various Phytoplankton
Functional Types (PFTs) is critical for improving primary
productivity models which estimate biologically mediated fluxes
of elements between the ocean’s mixed layer and its deep interior
(Falkowski and Raven, 1997), and for understanding potential
climate-linked feedbacks. Improved performance and accuracy
has already been observed in marine biogeochemical models that
have incorporated PFTs into their ecosystem dynamics (Gregg
et al., 2003).

Our current knowledge about the global distribution and
seasonality of PFTs originates from shipboard and satellite
observations (Alvain et al., 2008; Hirata et al., 2011; IOCCG,
2014; Bracher et al., 2015). Several new approaches for
detecting phytoplankton biomass and specific PFTs, including
coccolithophores (Balch et al., 1991, 1996; Bracher et al.,
2015), Trichodesmium (Subramaniam and Carpenter, 1994;
Subramaniam et al., 1999a,b, 2002; Hu et al., 2010), and diatoms
(Sathyendranath et al., 2004; Soppa et al., 2014) have been
developed. Other algorithms characterize size class distributions
(Ciotti et al., 2002; Mouw and Yoder, 2005, 2010; Kostadinov
et al., 2009; Brewin et al., 2010; Devred et al., 2011; Hirata et al.,
2011; Organelli et al., 2013; Roy et al., 2013), PFT groups (Alvain
et al., 2005; Hardman-Mountford et al., 2008; Bracher et al.,
2009; Hirata et al., 2011; Moisan et al., 2011; Sadeghi et al., 2012;
Campbell et al., 2013; IOCCG, 2014; Navarro et al., 2014) and
select pigment concentrations (Pan et al., 2010), while others have
utilized abundance based approaches (Uitz et al., 2006; Hirata
et al., 2011; Chase et al., 2013).

A fundamental goal of phytoplankton biogeography is to
describe the phenology of different PFTs and understand
their interannual variability, and how these patterns relate
to processes that control phytoplankton community structure
and primary production (Longhurst, 2010). Phytoplankton

biogeography influences how climate is regulated on a seasonal
basis and also controls carbon flux processes (Oliver and Irwin,
2008). The diversity of the PFTs modulates the biological
processes and controls ecosystem linkages within the carbon
cycle. Understanding how they are modulated requires a better
understanding of how the base of the food web is controlled by
environmental conditions, which are impacted by climate change
scenarios. Community developed algorithms for taxonomic
marker pigments and size distribution (Balch et al., 1996; Alvain
et al., 2005; Hu et al., 2010; Mouw and Yoder, 2010; Hirata et al.,
2011; Moisan et al., 2011) continue to increase in their number
and applications for the study of ocean ecosystem dynamics and
biogeochemistry processes.

Algorithm development for PFTs using remote sensing
observations has historically been based on bio-optical inherent
optical properties such as backscatter and absorption (Nair et al.,
2008). Absorption is often utilized in algorithm development
because of its dominant role in regulating spectral variability
of remote sensing reflectance due to changes in pigmentation
(Moisan et al., 2011; Chase et al., 2013; Wang et al., 2016). In
addition, sophisticated algorithms focus on ecological patterns of
the phytoplankton community in relation tomany factors such as
climate change and meteorological conditions (Sathyendranath
et al., 2004; Alvain et al., 2005; Hardman-Mountford et al., 2008;
Raitsos et al., 2008; D’Ortenzio and Ribera d’Alcalà, 2009).

Many theories have been developed regarding the processes
that govern marine biological diversity and stability and the
impact that these have in evolving ecosystem community
dynamics (Sommer et al., 1993). Recent advances in genomic
observations and evolutionary/dynamic models are causing a
surge in interest for this topic (Bruggeman and Kooijman,
2007; Terseleer et al., 2014). Indicators of phytoplankton
functional diversity can be used to observe the response of
marine ecosystems to climate change and its relationship to
human activities (Platt and Sathyendranath, 2008; Platt et al.,
2009). Past satellite studies, primarily focused on the North
Atlantic, have shown phenological characteristics of bloom
initiation and peak productivity (Siegel et al., 2002; Ueyama
and Monger, 2005; Henson et al., 2006; Pan et al., 2010,
2011). Documenting additional phenological markers may lead
to a better understanding of the processes that affect the
phytoplankton community and help in monitoring the response
of PFT processes to changes in the environment.

This paper presents results from a study that uses
in situ observations of phytoplankton absorption spectra
and High-Performance Liquid Chromatography (HPLC)
chlorophyll-a pigment measurements (ChlHPLC) to develop a
satellite-based model for PFTs. In previous work, an inverse
model technique was developed that used HPLC pigments and
phytoplankton absorption spectra to create a method to retrieve
18 phytoplankton pigment estimates using phytoplankton
absorption spectra (Moisan et al., 2011). An extension of this
work used a linear model for phytoplankton absorption spectra,
based on satellite observations of ChlSAT , photosynthetically
available radiation, and temperature to estimate pigments
within a region along the northeastern U.S. coastal ocean
(Moisan et al., 2013). Previous studies have utilized inversion
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methods and demonstrated their value in calculating a wide
variety of oceanographic information such as inherent optical
properties (Hoge and Lyon, 1996; Garver and Siegel, 1997),
pigment absorption spectra (Lee and Carder, 2004), and
chlorophyll retrievals (Hoogenboom et al., 1998). This present
study modified and expanded these techniques to generate
phytoplankton pigment maps across the larger ocean domain
of the Northeast Atlantic over the period from 2002 to 2016.
The resulting phytoplankton pigment maps were then used with
pigment-based PFT algorithms (Hirata et al., 2011) to calculate
maps of PFTs. These PFT estimates were then used to calculate
the PFT diversity using the Shannon Diversity Index (H).

MATERIALS AND METHODS

Ocean Color Data Retrieval
Satellite (MODIS Aqua) chlorophyll a OCI algorithm, ChlSAT ,
estimates were obtained for the period of 2002-2016 from the
NASA GSFC Ocean Color Processing Group. The validation
of satellite products using quasi-simultaneous and spatially
collocated measurements (match-ups) of satellite and in situ data
followed the general procedures of previous studies (Werdell and
Bailey, 2005; Bailey and Werdell, 2006). Observations for ChlSAT
were obtained using the 8-day averaged, 9 km spatial resolution,
mapped, level 3 products.

Laboratory Analysis
Data was collected from a variety of geographical areas,
which included both coastal eutrophic and oligotrophic waters
(Figures 1A,B). A total of 172 water samples for phytoplankton
absorption spectra, aph (λ), and HPLC were collected at depths
between 0 and 29 meters during different cruises from the open
ocean and two U.S. eastern coastal ocean regions: (1) Delaware,

Maryland and Virginia and (2) the coastal waters within the
Gulf of Maine and near Martha’s Vineyard (Figures 1A,B). The
data set includes all seasons for the Delaware/Maryland/Virginia
(USA) region during 2006 and 2007 and spring samples from the
Gulf of Maine during 2007.

Phytoplankton Absorption Spectra
Phytoplankton absorption samples were processed using
the filter pad technique that partitions absorption into the
particulate and detrital fraction (Kishino et al., 1985) to yield
a phytoplankton absorption coefficient (m−1; Mitchell, 1990).
Absorption spectra were acquired on a Perkin Elmer LS800
UV/VIS Spectrophotometer at 1 nm intervals from 300 to 800
nm using a 4 nm slit-width.

Fluorometric Chlorophyll a
Water samples were filtered with 0.7 µm Whatman GF/F filter
(USA), stored in Histoprep tissue capsules, and flash frozen
in liquid nitrogen until processing. Chlorophyll a fluorescence
was then measured using a Turner Model 10-AU fluorometer
(Sunnyvale, USA) according to the method of Welschmeyer
(1994). Phytoplankton absorption values were converted
to specific absorption (m2 mg chla−1) using fluorometric
chlorophyll a measurements. Fluorometric chlorophyll a
compared well to ChlHPLC values with an r2 of 0.94.

High-Performance Liquid Chromatography (HPLC)

Pigments
Samples were collected from the same Niskin bottles
as phytoplankton absorption samples and filtered onto
0.7 µm Whatman GF/F filters. Samples were placed in
Histoprep tissue capsules and stored in liquid nitrogen.
Phytoplankton pigment concentrations were measured by

FIGURE 1 | The oceanographic study region was located in: (A) the Delaware, Maryland and Virginia (Delmarva) coastal waters [BIOME and COBY (Bio-physical

Interactions in Ocean Margin Ecosystems and Coastal Ocean Buoy Transect), N = 82 samples] during all seasons in 2006 and 2007 and. The square is the area

averaged over to represent BIOME in Figure 10. (B) The coastal waters within the Gulf of Maine and near Martha’s Vineyard (MAA (Mycosporine-like amino acid), N =

90 samples) during spring of 2007. The data set includes all seasons for the Delmarva region in 2006 and 2007 and only spring samples from the Gulf of Maine in

2007. Both sample regions are along the eastern coast of the United States. The square is the area averaged over to represent MAA in Figure 10.
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HPLC on a C18 column using the procedure described
by Van Heukelem et al. (2002) at Hornpoint Laboratory.
A total of 25 pigment groupings were identified in each
of the samples, 18 are calculated in this model, and 8 are
used as marker pigments in this study (Table 1). The model
pigments are: chlorophyll c, chlorophyllide, phaeophorbide,
peridinin, 19′butanoyloxyfucoxanthin, fucoxanthin, neoxanthin,
violaxanthin, 19′hexanoyloxyfucoxanthin, diadinoxanthin,
alloxanthin, diatoxanthin, zeaxanthin, lutein, chlorophyll b,
chlorophyll a, phaeophytin a, and carotenoids (α-carotene,
B-carotene, diatoxanthin, diadinoxanthin, alloxanthin,
zeaxanthin, lutein, fucoxanthin, peridinin, violoxanthin,
19′butanoyloxyfucoxanthin, and 19′hexanoyloxyfucoxanthin)
(Barlow et al., 2007).

Methods for Modeling Phytoplankton
Absorption Spectra and Pigments
Modeled Total Phytoplankton Absorption by Multiple

Linear Regression
Total phytoplankton absorption spectra, aph (λ, m−1), was
modeled as a second order function of chlorophyll a such that

aph (λ) = C0 (λ) + CC (λ)Chl a+ CC2 (λ)Chl a2, (1)

where Chl a is the concentration of chlorophyll a [mg m−3] and
C0, CC, and CC2 are the wavelength-dependent coefficients in
the multiple linear regression. The Levenberg-Marquardt non-
linear least squares minimization routine (Marquardt, 1963)
was used to perform the linear fits using in situ ChlHPLC and
aph (λ).

In order to account for pigment packaging effects, the
phytoplankton absorption spectra were “normalized” to 675 nm
by a normalization term based on the expected unpackaged
absorption at 675 nm. The unpackaged or “normalized”

TABLE 1 | Diagnostic pigments used in the present study as biomarkers for

phytoplankton functional types (Barlow et al., 1999; Vidussi et al., 2001; Wright

and Jeffrey, 2006).

Diagnostic pigments Abbreviations Taxonomic

significance

Phytoplankton

size class

Fucoxanthin Fuco Diatoms Microplankton

Peridinin Perid Dinoflagellates Microplankton

19′-

hexanoyloxyfucoxanthin

Hexa Phaeocystis,

coccolithophorids

Nanoplankton

19′-

butanoyloxyfucoxanthin

Buta Chrysophyte,

Chromophytes,

Nanoplankton

Alloxanthin Allo Pelagophytes Nanoplankton

cryptophytes

Violaxanthin Viol Prasinophytes Picoplankton

Chlorophyll b Chl b chlorophytes,

prochlorophytes

prasinophytes

picoplankton

nanoplankton

Zeaxanthin Zea Cyanobacteria Picoplankton

prochlorophytes

absorption spectra is calculated with,

âph (λ) = aph (λ)

(

∑n
i=1 cia

∗
i (675nm)

aph (675nm)

)

, (2)

where ci is the concentration of the individual pigments derived
from the HPLC analysis and a∗i (λ = 675 nm) is the pigment-
specific (a.k.a. weight-specific) absorption coefficient at 675 nm
for the individual phytoplankton pigments, obtained courtesy of
Annick Bricaud (Bricaud et al., 2004).

Modeled Phytoplankton Pigment-Specific Spectra by

Matrix Inversion
A goal in modeling phytoplankton absorption spectra, aph(λ)

(m−1), is to make use of the reconstruction models to
estimate phytoplankton pigments directly from the observed
phytoplankton absorption spectra (Moisan et al., 2011). By
combining phytoplankton pigment concentrations and pigment-
specific absorption spectra, it is possible to reconstruct the total
phytoplankton absorption spectra aph (λ) for the sample, such
that

aph (λ) =

n
∑

i=1

cia
∗
i (λ), (3)

where ci (mg pigment m−3) is the concentration of the individual
pigments and ai∗(λ) (m2/mg) are phytoplankton pigment-
specific absorption coefficients. When a large number (n) of
phytoplankton absorption spectra and HPLC observations are
available it becomes possible to relate the pigment-specific
absorption coefficients and HPLC pigment concentrations to the
total phytoplankton absorptionmeasured at a specific wavelength
as,







ci= 1,j= 1 · · · ci=m,j=1

...
. . .

...
ci=1,j=n · · · ci=m,j=n













ã∗i=1 (λ)

...
ã∗i=m(λ)






=







aph,j=1 (λ)

...
aph,j=n(λ)






(4)

where ci,j is the observed pigment concentration of the ith

pigment and the jth sample, ã∗i (λ) is the derived pigment-specific

absorption for the ith pigment, and aph,j(λ) is the total absorption

due to phytoplankton for the jth sample and at a given wavelength
(λ). At this point the various concentrations and absorption
terms are members of a system of linear equations that can be
inverted successively using the Singular Value Decomposition
(SVD, Press et al., 1987) inversion technique on each wavelength
to solve for each of the modeled pigment-specific absorption
spectra, ã∗i (λ).

Pigment Concentrations from Observed and Modeled

aph(λ) Spectra
Once estimates for pigment-specific absorption coefficients are
available, either through laboratory measurements (Bidigare
et al., 1990; Bricaud et al., 2004) or through the numerical
inversions such as the SVD approach outlined above, they
can be used with phytoplankton total absorption spectra,
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aph(λ), to estimate the individual pigment concentrations
using a second matrix inversion application (Moisan et al.,
2011). In this study, we utilized SVD-derived pigment-specific
absorption and measured total absorption in the process of
estimating phytoplankton pigment concentrations. By expanding
the phytoplankton absorption spectra reconstruction technique
(Equation 3) of Bidigare et al. (1990) into matrix form, total
phytoplankton absorption for a suite of (n) samples can be
written as







ã∗i= 1 (λ = 1) · · · ã∗i=m(λ = 1)
...
. . .

...

ã*i=1 (λ = L) · · · ã*i=m(λ = L)













c̃i=1,j=1...n

...
c̃i=m,j=1...n







=







aph j=1...n (λ = 1)
...

aph j=1...n(λ = L)






(5)

where ã∗i (λ) is the estimated pigment-specific absorption of the

ith pigment for a given wavelength (λ) obtained from the SVD
inversion described in the preceding section, c ai is the estimated
concentration of ith pigment for the jth sample, and aph(λ) is
the measured total absorption due to phytoplankton at a given
wavelength for each j sample.

Phytoplankton pigments were estimated using the resulting
pigment-specific absorption spectra obtained from SVD
inversion with observed aph(λ). Because solutions to SVD
inversions are not guaranteed to produce positive concentrations
(negative pigment concentrations have yet to be measured in
the ocean), the Non-Negative Least Squares (NNLS, Lawson
and Hanson, 1974) inversion method was used to estimate
the pigment concentrations to guarantee positive solutions.
Moisan et al. (2011) demonstrated that out of all the inversion
models tested, SVD-NNLS gave the best results when comparing
modeled and measured pigment concentrations. Similarly, this
technique has previously been verified in Moisan et al. (2011)
through random division of the phytoplankton absorption
spectra and pigment measurement pairs. Two independent
pools of data were created by randomly separating the full
data set in order to carry out the inversions to calculate the
pigment-specific absorption spectra and the other to estimate
pigment concentrations using the second inversion procedure to
validate the model.

In order to apply this matrix inversion technique to satellite
data and generate pigment maps, the MODIS Aqua Ocean Color
chlorophyll a (ChlSAT) was used with the resulting coefficients
from the multiple linear absorption spectra model (Equation
1) to generate predictions of the mapped absorption spectra.
These modeled absorption spectra were then inverted, pixel-by-
pixel, using the SVD-derived pigment specific absorption spectra
from Equation 4 and the NNLS inversion model (Equation 5) to
yield maps of pigment concentration for the ocean region of the
northeastern United States. Both the linear regression coefficients
from Equation 1 and pigment-specific absorption spectra from
Equation 4 were obtained using the normalized in situ aph(λ)
(Equation 2) and HPLC pigment data. A flowchart of the method
summary is detailed in Figure 2.

The matrix inversion technique applied to satellite data uses
modeled instead of in situ absorption. In order to assess how the
pigment inversions are affected by the use of modeled absorption,
the results from the inversion model using modeled versus
measured absorption spectra is compared.

Phytoplankton Functional Type Maps and Diversity
Once maps of the various 18 phytoplankton pigments
were obtained, they were used to generate estimates of
the various PFTs for the region by using the estimation
formulas outlined in Table 1 of Hirata et al. (2011) for diatoms,
dinoflagellates, prymnesiophytes, prokaryotes, and green
algae (Table 2). The pigments necessary as inputs for these
algorithms included: fucoxanthin, peridinin, chlorophyll-b,
19-butanoyloxyfucoxanthin, 19-hexanoyloxyfucoxanthin,
alloxanthin, and zeaxanthin. Maps of these functional types were
calculated for all of the MODIS Aqua data used in this study
domain and period.

After calculation of the PFT fields, the PFTs Diversity was
calculated using the Shannon Diversity Index (H) equation,

H = −

N
∑

i=1

pi ln
(

pi
)

, (6)

where pi is the ith proportionality of the N phytoplankton
functional groups (Shannon, 1948). Proportionality values, pi,
were defined as the resulting PFT values, the ratio of chlorophyll
for that functional type versus the total chlorophyll within a
sample. While the Shannon Diversity equation was developed
to use specific cell or organism counts, a sensitivity study was
conducted that used randomly chosen cell to biomass ratios in
order to see what the impact of this had on the resulting H values,
assuming that the conversion factors were constant throughout
the study’s time and space domain. The results showed little
impact on the resulting H values meaning that the method used
in calculation of the proportionality values was justified.

TABLE 2 | Phytoplankton Functional Type (PFT) equations (Hirata et al., 2011)

used in this study.

PFT Pigments used Estimation formula

Diatoms Fucoxanthin (Fuco) 1.41Fuco/(
∑

DP*)2

Dinoflagellates Peridinin (Perid) 1.41Fuco/
∑

DP2

Green Algae Chlorophyll-b (Chl-b) 1.01Chl-b/
∑

DP2

Prymnesiophytes 19-Hexanoyloxyfucoxanthin

(Hex), Chl-b, Alloxanthin

(Allo)

19′-Butanoyloxyfucoxanthin

(But),

(δ⊕1.27Hex + 1.01Chl-b +

0.35But + 0.60Allo)/
∑

DP3

- 1.01Chl-b/
∑

DP2

Prokaryotes Zeaxanthin (Zea) 0.86Zea/
∑

DP2

*
∑

DP=1.41Fuco+ 1.41Perid+ 1.27Hex+ 0.6Allo+ 0.35But+ 1.01Chl-b+ 0.86Zea.

⊕δ quantifies the proportion of nanoplankton contribution in Hex, (Brewin et al., 2010).
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FIGURE 2 | Flow chart of the method utilized in this study to calculate 18 different pigment concentrations along the eastern shore of the United States. The linear

absorption spectra model developed in Moisan et al. (2013) is modified and used with the matrix inversion techniques developed in Moisan et al. (2011) in order to

extend the matrix inversion technique for use with satellite data.

RESULTS

Observations of Absorption Spectra
Values of aph(λ) showed large variability in the ultraviolet
(UV) and visible region (Figure 3). UV absorption was high,
presumably due to mycosporine-like amino acids (MAAs,
Moisan and Mitchell, 2001) and was commensurate with a
Phaeocystis-dominated community in the Gulf of Maine. MAA
absorption peaked at the surface of the ocean and is most likely
controlled by irradiance and nutrient concentration (Whitehead
and Vernet, 2000). Phytoplankton maximum absorption in the
UV region ranged from 0.28 to 0.85 m−1. Maximum values of
aph(λ) in the visible ranged from 0.03 to 0.37m−1 (Figure 3).
Values of aph(436:676), the red and blue absorption peaks of
chlorophyll a, varied by an order of magnitude, with highest
levels associated with elevated levels of carotenoids, indicating
growth in a high-light environment. Minimum and maximum
values for aph(436:676) are 0.006 and 0.369 and 0.003 and 0.198,
respectively.

Modeling of the Total Absorption Spectra
In order to model the absorption spectra, the spectrally-
dependent, linear model coefficients from Equation 1 were used
with ChlHPLC values. The r2 values of in situ versus modeled
absorption, when normalized to 675 nm, are between 0.76 and
1.00 from 400 to 700 nm and drop by about 25%, as calculated

FIGURE 3 | In situ phytoplankton absorption (m−1) from samples collected

during the study.

by dividing the mean r2 of UV and visible groups, in the
ultraviolet region (Figure 4) where MAAs provide sun screening
to phytoplankton and increase the observed value of aph(λ).
Accuracies were substantially improved using the “normalized”
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FIGURE 4 | Measured total absorption (m−1) normalized to 675 nm (horizontal axis) versus the predicted total absorption (m−1) (vertical axis) using the multiple linear

regression of ChlHPLC and ChlHPLC
2.

absorption spectra in Equation 1, compared to original in vivo
absorption spectra (Moisan et al., 2011).

To assess how much of the variability in the absorption curve

is accounted for in the absorption model, the root mean square

error (RMSE) was calculated for the first, second, and third order
absorption models. The RMSE is the square root of the mean

of the square of all the error. The variance drops by half from
the observed spectra to the first order modeled spectra (RMSE=

0.113 and 0.063, respectively), and only slightly decreases with the

second and third orders (RMSE= 0.063 and 0.060, respectively).
Beyond the first order regression model there are only small

improvements in modeling the absorption spectra. However,
while the second order model is only slightly better than the

first order in representing the variability of the absorption

spectra, a larger improvement is observed in the pigment retrieval
solutions. This may be because small improvements in modeling
the absorption spectra can have a significant impact on the
solution of those pigments that have smaller contributions to the
total absorption spectra. The second order ChlHPLC model was
chosen because there are only marginal difference between first,
second, and third order inmodeling absorption and second order
produces the best pigments retrievals.

Observations of Pigments in Relation to
Absorption Spectra
The contribution of each of the 18 pigments estimated by
the inverse model to total absorption was determined by
reconstructing the absorption spectra following the technique
developed by Bidigare et al. (1990) and utilizing the pigment-
specific absorption coefficients from Bricaud et al. (2004) and
the in situ HPLC pigment measurements (Figure 5A). The
standard deviation of these individual absorption spectra (not
shown) scale directly with the standard deviation of the various
pigments observed, which is considerable. An analysis of the
individual pigment contributions to the total absorption spectra,
shown as a cumulative function, demonstrated that ChlHPLC,
fucoxanthin, chlorophyll c, diadinoxanthin and carotenoids
together account for more than 90% of the observed in vivo
absorption (Figure 5B). Coincidentally, these pigments were
shown to have the highest predictive capability for the SVD-
NNLS model that yields pigment-specific absorption spectra
and HPLC pigment estimates (Figure 5B). Those pigments that
contributed significantly to aph(λ) and account for the majority
the absorption were also those that were best predicted using the
SVD-NNLS inversion model.
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FIGURE 5 | (A) Reconstructed mean pigment-specific total absorption spectra (m−1) of the different pigment biomarkers resolved in this study. The black line is the

total absorption of all pigments. The lowest standard deviation values were insignificant, while higher standard deviation values for the pigments ranged from 0.0015

to 0.0686. (B) Cumulative fraction of the reconstructed pigment absorption to total absorption compared to the r2 from the inverse model versus predicted HPLC

pigments from SVD-NNLS.

Individual Photosynthetic and
Photo-Protective Pigment Retrievals
Pigments were estimated by the NNLS matrix inversion
(Equation 5) with the SVD-derived pigment-specific absorption
from Equation 4 and in situ absorption spectra. A comparison of
in situ measured to SVD-NNLS-derived HPLC pigments shows
varying results with coefficients of determination ranging from
very high (near 1.0) for chlorophyll a (ChlMOD

HPLC) to a low of
0.33 for zeaxanthin (Figure 6). While 18 different pigments were
estimated, only 10 had r2 values greater than 0.68. The p-values
of the algorithm were calculated with a threshold value of 0.05.
All pigments had p-values of less than 0.001, demonstrating
that the results are significant (Table 3). Similarly, the pigment
concentrations on a normal scale produced relatively small RMSE
for most pigments, with normalized RMSE less than 22% for all
pigments, except zeaxanthin and lutein. Normalized RMSE is the
RMSE divided by the pigment range and bias is the tendency
of a statistic to overestimate or underestimate a parameter.
Pigments that correlate best with ChlHPLC, such as chlorophyll
c, fucoxanthin, and carotenoids, along with ChlHPLC account for
the majority of the total absorption spectra (Figure 5B). These
pigments are also shown to have the best prediction results
whenmodeled pigment concentrations are compared with in situ
concentrations: they have the highest r2 values, their slopes are
very close to 1 with y-intercepts close to 0, normalized RMSE
below 5%, and all have p-values below the 0.05 threshold. While
the coefficients of determination for the predicted pigments vary,
all are within the acceptable range of algorithms that predict PFTs
(Hirata et al., 2008, 2011; Bracher et al., 2009; Mouw and Yoder,
2010; Mouw et al., 2012; Soppa et al., 2014). In addition, even
with the known uncertainties, the resulting maps of PFTs can be
useful for phenological functional diversity studies.

Applying Inversion Model to Satellite Data
Modeling phytoplankton absorption spectra at every 5 nm using
satellite chlorophyll a observations allows for extrapolation of
observed relationships and can account for changes due to
spectral shape, pigment composition, and pigment packaging
(Figure 4). To apply the inversion model to satellite data, we
calculated absorption (Equation 1) and inverted the modeled
absorption values to obtain estimates for 18 HPLC pigments over
a series of remote sensing images of the northeastern US coastal
ocean. To demonstrate that the modeled absorption (as opposed
to in situ absorption) would not have a significant effect on the
pigment retrievals, we ran the SVD-NNLS inversion model using
HPLC pigments and absorption modeled from Equation 1 and
compared the resulting modeled pigment concentrations with
in situ concentrations. While the r2 values in general decreased
and the normalized RMSEs increased, compared to the inversion
with in situ absorption, the r2 values of the predicted pigments
that are addressed in detail in the analysis were not significantly
less (Table 2). The statistical comparison of the two methods
demonstrated that using modeled absorption in the satellite
inversions does not significantly impact the pigment retrievals.

The results from the satellite-based inversion model show
that the resulting estimates of chlorophyll a (ChlMOD

SAT ) maps are
similar to those from the standard MODIS Aqua ChlSAT product
(data not shown). A linear comparison of ChlSAT and ChlSAT
results in an r2 of 1.00. While the OC-4 algorithm, applied to any
of the NASA ocean color satellites (SeaWiFS, MODIS Terra and
Aqua) has known issues with predicting chlorophyll a in coastal
regions, the results from this study demonstrate that on a larger
regional scale the features for both the OC-4 algorithm and the
SVD-NNLS model solutions have very similar spatial scales and
features.
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FIGURE 6 | HPLC measured pigments (horizontal axis) versus the predicted pigments (vertical axis) using SVD to obtain the pigment-specific absorption spectra and

NNLS to obtain pigment estimates.

To quantify the inherent error of using ChlSAT in the inversion
model, we gradually introduced normal random error ranging
from zero to a level comparable to the MODIS Aqua ChlSAT
(r2 ∼0.75) into the ChlHPLC and ran it through the SVD-NNLS
inversionmodel. After hundreds of iterations, our mean r2 values
for pigment retrieval dropped by 15–30 percent when errors
were compatible to the satellite error which implied that the
introduction of the satellite error does not greatly diminish the
results of the inversion analysis (Figure 7).

In addition to ChlMOD
SAT , inversion of absorption spectra over

a larger regional domain yielded estimates of 18 photosynthetic
and photo-protective pigments for the year 2007 (Table 2). A
number of these are useful as biomarkers for certain PFTs and can
aid in resolving phytoplankton community structure (Table 1).
Maps of pigments normalized to biomass (using ChlMOD

SAT ) are
markers for the distribution of PFTs within a region (Figure 8).

Chlorophyll a Distribution
Modeled ChlMOD

SAT distribution from the SVD-NNLS inversion
process compares well with MODIS Aqua ChlSAT distribution
with r2 value of 1.00, and they both were inversely correlated

to observed MODIS Aqua SST (data not shown), with highest
(coldest) levels of ChlSAT (SST) located along the coast and
over the well tidally-mixed region of the Grand Banks, with
lowest (warmest) levels offshore to the southeast near the
Gulf Stream Province, as noted by Longhurst (2010). However,
while the inverse model solutions compare well with the
satellite observations, the technique does not eliminate the
inaccuracies inherent in using satellite observations. A recent
study comparing in situ chlorophyll a measurements and
MODIS-Aqua chlorophyll a OC3 retrievals (Kahru et al., 2014)
shows that the coefficient of determination (R2) values were
0.86 for all measurements but that R2 dropped to 0.35 for
comparisons matchups with chlorophyll levels > 1.0mg Chla
m−3. In addition, an earlier work by Thomas et al. (2003)
focusing on the region of the Gulf of Maine (a subdomain of our
study) notes that summertime matchups of log-transformed in
situ chlorophyll to SeaWiFS chlorophyll have an r2 of 0.55. Most
of the errors in these estimates seem to be limited to the higher
chlorophyll regions (>1.0mgm-3) regions along the coast, which
were only a small part of the overall study domain. For the
most part, MODIS-Aqua underestimates the higher chlorophyll
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TABLE 3 | Statistical values derived from comparison of measured pigment concentrations with those estimated from the SVD-NNLS inversions using the measured

(modeled) absorption spectra.

Diagnostic Pigments r2-Values Slope Intercept RMSE Normalized RMSE Bias p-Values

Chlorophyll a 1.00 (0.99) 0.99 (1.01) −0.00 (−0.01) 0.14 (0.15) 0.01 (0.01) 0.03 (−0.01) <0.001

Chlorophyll b 0.41 (0.43) 0.79 (0.83) 0.03 (0.07) 0.12 (0.12) 0.22 (0.23) 0.00 (−0.04) <0.001

Chlorophyll c 0.88 (0.86) 0.98 (0.96) 0.03 (−0.02) 0.14 (0.16) 0.05 (0.06) −0.02 (0.04) <0.001

Chlorophyllide 0.73 (0.40) 1.01 (0.82) 0.02 (0.01) 0.11 (0.15) 0.10 (0.14) −0.02 (0.01) <0.001

Phaeophorbide 0.49 (0.68) 0.89 (0.79) 0.03 (0.01) 0.17 (0.14) 0.13 (0.12) −0.02 (0.01) <0.001

Peridinin 0.43 (0.34) 0.88 (0.94) 0.03 (0.04) 0.12 (0.15) 0.17 (0.21) −0.02 (−0.03) <0.001

19′-butanoyloxy-fucoxanthin 0.54 (0.55) 0.95 (0.86) 0.02 (0.02) 0.04 (0.05) 0.11 (.012) −0.02 (−0.02) <0.001

Fucoxanthin 0.95 (0.92) 0.96 (0.96) −0.06 (−0.06) 0.21 (0.32) 0.05 (0.07) 0.09 (0.10) <0.001

Neoxanthin 0.47 (0.38) 0.77 (0.68) 0.01 (0.01) 0.01 (0.01) 0.14 (0.17) −0.00 (−0.01) <0.001

Violaxanthin 0.71 (0.60) 0.94 (0.91) −0.00 (0.01) 0.01 (0.01) 0.12 (0.14) 0.00 (−0.00) <0.001

19′-hexanoyloxy-fucoxanthin 0.77 (0.64) 0.99 (0.86) 0.00 (0.03) 0.05 (0.07) 0.07 (0.08) −0.00 (−0.02) <0.001

Diadinoxanthin 0.82 (0.66) 1.02 (1.01) −0.01 (0.01) 0.10 (0.14) 0.07 (0.09) 0.00 (−0.01) <0.001

Alloxanthin 0.53 (0.41) 0.85 (0.83) 0.02 (0.04) 0.08 (0.10) 0.16 (0.20) −0.01 (−0.03) <0.001

Diatoxanthin 0.68 (0.63) 1.06 (0.89) 0.01 (0.02) 0.04 (0.04) 0.10 (0.10) −0.01 (−0.01) <0.001

Zeaxanthin 0.3 (0.02) 1.03 (0.22) 0.01 (0.05) 0.05 (0.06) 0.26 (0.31) −0.01 (−0.02) <0.001

Lutein 0.35 (0.27) 0.95 (0.80) 0.00 (0.01) 0.01 (0.01) 0.24 (0.26) −0.00 (−0.00) <0.001

Phaeophytin a 0.69 (0.70) 0.99 (1.04) −0.00 (−0.00) 0.02 (0.02) 0.12 (0.11) 0.00 (0.00) <0.001

Carotenoids 0.97 (0.94) 1.00 (0.94) −0.03 (0.17) 0.21 (0.30) 0.02 (0.03) 0.03 (−0.08) <0.001

FIGURE 7 | The x-axes are the r2 of the ChlHPLC versus the ChlHPLC with normal random error added, where 1 is ChlHPLC with no error and 0.75 is equivalent to the

error of ChlSAT . The y-axes depict the mean (left) and standard deviation (right) of the r2 values of the measured versus predicted pigment concentrations after the

inversions are run with errored ChlHPLC for hundred of iterations.

a levels observed in the coastal region and underestimates the
lower chlorophyll a values found in the offshore region, thereby
reducing the overall gradients in the true chlorophyll a fields.
Such a cross-domain bias serves only to distort the resulting
pigment retrievals by diminishing the gradients, while keeping
distinguishable the larger scale pigment patterns and time series
variability.

Phytoplankton Functional Type Marker
Pigment Distributions
Identification of the presence of specific PFTs using marker
pigments has been shown to be possible for a number of
functional types (Wright, 2005). Although most pigments are
not unique to specific phytoplankton taxa, and only a limited
number are unambiguous pigments for specific phytoplankton
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FIGURE 8 | Maps of the satellite-based inversion model estimates of chlorophyll a, ChlMOD
SAT

and the ratios of chlorophyll c, fucoxanthin, 19′hexanoyloxyfucoxanthin,

carotenoids (α-carotene, B-carotene, diatoxanthin, diadinoxanthin, alloxanthin, zeaxanthin, lutein, fucoxanthin, peridinin, violoxanthin, 19′butanoyloxyfucoxanthin, and

19′hexanoyloxyfucoxanthin) to ChlMOD
SAT

(upper panel) using MODIS Aqua 2007 chlorophyll a observations. Similar ratios of peridinin, alloxanthin, chlorophyll b,

violaxanthin, and 19′butanoyloxyfucoxanthin to ChlMOD
SAT

are shown in the lower panel. Note that the nonlinear colored scale bars differ for each pigment, and the

scales from left to right are associated with the pigments from top to bottom. Regions where the inverse model yielded zero concentrations are shown in black.
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taxa (Nair et al., 2008), it is possible to make valid inferences
using in situ field measurements for verification of functional
type distributions.

Maps of several key PFT marker pigments, normalized to
chlorophyll a, obtained from the inverse model (Figure 8)
solutions for 2007 show a range of different spatial distributions
over the study region. A small group of pigments (notably
chlorophyll a, and fucoxanthin) show a strong spatial correlation
with chlorophyll levels, and are highest in the coastal regions and
lowest offshore. Fucoxanthin is primarily a marker pigment for
diatoms, though it is also associated with other phytoplankton
types and therefore has been argued to be ambiguous as a
marker pigment (Nair et al., 2008). A second group of marker
pigments (peridinin and alloxanthin) shows highest pigment
to chlorophyll a ratios in the mid-shelf region of the study
area. Peridinin is a marker pigment for Type-I dinoflagellates
(Ornótfsdóttir et al., 2003) and alloxanthin is a marker pigment
for Cryptophytes (Wright, 2005). A third larger grouping of
marker pigments (19′hexanoyloxyfucoxanthin, chlorophyll-b,
violaxanthan, and 19′butanoyloxyfucoxanthin) and carotenoids
show highest pigment to chlorophyll levels in the offshore
region of the study area. All of these pigments are ambiguous
marker pigments, but have been used in prior studies to infer
distributions of haptophytes (Mackey et al., 1996).

Spatial Distribution and Phenology of
Phytoplankton Marker Pigments
The seasonality of the functional type marker pigments
(Figure 8) co-varied strongly with phytoplankton biomass levels,
estimated by chlorophyll a concentrations, even though the ratios
of the marker pigment concentrations to biomass levels varied
spatially over the study region. Three specific regions related
to the MAA sample area (coastal Gulf of Maine), the BIOME
sample area (coastal region of the mid-Atlantic Bight), and for
an open ocean region near the southeast associated with the
Gulf Stream Extension domain were chosen as representative
study regions (not shown). MODIST Aqua ChlSAT from 2002
to 2016 was taken for these three square areas and run through
the inversion method to calculate 18 pigment concentrations
that were averaged over each region. The spatially-averaged time
series of the phenologically related marker pigments within each
of the three regions from 2002 to 2016 (not shown) demonstrates
that these key pigments vary differently from region to
region.

ChlMOD
SAT levels for all regions showed seasonal variability, but

no similarities (Figure 8). A review of the ChlMOD
SAT variability in

this region is given by O’Reilly and Zetlin (1998). The BIOME
region showed peaks in ChlMOD

SAT during its noted wintertime-
spring bloom that is associated with the well-mixed water
column. The open ocean region shows bloom levels of ChlMOD

SAT
rising more than two fold, with a larger peak bloom occurring
in the spring followed by a less dramatic bloom in the fall. The
coastal Gulf of Maine (MAA) region shows late spring blooms
marked by lowest ChlMOD

SAT levels in mid-winter.

Fucoxanthin to ChlMOD
SAT ratios, a marker pigment for diatoms,

showed high variance and an inverse correlated with SST over the

time series (2002–2016) analyzed. The open ocean region showed
the highest variance and a bi-annual peak in ratios in the spring
and fall, possibly due to spring and fall diatom blooms. The
BIOME region (northern coastal) showed high, low variance and
nearly constant ratios during the fall through winter period, with
a decrease during the summer seasons only. Finally, the MAA
(southern coastal) had the highest observed variability, which,
like the BIOME region, showed large decreases, but timed to
occur primarily during the winter periods.

The 19′hexanoyloxyfucoxanthin to ChlMOD
SAT ratios

(prymnesiophytes, Phaeocystis pouchetii and coccolithophorids)
covaried with SST, with peak levels observed in the open ocean
during the summer months, followed by the BIOME, with lowest
peaks at the MAA site.

Peridinin: ChlMOD
SAT ratios (dinoflagellates) on the other

hand showed an inverse correlation with SST except in
the Biome region, peaking in concentration in the winter
months when temperatures were at their lowest and mixed
layer depths were at their greatest. Like the phenology of
the 19′hexanoyloxyfucoxanthin-related PFTs, peridinin showed
highest ratios in the open ocean site. However, higher peaks in
the ratios were observed for the MAA region with lower levels in
the BIOME region, noting that the dinoflagellates preferred more
northerly coastal regions.

Phytoplankton Functional Type
Distributions, Phenology, and Diversity
Maps of five PFTs (diatoms, dinoflagellates, prymnesiophytes,
prokaryotes, and green algae) calculated using the equations
developed by Hirata et al. (2011; Table 1) were generated using
the resulting pigment maps obtained from the inverse model
using the MODIS-Aqua chlorophyll observations from the study
region.

Diatom Distributions
Diatom distribution was assessed by utilizing fucoxanthin as
its biomarker pigment. Fucoxanthin is a useful marker for the
bacillariophyceae or diatoms (Table 1) and also occurs in the
raphidophytes and some prymnesiophytes (Jeffrey and Vest,
1997). Quantile regression analysis of HPLC fucoxanthin relative
to 19′hexanoloxyfucoxanthin observations, as carried out in
Devred et al. (2011), revealed slightly elevated concentrations
of fucoxanthin relative to 19′hexanoloxyfucoxanthin, indicating
a negligible contribution of fucoxanthin to prymnesiophytes.
After the calculation of microplankton and nanoplankton
percentages from pigment concentrations, fucoxanthin on
average accounts for about 20% of nanophytoplankton and 80%
ofmicrophytoplankton (data not shown, Devred et al., 2011). The
diatom’s marker pigment, fucoxanthin, had a high correlation
coefficient (r2 = 0.95) between in situ and modeled values
(Table 2). Other accessory pigments found in diatoms, such
as chlorophyll c and photo-protective pigments, had average
r2 values of ∼0.97. The observations show that diatoms were
taxonomically dominant throughout the year (Figure 9), with fall
and spring peaks in their biomass as shown in the chlorophyll a
observations (Figure 8). This has been shown previously in this
region using radiance measurements to estimate PFTs (Pan et al.,
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FIGURE 9 | Modeled weekly-mean phytoplankton functional types and calculated Shannon Diversity Index during 2007. Starting from the upper row of images are

distribution maps of Diatoms, Dinoflagellates, Prymnesiophytes, Prokaryotes, and Green Algae (% chlorophyll a). Weekly maps of the Shannon Index (H; n.d.) for the

PFT diversity are shown along the lower row of panels. Regions where the inverse model yielded zero concentrations are shown in black.

2010). Diatoms were the dominant coastal region functional
type, accounting for well over half of the phytoplankton
biomass, relative to chlorophyll a levels. The time series of
the diatom populations averaged over three separate regional
areas in the study site (Figure 10) and the climatology between
2006 and 2011, shows that the diatom population has highest
concentrations in the coastal Gulf of Maine (Figure 1B, MAA)
region, with a slight decrease during the summer stratified
season. High levels are also observed in the coastal Delmarva
region (Figure 1A, BIOME), but with two nearly similar peaks,
one in the spring and the other in the fall. The open ocean
region (not shown, site domain is 69◦–68◦ west longitude and
38◦–39◦ north latitude) diatom levels are lowest of the entire
domain but exhibit relatively strong spring and modest late fall
blooms. For much of the summer periods in the open ocean
region, chlorophyll levels are below the∼0.45mg chla m−3 cutoff
levels, below which fucoxanthin pigments are not retrieved in the
inverse model solutions. For those periods of time the diatom
levels are estimated to be minimal or irrelevant relative to the rest
of the PFT population.

Within the study region, diatoms played a dominant role in
shaping the diversity in areas with chlorophyll levels greater than

0.45mg chla m−3 (Figure 11). A peak of ∼1.5 in diversity levels
is observed at chlorophyll levels of ∼0.82mg chla m−3 which is
driven entirely by the rise in contribution in total biomass from
the diatom fraction of the PFTs. Below the 0.45mg chla m−3,
diatoms play little to no role in determining the functional type
diversity levels.

Dinoflagellate Distributions
Peridinin was the biomarker pigment used to calculate the
distribution of dinoflagellates (Table 1) according to Hirata
et al. (2011; Table 1). Concentrations of both measured and
modeled peridinin were generally less than 0.8mg peridinin
m−3, with a modest 0.49 r2 (Figure 6) in the one-to-one
comparisons. In terms of its importance to total absorption
reconstruction, it ranks sixth. Maps of the modeled pigment
to chlorophyll a ratios of peridinin were low and ranged
from 0.00 to 0.12 (mg peridinin/mg chla, (Figure 8). Maps
of the dinoflagellate populations show that they were present
in highest concentrations in the mid-shelf regions of the
study site (Figure 9), being at their highest concentrations in
the winter months for the MAA and open ocean regions
but at lower and less variable levels in the BIOME domain
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FIGURE 10 | The temporal distribution for sea surface temperature (◦C), ChlSAT , Shannon Diversity Index (H; n.d.), and phytoplankton functional types

(% chlorophyll a) for Diatoms, Dinoflagellates, Prymnesiophytes, Prokaryotes, and Green Algae from 2006 to 2011 for three stations including the Mid Atlantic Bight,

Gulf of Maine, and open ocean.

where no seasonal variability was observable. Lowest levels
of dinoflagellates were estimated to be present in the late
spring for the MAA region and in the mid-summer for
the BIOME region. Late summer maximum levels retreated
to a region running along the shelf front along the outer
region of the Gulf of Maine and south along the coast
(Figure 9).

Unlike the diatom populations, dinoflagellates influence
diversity across all levels of biomass. Their peak influence in
diversity occurs at chlorophyll levels of 0.45mg chla m−3,
which is where the diatom populations, or more correctly
where fucoxanthin estimates go to zero. At lower phytoplankton
biomass, or chlorophyll levels below the peak, the contribution
of dinoflagellates to phytoplankton functional diversity levels
decreases to zero at chlorophyll a concentrations of 0.1mg
chla m−3. At higher phytoplankton biomass or chlorophyll
levels above the peak, the contribution of dinoflagellates to
PFT diversity also decreases but at a much slower rate,
reaching a near constant level at the higher chlorophyll
levels.

Green Algae
Green algae is a large, diverse and informal group, in the
planktonic ocean realm this group is composed primarily of
chlorophytes (Prasinophyceae (i.e. Ostreococcus), micromonas).
The distribution of this PFT’s taxonomic importance closely
resembles that of the Prokaryotes and Prymnesiophytes.
Concentrations of green algae were estimated according to
Hirata et al. (2011; Table 1) using estimates of chlorophyll-b
concentrations. Maps of the green algae distribution (Figure 9)
show that the green algae were the dominant PFT in the open
ocean, where they accounted for nearly 40% of the phytoplankton
biomass (Figures 10, 12). In this offshore domain, large spring
and smaller fall diatom blooms correlated with a decrease in the
green algae levels during those periods. Green algae contributions
to the PFT diversity was highest (∼38%) in the open ocean,
low chlorophyll a domain and remained relatively constant with
increasing chlorophyll a levels until it encountered the transition
region where the diatom population begins to appear in the
solutions. For chlorophyll levels above 0.45mg chla m−3, the
green algae biomass (Figure 11) and their contributions to the
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FIGURE 11 | Phytoplankton functional types (fraction of chlorophyll a) for

Diatoms, Dinoflagellates, Prymnesiophytes, Prokaryotes, and Green Algae,

and Shannon Diversity Index (H; n.d.) plotted against the log of ChlSAT over

the whole study region.

PFT diversity continued to decline with increasing levels of
chlorophyll a.

Prymnesiophyte (Haptophyte) Distributions
Concentrations of haptophytes were estimated according
to Hirata et al. (2011; Table 1) using estimates of
19′hexanoyloxyfucoxanthin and 19′butanoyloxyfucoxanthin
concentrations to estimate total nanoplankton from
which the estimates of green algae are subtracted. While
19′hexanoyloxyfucoxanthin is an ambiguous marker pigment
for functional types, it is associated with prymnesiophytes,
i.e., Phaeocystis pouchetii, and coccolithophorids (Table 1).
Both Phaeocystis sp. and the diatom Skeletonema costatum
dominated the bloom in the Gulf of Maine during April, 2007,
where a mesoscale bloom was persistent during the spring
(Figure 8). The results show that when diatom blooms occur
the importance of Prymnesiophytes within the phytoplankton
population declines relative to the diatom levels both in terms
of concentrations (Figure 10) and their contribution to the
diversity levels (Figure 11). Prymnesiophytes generally were
found to be higher in the offshore ocean regions and diminished
onshore relative to the per unit chlorophyll levels in each region.
Seasonally, Prymnesiophytes showed broadly varying seasonal
cycles in the BIOME and MAA regions, with peaks in percent
chlorophyll levels occurring in late summer. The open ocean
levels were predominantly flat except when the spring diatom
bloom appeared.

Prymnesiophytes influence the PFT diversity levels
(Figure 11) only at chlorophyll levels greater than 0.45mg
chla m−3, with highest influence at this transition chlorophyll
concentration and a minimal impact at chlorophyll levels of
∼3.2mg chla m−3. Below 0.45mg chla m−3, its contribution to
the PFT diversity is equal to that of the green algae and constant
at around 35%. Prymnesiophytes and the green algae showed

strong correlations in terms of their spatial distribution and
their contribution to PFT diversity as a function of chlorophyll a
levels.

Prokaryotes
Maps of the prokaryotes (cyanobacteria) show distributional
patterns that correlate strongly with the patterns observed in
the green algae and Prymnesiophyte distributions. Estimates
of the distribution of this group shows that they are more
taxonomically important in the warmer, more stratified region of
the study domain, and highest concentrations in the southeastern
region where low nutrient gulf stream waters are found. In
terms of percent chlorophyll, the Prokaryotes accounted for the
lowest percentage of total biomass, with the highest percentages
found in the offshore southeastern domain with values near 5%,
and diminishing to near 2% for both the MAA and BIOME
regions. During the warmer season, when nutrients are lower
and stratification is high they have been observed to thrive in
the coastal regions that have highly stratified water, such as the
coastal areas off the Delmarva Peninsula region (Moisan et al.,
2010). The seasonal cycles of both the MAA and BIOME regions
showed modest peaks in the winter and summer time periods.
Overall, prokaryote distributions over time were similar to that
of the prymnesiophytes and green algae, and they varied inversely
with the concentrations in diatom populations.

Phytoplankton Functional Type Diversity
Maps of the PFT diversity (Figure 9), calculated using
the Shannon Diversity Index (H, Equation 6) and PTF
proportionality values of the various five (diatoms,
dinoflagellates, prymnesiophytes, prokaryotes, and green
algae), show that a dynamic field of PFT diversity exists in the
study domain. Highest levels of diversity are seen between the
nearshore high chlorophyll regions and the offshore oligatrophic
regions, with the most extensive areas showing up during the
winter and spring time and having lowest extent in the summer
when the region is isolated to the Gulf of Maine and along the
coastal shelf region along the entire study domain.

Because of the methods used to generate PFT estimates,
the suites of phytoplankton pigment estimates, the PFT
concentrations, and the Shannon Diversity Index (H) are all
non-linear functions of chlorophyll a concentrations (Figure 11).
The results show that the majority of the PFT concentrations
or relative abundances vary smoothly across chlorophyll levels
ranging from 0.01 to 10.0mg chla m−3. A peak in the
diversity is seen at chlorophyll levels of 0.63mg chla m−3, with
diversity levels decreasing at lower and higher concentrations of
chlorophyll a. The peak itself is part of a localized higher (>0.8)
diversity estimate for chlorophyll levels ranging between ∼0.45
and ∼1.0mg chla m−3. This high PFT diversity region is located
along the shelf at all times of the year and within the majority of
the Gulf of Maine except along the near coastal areas. The overall
area of high diversity expands to larger open ocean areas in the
winter (Figure 9), when diatom levels are lower and become
closer to the concentrations of the green algae, dinoflagellates and
prymnesiophytes.
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FIGURE 12 | The trend line slopes of (A) seatellite chlorophyll a [mg chla m−3 year−1] and (B) shannon Diversity Index [H; year−1] at each point over a 15-year period

(2002–2016) in the study region. Regions where the slopes were insignificant are shown in black.

The local time series dynamics of both the PFTs and the
resulting H show a wide range of variability (Figure 10). Overall,
along the southern coastal BIOME region, the climatology in H
shows a smooth seasonally varying relationship with a maximum
level of diversity in the summer season. In the coastal Gulf of
Maine MAA domain, the seasonal cycle in the H values shows
high levels in the winter and summer season, with lows in the
spring and fall due to the diatom bloom. In both the MAA
and BIOME regions, increases in H are directly correlated with
decreases in chlorophyll a or phytoplankton biomass. In the open
ocean, chlorophyll a levels fluctuate around the peak in the H
versus chlorophyll a relationship (Figure 11), leading to a much
more variable climatology in H for this region. For instance,
during the start of the spring bloom period in the open ocean
domain, when the diatom population begin blooms and the
winter population of prymnesiophytes, prokaryotes, and green
algae are in decline, H increases until the chlorophyll a levels pass
beyond the 0.63mg chla m−3 level, above which H levels drop
as the diatom population continues to bloom. This peak in the
H versus phytoplankton biomass or chlorophyll a levels creates a
muchmore complexH climatology for areas of the domain where
the mean chlorophyll a levels are at this peak in H. Surprisingly
enough, this chlorophyll a level is very near the peak in the
histogram (not shown) of the chlorophyll a values for the domain.
The belief is that this is merely serendipity from the choice in the
domain under study, and not an ecological observation.

In addition to the complexities arising from the non-linear
relationship between chlorophyll a levels and PFT diversity, the
impact of climate-scale changes in the chlorophyll a field can also
result in changes in PFT H values. For instance, for the 3 × 3
pixel region of the MODIS Aqua data centered on the location of
the Woods Hole Oceanographic Institution’s Air-Sea Interaction
Tower (ASIT; 41◦ 19.5′ N, 70◦ 34.0′ W), the PFT diversity time
series (not shown) has a seasonal cycle and a significant (p-value
was 0.028) negative trend in the overall PFT diversity for that

location. This trend is due to changes in the chlorophyll a levels
during that period of time.

Maps of chlorophyll a linear trends for the study domain (not
shown) reveal that the coastal ocean areas have positive trends in
chlorophyll levels but negative trends are seen in the open ocean
regions. Themajority of the domain (∼70%) shows no significant
trends in the chlorophyll a levels. So for the study domain,
some areas have observed rising chlorophyll a levels (along the
coast) and in other regions chlorophyll a levels fall (open ocean).
However, because the relationship between chlorophyll a levels
and PFT diversity is non-linear, the long-term trends in PFTs can
also vary. So, while the resulting trends in the chlorophyll maps
for the region showed some areas of positive and negative trends,
the trends for the PFT H values were nearly all negative.

DISCUSSION

The aim of this study is to demonstrate how a technique
that uses both an inverse model (Moisan et al., 2011) and a
pigment-dependent algorithm (Hirata et al., 2011) to predict
phytoplankton biodiversity can be used to estimate PFT diversity
over a much larger area than was sampled, while maintaining
robust results that retain the unique spatial and temporal
features of the MODIS-Aqua ChlSAT data. The key to retaining
original features of the chlorophyll a data is the second order
chlorophyll a model and matrix inversion model that convert
ChlSAT into phytoplankton absorption from 300 to 700 nm at
a high resolution of 5 nm which is then converted into 18
different marker pigments (Moisan et al., 2011, 2013). Using
total absorption spectra derived for a variety of coastal and
open ocean environments, the algorithm was able to predict
phytoplankton absorption and pigments in Longhurst (2010)
provinces including the Gulf Stream Province, N. Atlantic
Subtropical Gyral Province, and the NW Atlantic Shelves
Province. Interestingly, the phytoplankton community did not
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necessarily follow Longhurst’s provinces, but is divided into a
delineated coastal community, offshore community, and one that
moves offshore and onshore with the seasons. The results have
implications for understanding how different phytoplankton
groups compete with each other in different biological provinces
within the ocean.

The accuracy in terms of r2 of the pigments predictions
from inverting absorption spectra are highest when in situ data
are used (Table 2). The accuracies increase when regressing
absorption spectra with an additional pigment packaging
parameter (O’Reilly and Zetlin, 1998; Alvain et al., 2005).
An increase in the accuracy of the predicted phytoplankton
absorption and pigments was retrieved when pigment package
effects were parameterized (Johnsen et al., 1994; Bricaud et al.,
1995; Ciotti et al., 2002) by “normalization” of the measured
absorption spectra to the expected absorption at 675 nm. The
spectral shape of the pigment package effect shows modest
variability across the spectrum (Morel and Bricaud, 1981).
Inaccuracies are factored into the equation when pigment
package effects are taken into account. Also, Bricaud et al.
(2004) claims that a term is missing when reconstructing
the in vivo absorption spectrum of natural populations from
pigment concentrations. Another factor that introduces error
into the pigment estimates are the linear regression technique
that has a fair r2 value of 0.76 to 1.0 of modeled to in situ
absorption from 400 to 700 nm. The matrix inversion method
produced estimates of marker pigments that compared well
against the measured HPLC pigment observations, with r2

values averaging 0.70. The technique was robust for all pigments
except zeaxanthin and lutein (Figure 6). The resulting range
of r2 values obtained in this study (r2 0.33–1.0) are similar to
those obtained by Pan et al. (2010) from a related study that
estimated pigment concentrations (r2 0.4–0.8) using in-water
radiometry measurements off the northeast U.S. continental
shelf. The satellite data driven aph(λ) model accurately captured
the variability with respect to its shape and magnitude caused
by pigment concentrations, variable pigment ratios, and pigment
packaging (Moisan and Mitchell, 1999).

The techniques’s use of pigments estimates with algorithms
for PFTs should be used with caution because pigment ratios can
vary with phytoplankton species composition, light history, and
acclimation to temperature and nutrients (Moisan and Mitchell,
1999; Louanchi and Najjar, 2001; Woodward and Rees, 2001;
McGillicuddy et al., 2003; Geider et al., 2014). In this paper, PFTs
are reported in terms of pigments to ChlMOD

SAT ratios in order to
be comparable with past HPLC studies and to reduce possible
pigment estimate bias errors (Roy et al., 2011).

Distribution, Seasonality, and Biodiversity
in the Phytoplankton Community
The PFTs can be roughly divided into three groups, based on their
contribution to PFT diversity as a function of total chlorophyll
a (Figure 11). On a large scale, the phytoplankton community
was delineated into coastal, mixed and open ocean populations,
with open ocean populations having reduced seasonal cycles
in terms of biomass but not in terms of PFT diversity. Group

1 consisted of the diatoms. This group dominates the high
chlorophyll regions along the coast. This group’s distribution
becomes insignificant at chlorophyll a levels below 0.45mg chla
m−3. Group 2 is made up of the dinoflagellates, who are found
across the coastal and out into the open ocean, but flourish best in
the mid ocean shelf region, at the region where diatom disappear.
Group 3 is composed of the green algae and the prymnesiophytes
and prokaryotes. This group dominates the open ocean region
and transitions in the mid-shelf regions to a less dominant
group in the coastal region. Although Pan et al. (2010) did not
divide their region into sub-groups, they generally found high
concentrations along the coast that decreased toward the open
ocean. There were significant differences in the phenology of
individual PFTs over the nearly fifteen-year period of time that
this study focused on, 2002–2016. This is also the case for the
distributions of all of the groups, however, normalization of
the groups by ChlMOD

SAT , reduces the large cross-shelf trend in
biomass and allows the regions for the various groups to be easier
resolved (Figures 10–12). Overall, the results showed seasonality
in PFTs and their geographic boundaries were either nearly
static or expanded and contracted depending on the season. The
modeled PFTs were discriminated geographically based on their
association with coastal versus offshore distribution and their
association with Gulf Stream and North Atlantic Gyre waters.

Diatoms (Group 1) play a major quantitative role in the
coastal zone and had a high relative contribution to total aph(λ)
(Figure 5B). Seasonal variability of diatoms was observed in all of
the study domain, with much larger variability in the open ocean
region associated with the shelf zone, where they dominated in
the spring bloom and nearly again in the late fall blooms when
they co-existed with the dinoflagellates and prymnesiophytes.
In both coastal regions, the diatoms dominated throughout the
year and showed much milder seasonal cycles in terms of their
relative importance to the chlorophyll levels. In terms of overall
biomass, the dominance of diatoms in this highly productive
coastal region was high during winter and was lower in the
summer (Marshall and Cohn, 1983; O’Reilly and Zetlin, 1998;
Filippino et al., 2011;Makinen andMoisan, 2012). Dominance by
diatoms extended into the Grand Banks and well into the Gulf of
Maine and along the entire coastal region. We observed a narrow
feature of nanoplankton and net diatoms along the coast and its
extent is likely limited due to the availability of nitrogen/nutrients
(Filippino et al., 2011) that controls the likelihood of success
for these r-selected diatoms (Margalef, 1978). All other PFT
groups (in relation to ChlMOD

SAT show minimal concentrations and
time variability along the coast because they are outcompeted
by diatoms. Although microscopy was not available for the
entire region, the coastal time series in eutrophic waters showed
that the diatom community was dominated by Skeletonema,
Rhizosolenia, and Pseudonitzschia pungens throughout the year
(Makinen and Moisan, 2012). The study suggests that the diatom
community is fast growing and able to respond to events such
as upwelling/downwelling, estuarine outflows, and processes that
encourage eutrophication (O’Reilly and Zetlin, 1998).

The seasonal and spatial variability in the relative dominance
(% chlorophyll a) of Group 2 (dinoflagellates) is limited primarily
to the shelf regions of the domain, where they are present
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throughout the year and with a spatial expansion of the
population in the fall and winter. They have been found atmodest
levels in the open ocean ranging from ∼200 to 800 cells mL-1
(Makinen and Moisan, 2012). Group 2 algae were found to be
most dominant (∼35% of chlorophyll a) at chlorophyll levels of
0.45mg chla m−3, which was the transition region from coastal
diatom dominance to the open ocean populations. Diversity
levels peaked at chlorophyll levels on the higher side of this
transition region, marking this region as an ocean ecotone within
this study region. The specific location of this ecotone is best
shown in the narrow maximum of the August 29—September
5 color map of the dinoflagellate distribution (Figure 9). The
location of the ecotone is just inshore of the peak in the narrow
maximum band that runs along the shelf and offshore along the
mouth of the Gulf of Maine.

Group 3 algae (prymnesiophytes [coccolithophorids and
Phaeocystis], prokatyotes [cyanobacteria] and green algae) are
dominant algae in the open ocean regions of the study domain.
Of the three PFTs, the prymnesiphytes and green algae are nearly
equally important, each accounting for ∼40% of the chlorophyll
a field. Prokaryotes contributed to only about 10% of chlorophyll
a levels and was observed in offshore shore waters and was near
absent in onshore coastal waters.

In terms of the biomass (chlorophyll a) levels, the spatial
and temporal variance appears to be lower in offshore waters,
implying a year-round, stable community (Stramma and Siedler,
1988; Holligan et al., 1993). But relative to their contributions to
the total phytoplankton pool, the summer and late fall blooms
of diatoms reduced their levels of importance significantly,
especially for the green algae and the prokaryote. These particular
taxa are well adapted for this balanced, quasi steady-state
region (Stramma and Siedler, 1988). The low nutrient and high
light affinities of coccolithophorids gives them a competitive
advantage over larger phytoplankton such as diatoms, showing
a shift in size distribution from large/onshore to small/offshore
(Marañón et al., 2001; Litchman et al., 2007). The distributional
pattern of this group covaries with the distribution of photo-
protective pigments (α-carotene, B-carotene, diatoxanthin,
diadinoxanthin, neoxanthin, alloxanthin, zeaxanthin, and lutein)
and degradation products (phaeophytin and chlorophyllide).
Coccolithophorids also increased in abundance during summer
months in the Gulf Stream region and were near absent in this
region during December and February (Schoemann et al., 2005;
Verity et al., 2007). Phaeocystis was present in the Gulf of Maine
and blooms of this organism spanned the area down to Cape
Cod from February to April (Moisan et al., 2013). Cyanobacteria
showed the same distributional pattern throughout the study
region except for the enhanced concentrations in the Mid
Atlantic Bight (Moisan et al., 2010; Makinen and Moisan, 2012).

Phenology of Diatoms, Prymnesiophytes,
Green Algae, and Dinoflagellates
Climate change will alter environmental conditions within the
ocean and invoke a response in the timing and magnitude of
phytoplankton diversity, biomass and primary production. The
seasonal cycles of the PFTs shows that diatoms had a broad

summer minima while prymnesiophytes had a summer peaking
maxima and dinoflagellates had a very weak seasonal cycle. PFTs
were distributed into unique biomes in the Atlantic Ocean, with
one PFT marking the location of the PFT ecotone that has a
strong correlation to SST. The seasonality of the pigments that
are markers for PFTs was linked to temperature in different
ways, with some peaking at a maximal temperature while others
responded to a decrease in temperature with increases in biomass
(Table 4). Predicted phytoplankton marker pigments revealed
seasonal changes in individual PFTs with respect to timing of
initiation, peak duration, and demise (Figure 8, Table 4). To
understand the phenology of the phytoplankton community over
time, three sites of interest were chosen including the Mid-
Atlantic Bight, the Gulf of Maine and open ocean, to observe
seasonal shifts in phytoplankton community by running the PFT
calculations with inputs of MODIS Aqua ChlSAT for nearly fifteen
years (2002-2016). Three regions were chosen that represented
two coastal and an open ocean regimes. In studying the trends
of the time series, we found that the timing of the PFT maxima
was different for the three groupings of PFTs and some peaks
were sharp while others were broad. The phenology of the
phytoplankton communities was related to the oceanographic
conditions within each region.

Diatoms were present in highest concentrations along the
coasts and dominated the phytoplankton community and
were at a minimum during summer in all zones. During
spring and summer, values of 19′hexanoyloxyfucoxanthin
(prymnesiophytes) peaked, suggesting that they competed better
against the diatoms (Figure 8). Diatoms appeared to tolerate
deep mixed layers and cool temperatures during their winter
maxima in both coastal and open ocean regions (Longhurst,
2010). It appears that their phenology is dependent on both
light intensity and photoperiod (Edwards and Richardson,
2004). Diatom spring blooms occur once warming temperatures
and weakening winter winds induce upper ocean stratification
(Townsend et al., 1994). In late spring (May), diatoms reached
their maximal abundance. Edwards and Richardson (2004)
reported that this sudden increase is predominantly controlled by
light availability in the euphotic zone because the day length and
light intensity increase as the degree of mixing gradually declines.
The diatoms are the first PFT to be seeded into the phytoplankton
community due to their high chlorophyll a per cell with high
pigment packaging (Figure 9).

Dinoflagellates showed a similar seasonal trend as the diatoms,
but with more variability, especially in the open ocean where
their fall bloom was relatively stronger than the higher biomass
diatoms. Dinoflagellates were closely linked to temperature
with higher concentrations at the coast from December to
February, with concentrations decreasing in this region during
warm summer months. Dinoflagellate concentrations to ChlMOD

SAT
ratios peaked in the Gulf of Maine and open ocean around
January and decreased in summer. Surprisingly, dinoflagellates
appear low in concentration in the Mid Atlantic Bight and
showed a dampened seasonality. Dinoflagellates may not only
be responding physiologically to temperature, but may also
respond to temperature indirectly if stratified conditions appear
early in the season (Edwards and Richardson, 2004). The
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TABLE 4 | Phenology of certain PFT markers in the study region for 2006 as defined by the dates of the initiation, peak and termination of the seasonal maximum/bloom

period.

Marker pigment Location Duration of initiation Duration of peak Duration of termination

Chlorophyll a BIOME July 28–August 4 January 17–24 July 20–27

MAA January 24–February 1 April 15–22 January 17–24

Open Ocean June 26−July 3 March 30−April 6 June 18−25

Fucoxanthin BIOME July 11−18 January 17–24 July 3−10

MAA March 6−13 April 23−30 February 26−March 5

Open Ocean September 14−21 March 22−29 September 6−13

Peridinin BIOME July 28−August 4 May 17−24 July 20−27

MAA August 13−20 January 17−24 August 5−12

Open Ocean August 13−20 February 2−9 August 5−12

19′-Hexa-fuco BIOME February 18−25 August 5−12 February 2−9

MAA January 17−24 August 21−28 January 9−16

Open Ocean March 22−29 August 5−12 March 14−21

geographic extent of the modeled dinoflagellates in coastal and
near coastal cooler waters appeared to contract and expand
within a geographic region bounded by sea surface temperatures.
A boundary appeared to clearly delineate their distribution
between cooler waters that marks the edge of the shelf front to
the northwest and the Gulf Stream. This region near the shelf
front boundary was the location of the ecotone for the coastal
(diatoms) and open ocean phytoplankton populations and also
the location for the maximum concentrations of dinoflagellates.
It marks the ecotone for the PFTs in the study domain.

Prymnesiophytes (19′hexanoyloxyfucoxanthin), a major
feature in the North Atlantic, showed distinct peaks in
biomass during the summer (July) with an initiation of their
bloom in February at all sites (Holligan et al., 1993). The
prymnesiophytes represented in the coastal Mid-Atlantic and
open ocean are probably the coccolithophorids, Emiliania
huxleyi. Whereas, the Gulf of Maine probably is represented
by both coccolithophorids and Phaeocystis. Unfortunately,
the marker pigment, 19′hexanoyloxyfucoxanthin, does not
differentiate between coccolithophorids and Phaeocystis.
However, we hypothesize that Phaeocystis probably blooms in
early spring (February) in the Gulf of Maine (Moisan et al., 2013)
and reaches its maximal in August. Whereas, coccolithophorids
were found in high concentration at the coast and in the open
ocean south of the Gulf Stream and peaked in late summer
and are dominant feature in remote sensing of Ocean Color
(Holligan et al., 1993).

General mechanistic explanations for the phenology of
certain PFTs are still controversial, as most phenology has
focused on chlorophyll a biomass (Siegel et al., 2002; Ji et al.,
2010). Ecological explanations for the presence of individual
PFTs include the following: (1) coastal upwelling events, (2)
seasonal freshwater fluxes from major estuaries or rivers, (3)
variability in the intensity of fall and winter storms which
reduce/enhance mixing-induced vertical nutrient fluxes resulting
in decreased/increased chlorophyll a levels in fall/winter, and, (4)
stronger than usual wind stress curl in the summer, which can
shoal the thermocline offshore and deliver nutrients to the upper

photic zone, producing local phytoplankton blooms (Foukal and
Thomas, 2014). One-dimensional models have proven helpful in
revealing the underlying mechanisms driving the phenological
shifts in the phytoplankton community when local forcing
controls the mixing/stratification dynamics (Olivieri and Chavez,
2000).

Phytoplankton Functional Type Diversity
and Climate
A review of the various methods presently in use to estimate
PFTs using remote sensing observation (IOCCG, 2014) notes
that while it is possible to quantify phytoplankton pigments
by differentiation of phytoplankton absorption spectra (Bricaud
et al., 2007; Moisan et al., 2011), the requirement for high
spectral resolution remote sensing data sets limits its application.
A method to estimate various PFTs using hyperspectral
observations has been developed (PhytoDOAS, Bracher et al.,
2009) that has been able to retrieve global-scale observations
of two important PFTs. But, these sophisticated satellite-based
applications require hyperspectral data sets. In this study,
hyperspectral absorption spectra were modeled as a function of
chlorophyll a, using in situ observations of absorption spectra
and HPLC pigments. By using an inverse modeling technique
to yield pigment estimates from hyperspecral absorption
spectra (Moisan et al., 2011, 2013), the method allows us to
estimate phytoplankton pigment suites from satellite chlorophyll
a measurements. The use of pigment-dependent algorithms
to estimate the PFT concentrations (Hirata et al., 2011)
demonstrates the potential for developing these types of
relationships for various ocean areas. The need to develop such
regional relationships was one of the gaps identified by Bracher
et al. (2017) in a recent review on obtaining phytoplankton
diversity from ocean color data.

The assessment of the PTF diversity patterns in the study
domain is the first study that has been done which utilizes a
number of techniques to yield PFT estimates from phytoplankton
absorption spectra modeled using satellite observations. There
are a number of recent studies that have created PFT diversity
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maps using other techniques, including models. Phytoplankton
diversity was compared to primary productivity estimates in
the California Current region (Goebel et al., 2013) using an
NPZ-type model with 78 phytoplankton types (Goebel et al.,
2010). The results from this study calculated the Shannon
Diversity Index (H) and species richness and showed that there
was very high diversity offshore of the California upwelling
regions where production was very high. In addition, north
of the west wind drift region H showed very low values in
this High Nutrient, Low Chlorophyll region. No clear patterns
where observed when comparing H to primary production
levels. However the study did note that a number of commonly
observed relationships between diversity and productivity did
exist, including: monotonic increase; monotonic decrease; a
unimodal or hump-backed relationship or a hump-backed
envelope that denotes the maximum in the data sets. The
results from this study show that non-monotonic diversity versus
biomass relationships may exist along the coastal regions of
the U.S. east coast, including the Gulf of Maine and extending
beyond the shelf front regions where the diversity was estimated
to be highest in the areas of the eddy-rich shelf frontal regions.
Higher phytoplankton diversity within frontal regions was also
calculated in the eddy rich regions of the Gulf Stream Extension
(Lévy et al., 2015), which is located due east of this paper’s study
region. The patterns and locations of the higher H values were
similar to those encountered in this study. In this present study
highest H values were observed in the frontal regions of the shelf
frontal zone and in the central region of the Gulf of Maine, while
moderate levels of H offshore can be seen extending eastward
with the Gulf Stream extension and contain variability associated
with the mesoscale features of the warm core Gulf Stream rings.

Are these satellite-derived estimates of H more informative
than the traditional species-resolved H estimates, which the
Goebel et al. (2013) and Lévy et al. (2015) studies simulated using
a complex species-based model? Does the number of species
versus the range of species function determine the functioning
capability of the ocean ecosystem? Do we need to know the
complexity of species numbers or can we just resolve the
functionality of the ecosystem in order to understand it? Some
ecologists will argue that both the diversity of the species and
the functional types are equally important (Tilman et al., 2001).
But a study by Diaz and Cabido (2001) argues that because of
the functional nature of the processes that each functional type
contributes to ecosystem the functional diversity of the ecosystem
is more important to its overall function. Therefore, generating
satellite maps of phytoplankton functional diversity even at the
course 5-component functional type scale developed in this effort
can be useful for monitoring marine ecosystem function over
time.

In addition to assessments of the ecosystem function for
various ocean regions, maps of PFT diversity can be used to
monitor any changes to the ocean’s ecosystem over longer time.
An analysis of satellite chlorophyll a observations demonstrated
that while there is no significant trend in the global scale
chlorophyll a levels, there are regions in the ocean where
chlorophyll levels have increased and decreased over the SeaWiFS
satellite lifetime, 1998-2012 (Gregg et al., 2005; Vantrepotte and

Melin, 2009; Henson et al., 2010; Siegel et al., 2013; Gregg and
Rousseaux, 2014). Additionally, Boyce et al. (2010) have argued
that the ocean’s chlorophyll a levels observed have been in decline
over the past century. Although this observed decline has been
thought to possibly arise from data bias from blending data sets
or other errors in the analysis (Mackas, 2011; McQuatters-Gollop
et al., 2011; Rykaczewski and Dunne, 2011), any systematic
long-term changes in ocean phytoplankton biomass should be
reflected in changes to the PFTs and the resulting PFT diversity.
An analysis of the local linear trends in the MODIS-Aqua
chlorophyll a product from 2002-2016 showed that for the
majority of the region used in this study significant trends were
observed in about 25% of the domain, with increasing trends
in areas along the coast and decreasing chlorophyll levels in the
open ocean (Figure 12A). A similar linear trend analysis of the
PFT H time series showed that for both those regions the H
values had a negative trend (Figure 12B), meaning that diversity
decreased in both areas regardless of the fact that the chlorophyll
trends were opposite signs in two areas. The reason for this is
that the PFT diversity function (Figure 11) shows hump-backed
relationship, so that at low chlorophyll values, as observed in the
open ocean regions, any decrease in chlorophyll levels leads to
a decrease in H, and in the coastal region, where chlorophyll
levels are highest an increase in chlorophyll levels also leads to
a decrease in H. Such non-linear relationships in the biomass to
H relationships can have an interesting impact in the predicted
climate scale changes in H.

CONCLUSION

In summary, the process of inverting modeled phytoplankton
absorption spectra generated using satellite chlorophyll
observations into biomarker pigments and then utilizing the
Hirata et al. (2011) PFT algorithms to estimate PFT diversity
demonstrates unique patterns of individual PFTs in the
Northwest Atlantic region in addition to large scale and dynamic
patterns in PFT diversity. The distribution of the phytoplankton
community can be divided into a number of groupings that are
all related cross-shelf variability, ranging from coastal ocean
to shelf-front/mesoscale-feature dominated, to oligatrophic
open ocean regions. The temporal distribution of these PFTs
shows phenological variability in these ocean regions, which
vary with timing of their seasonal maxima and minima. These
regional analyses demonstrate the importance of developing
methods to remotely observe PFTs and their H in order to
improve knowledge on the temporal and spatial distribution of
the major phytoplankton groups and perhaps ecosystem stability
at the regional scale, and to potentially quantify the impacts of
climate variability on ecosystems. In the future, once greater
numbers of global in situ measurements are available, such
methods may be expanded to encompass larger areas to serve
as a model for analyzing PFTs and diversity trends across the
world’s oceans. The algorithm’s versatility in utilizing available
satellite data enables potential applications for providing larger
scale estimates to support ecosystem models that attempt to
model PFTs explicitly.
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