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Tidal wetland restoration efforts can be challenging to monitor in the field due to unstable

local conditions and poor site access. However, understanding how restored systems

evolve over time is essential for future management of their ecological benefits, many

of which are related to vegetation dynamics. Physical attributes, such as elevation and

distance to channel play important roles in governing vegetation expansion in developing

tidal wetlands. However, in Mediterranean ecosystems, drought years, wet years, and

their resulting influence on salinity levels may also play a crucial role in determining the

trajectory of restoration projects, but the influence of weather variability on restoration

outcomes is not well-understood. Here, we use object-based image analysis (OBIA)

and change analysis of high-resolution IKONOS and WorldView-2 satellite imagery to

explore whether mean annual rates of change from mudflat to vegetation are lower

during drought years with higher salinity (2011–2015) compared to years with lower

salinity (2009–2011) at a developing restoration site in California’s San Francisco Bay.

We found that vegetation increased at a mean rate of 1,979 m2/year during California’s

historic drought, 10.4 times slower than the rate of 20,580 m2/year between 2009 and

2011 when the state was not in drought. Vegetation was significantly concentrated in

areas closer to channel edges, where salinity stress is ameliorated, and the magnitude of

the effect increased in the 2015 image. In our image analysis, we found that different

distributions of water, mud, and algae between years led to different segmentation

settings for each set of images, highlighting the need for more robust and reproducible

OBIA strategies in complex wetlands. Our results demonstrate that adaptive monitoring

efforts in variable climates should take into account the influence of weather on tidal

wetland ecosystems, and that high-resolution remote sensing can be an effective means

of assessing these dynamics.
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INTRODUCTION

Tidal wetland ecosystems worldwide are threatened by a range of
human activities (Zedler and Kercher, 2005; Erwin, 2009; Klemas,
2013) and have been in steady decline for the last 150 years
in California (Goals Project, 2015). In recent years, significant
efforts have been undertaken to reverse this widespread loss and
alteration. To effectively implement and plan restoration efforts,
detailed understandings of system dynamics are necessary for
driving adaptive management approaches (Spencer et al., 2016).
To date, studies of restoration projects have focused more on
the physical aspects of vegetation development and how they
relate to sediment supply, initial elevation, and landscape context
(Williams and Orr, 2002; Kelly et al., 2011; Brand et al., 2012).
However, due to a variety of interacting factors, restoration
projects may not proceed in a simple linear manner over time
(Holmgren and Scheffer, 2001; Peters et al., 2004; Holmgren et al.,
2006; Scheffer et al., 2009; Sitters et al., 2012; Chapple et al.,
2017). Rates of restoration change over time and the factors that
influence these transitions are critical yet understudied aspects
of the restoration process. Since restoration projects increasingly
use iterative, data-driven adaptive management strategies to plan
projects, an improved understanding of how systems change over
longer time periods is necessary.

Due to its Mediterranean-type climate and variable weather
between years, California’s San Francisco Bay (SF Bay) is an
interesting location to study how climate variability influences
restoration projects (Chapple et al., 2017). Between 2011
and 2015, California experienced an extreme drought event
with an essentially incalculable return period (Robeson, 2015).
This extended dry period has led to changes in other plant
communities across the state (Asner et al., 2016; Copeland et al.,
2016), and has likely influenced restoration project trajectories
(Holmgren and Scheffer, 2001; Chapple et al., 2017). At the broad
scale, plant communities in SF Bay tidal wetlands are primarily
influenced by the salinity of tide waters (Malamud-Roam and
Ingram, 2004; Callaway et al., 2007), which are influenced by
snowpack levels and a complex series of upstream interactions
across the state (Dettinger and Cayan, 2003). Anthropogenic
sources of atmospheric carbon appear to be contributing to
reduced snow pack in the state, which is expected to continue
declining (Berg and Hall, 2017). These shifts will likely have
major impacts on salinity and plant community dynamics
throughout the estuary (Malamud-Roam and Ingram, 2004;
Callaway et al., 2007) and will play a role in determining
how restoration trajectories progress (Chapple et al., 2017). An
improved understanding of how extreme events like California’s
historic drought impact restoration efforts is essential for future
management (Holmgren and Scheffer, 2001; Holmgren et al.,
2006; Callaway et al., 2007; Sitters et al., 2012; Zedler et al.,
2012), given that increased climate variability is a major projected
outcome of climate change (Pachauri et al., 2014).

In the SF Bay, the restoration of tens of thousands of acres
of tidal wetland are planned or in process (Goals Project, 2015).
Tidal wetlands in the area are inundated twice daily by tidal
water, and the ambient salinity of Bay water is the primary
determinant of tidal wetland plant community structure at the

broad scale (Callaway et al., 2007; Chapple et al., 2017). At
the site-level scale, salinity interacts with tidal channel structure
and elevation to determine vegetation patterns (Sanderson et al.,
2000; Schile et al., 2011; Chapple et al., 2017). Previous studies
on the role of freshwater dynamics in California’s tidal wetlands
have focused on field-collected data, finding that salinity can
play a pronounced role in plant productivity and community
dynamics (Zedler, 1983; Callaway and Sabraw, 1994; Chapple
et al., 2017). To improve management outcomes, understanding
vegetation trends at larger scales is critical, and remote sensing
of aerial imagery provides a cost-effective means of monitoring
tidal wetland sites where access may be challenging. In particular,
object-based image analysis (OBIA) is a promising technique for
monitoring tidal salt marshes (Dronova, 2015), and has been
applied to looking at vegetation across spatial scales in these
ecosystems (Tuxen and Kelly, 2008; Moffett and Gorelick, 2013,
2016), but has only recently been used to explore change over
time (Campbell et al., 2017). Previous geospatial work using
aerial imagery has largely taken place in the North SF Bay, where
freshwater river runoff buffers Bay salinity (Tuxen and Kelly,
2008; Tuxen et al., 2008). While large-scale manipulation of
freshwater in restoring tidal wetlands is not feasible, remotely
sensed data allows for retrospective consideration of how
drought has influenced restoration trajectories.

Ecological trends are often hard to predict in heavily modified
restoration sites (Suding et al., 2004; Zedler, 2007), which
makes monitoring a crucial aspect of iterative restoration design
(Bernhardt et al., 2007; Kondolf et al., 2007; Zedler et al., 2012;
Chapple et al., 2017). These uncertainties are compounded by
climate variability, but the influence of year-effects on restoration
outcomes is under-represented in the literature (Vaughn and
Young, 2010). Site conditions in developing tidal wetlands can
be particularly challenging for ground surveys owing to tides,
mud, and limited access options (Watson, 2008; Diggory and
Parker, 2011). Remote sensing of satellite imagery allows for the
monitoring of large wetland areas at a fraction of the cost and
time associated with field monitoring, but it is still under-utilized
as a restoration tool (Klemas, 2013). To effectively track the fine
scale trends required by most tidal wetland restoration projects,
high resolution (<4 m) imagery is needed to analyze surface
trends (Dronova, 2015).

High-resolution satellite imagery also presents certain
challenges for accurately characterizing restoration targets, such
as vegetation cover. Due to high spatial complexity caused by
fine-scale patterning of water, algae, topography, and other
features, high-resolution imagery can be challenging to interpret.
Often, pixel-based approaches are hampered by their inability
to consider both the pixel identity and spatial context in
classifying landscapes (Tuxen and Kelly, 2008). To account for
these issues, object-based approaches are increasingly used to
categorize heterogeneous landscapes like tidal wetlands (Wang
et al., 2004; Tuxen and Kelly, 2008; Moffett and Gorelick, 2013,
2016; Dronova, 2015; Campbell et al., 2017). In tidal wetland
restoration projects, sediment is highly dynamic over time,
imagery must be gathered at low tide for optimal visualization
while surface water and debris can vary greatly between images
(Tuxen and Kelly, 2008; Fulfrost et al., 2012). Further, vegetation
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patches may be heterogeneous, leading to salt-and-pepper
speckle artifacts that confuse delineation and interpretation of
cover types (Moffett and Gorelick, 2013). By smoothing local
noise and allowing for supervised classification for each year,
OBIA can help address some of these issues (Dronova, 2015), but
it has rarely been used for monitoring restoration outcomes (but
see Campbell et al., 2017).

OBIA methods are effective because they rely on multi-
scale interpretations of images instead of simple pixel measures
(Schiewe et al., 2001). By nature, pixels represent a fixed area
of the ground surface, defined by the pixel size, or resolution.
Object-based approaches integrate pixel information with spatial
information, as pixels closer together in space are more likely
to be related (Blaschke and Hay, 2001). Further, the shape of
objects can be incorporated and controlled in the OBIA process
flow, allowing for more detailed pattern analysis (Blaschke et al.,
2000; Schiewe et al., 2001). A comparison of pixel-based and
object based analyses of IKONOS imagery in a tidal system found
that object-based methods repeatedly outperformed pixel-based
methods (Wang et al., 2004).

Object-based methods rely on a mix of the parameter classes
listed above to segment images for analysis. Scale and shape
parameters capture the spatial attributes of the study system,
while spectral bands from the imagery capture variation in
visual and often infrared sensor bands (Dronova, 2015). The
process of segmentation incorporates user-specified weights for
each of these parameters and divides the images into discrete
objects. Based on how well these objects capture variation
across the landscape, the user varies parameters to arrive at an
appropriate set of objects (Moffett and Gorelick, 2013). Once
the appropriate objects are defined, the user classifies a subset of
objects into classes. This subset of points is then used to classify
the entire image. Despite its strong potential, change analysis is
less frequently implemented in tidal wetland ecosystems using
OBIA. The most frequent use of this has been in mapping
mangrove ecosystems (Conchedda et al., 2008; Gaertner et al.,
2014; Son et al., 2015), where Conchedda et al. found that
increases in mangrove ecosystems in Senegal may be attributable
to increased precipitation in the region over the study period
(Conchedda et al., 2008). Campbell et al. were able to track the
influence of Hurricane Sandy on vegetation dynamics across a
range of wetlands in New York (Campbell et al., 2017). These
studies highlight the potential to use these methods to discern
the influence of weather variability on vegetation change.

Tidal wetland restoration has been underway in the SF Bay
since the mid-1970s (Williams and Faber, 2001). Early projects
showed that the proper elevation range was crucial for plant
establishment, but that pre-filling sites to their target elevations
prevented the development of tidal channels, leading to inferior
quality habitat (Williams and Faber, 2001; Philip Williams &
Associates, Ltd., and Faber, 2004). As such, tidal wetlands in
the SF Bay are typically restored through a hybrid process,
whereby the topography in a target area is altered to insure
proper drainage before returning tidal influence, but themudflats
accrete sediment passively from the tide over time to reach
target elevations for vegetation development (Williams and Orr,
2002; Kelly et al., 2011; Brand et al., 2012). This allows for
the development of tidal channel networks that convey tidal

waters in and out of these sites. Both channel structure and
elevation play key roles in determining vegetation patterning,
largely due to the reduction of salinity in higher elevation
areas and areas closer to channel edges (Sanderson et al., 2000;
Tuxen et al., 2011; Brand et al., 2012). Channel proximity also
influences salinity levels: poorly drained areas in the interior
of the marsh exhibit lower biomass production when ambient
salinity levels are higher, while channel edges appear to buffer the
negative influences of ambient salinity, allowing for similar levels
of biomass production across different salinity levels in areas
adjacent to channels (Schile et al., 2011). Biomass production
influences the speed of restoration, which in turn influences
the resilience of developing restoration projects to sea level
rise (Goals Project, 2015); it is thus critical to understand how
restoration sites change over time.

Despite a developed conceptual framework on the spatial
development of marshes from mudflats based on sediment and
elevation, the influence of weather variability and extreme events
like drought over time is less well-understood. In California tidal
salt marshes, freshwater added by El Nino events (Zedler, 1983;
Chapple et al., 2017) and experimental manipulations (Callaway
and Sabraw, 1994; Schile et al., 2011; Woo and Takekawa, 2012)
has been shown to influence biomass production and species
identity. Freshwater impacts can also influence plant dynamics
at restoration sites (Chapple et al., 2017), but these impacts have
not been explored at larger spatial scales. To better understand
the influence of drought on vegetation development over time,
we performed change analysis at a developing restoration site
in the South Bay Salt Pond Restoration Project (SBSPRP) in
Hayward, CA during California’s historic drought (2011–2015)
and a period of average precipitation (2009–2011). In the SF
Bay, earlier change detection efforts have largely relied on
using spectral indicators, such as NDVI to track restoration
site changes over time (Tuxen et al., 2008; Kelly et al., 2011;
Fulfrost et al., 2012). The goals of our study are three-fold: (1)
compare rates of annual vegetation change during the drought
period to a period with greater freshwater influence (2009–
2011), (2) assess how channel structure influences vegetation
patterning across different years, and (3) discern the utility of
OBIA classification and change analysis to detect changes in a
tidal wetland restoration project.

METHODS

Study Area
Our study focused on a single marsh (North Creek Marsh,
37◦36′40.20′′N, 122◦6′43.94′W) at Eden Landing Ecological
Reserve in Hayward, CA, part of the South Bay Salt Pond
Restoration Project (Figure 1). The SBSPRP is an adaptively-
managed effort to restore over 15,000 acres of former salt-
evaporation ponds to a mosaic of tidal wetlands and managed
ponds (Trulio et al., 2007). North Creek Marsh is a 37.32 Ha
restoration site initiated in 2006. The site was historically tidal
wetland and was converted to industrial salt-evaporation in the
late nineteenth century (Stanford et al., 2013). Tidal influence
was returned to the area by breaching a levee at the southern
end of the site. The restoration process is driven by tidal
transport of sediment building the marsh plain to the appropriate
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FIGURE 1 | (A) Eden Landing Ecological Reserve (CA Dept. Fish and Wildlife), Hayward, California, USA. (B) South San Francisco Bay, Eden Landing Ecological

Reserve outlined (C) California state outline. Aerial images reproduced with permission from ©Google, 2017.

level (Brew and Williams, 2010), then seed dispersal via tidal
hydrochory driving the development of vegetation (Diggory and
Parker, 2011). In addition to the passive restoration process
via seed dispersal, the Invasive Spartina Project actively planted
selected portions of the site with the native cordgrass Spartina
foliosa, Distichlis spicata (saltgrass), and Grindelia stricta (marsh
gumplant) (Hammond, 2016).

Salinity Data Analysis
We determined mean annual salinity for each rain year
(October–September) between 2009 and 2015 using Station 30

from the USGS SF Bay water quality archive (Cloern and Schraga,
2016). To explore potential differences between tidal heights,
we determined mean higher high water (MHHW) and monthly
maximum tide from the NOAA Redwood City Tide Gauge, the
closest tide station with continuous data over the study period
(https://tidesandcurrents.noaa.gov/). For salinity and MHHW,
we subset the data for rain years 2009–2011 and 2012–2015 to
correspond to the dates of our imagery and California’s historic
drought. To determine differences between the two periods, we
performed a non-parametric Kruskal–Wallis test for salinity,
MHHW and monthly maximum tide. To determine directional
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trends in salinity during the two periods, we used non-parametric
generalized additive models to analyze salinity levels over time
using the gam package in R (Hastie, 2013). Non-parametric tests
were used due to non-normality of salinity data.

Remote Sensing Data and Image
Pre-processing
For 2009 and 2011, we obtained 0.8m pan sharpened IKONOS
imagery of the South Bay Salt Pond Restoration Project from the

San Francisco Estuary Institute (©Digital Globe Inc., 2011). For

2015, we obtained 0.5m WorldView-2 imagery (©Digital Globe
Inc., 2015). Each set of imagery contained four spectral bands:
red, green, blue, and near-infrared (NIR). To ensure phenological
continuity between collection dates, all images were collected
near peak biomass (June 23 2009, July 7 2011, and June 21
2015) at low tide to ensure maximum visibility of vegetation. The
timing of collection is essential because tidal water frequently
covers landscape features, such as vegetation patches, essential
to change detection. To double check that intermediate years at
our site did not exhibit anomalous vegetation growth that is not
accounted for in our analysis, we reviewed Google Earth imagery

(©Google, 2017) for all available dates between June 2009 and
June 2015. We did not find evidence of anomalous change or loss
in the periods between our high resolution images.

To prepare the images for analysis, we re-projected the 2009
image from the GCS 1984 datum to the NAD 1983 datum to
match the 2011 and 2015 images.We down-sampled all images to
0.8m pixel resolution to match the lowest resolution images. We
then geocorrected all images, resulting in an offset of 0.5 pixel

maximum. Images were imported into eCognition (©Trimble
Inc.) software to perform OBIA. To allow for the most effective
interpretation of vegetation patches, bands 4, 3, and 2 were
visualized as RGB, respectively, and the Histogram Equalization
stretch was applied across the image.

Object-Based Image Classification
Object-based analyses were performed in eCognition Developer

software version 8.8 (©Trimble Inc.). As a first step, we generated
primitive image objects as spatial units for wetland classification
using the Multiscale Resolution Segmentation (MRS) tool which
requires the parameters of scale, shape and compactness to
control object size and heterogeneity. For all images, we used
the red, green, blue, and infrared bands to classify imagery. To
determine their values for our objectives, we worked through
a series of scale parameter values in increments of 5, and both
shape and compactness parameters in increments of 0.1. We
assessed each combination of settings by trial and error to
determine which combination of parameters best matched the
visual distribution of vegetation at the site. Notably, due to the
differences in the original resolution of image datasets, we had
to individually adjust their MRS parameters to obtain primitive
objects of comparable size. For the 2011 image, using a scale of
10 resulted in unrealistically small objects. Using scales of 40 and
above did not capture enough of the surface variation, and after
comparison of incremental steps, we determined that a scale of 30
most effectively captured the vegetation patterning on the marsh

surface. We selected a scale of 25 for the 2015 image and a scale of
6 for the 2009 image. For all images, shape was given low weight
(0.1) in the final classification, as shapes in wetland vegetation are
highly dependent on patch size and do not conform to regular
patterns across the marsh surface (Moffett and Gorelick, 2013).
Compactness was given a medium weight (0.5). For all images,
the four bands were given equal weight.

Following the segmentation process, we manually identified
at least 50 training samples for each of the three main categories:
Water/Channels, Mudflat, and Vegetation. Vegetation is
included as a simple category since the majority of vegetation at
the site consists of Salicornia pacifica, an early-colonizing marsh
dominant (Krause, 2016). Jaumea carnosa (Fleshy Jaumea),
Frankenia salina (Alkali Heath), the annual Salicornia europaea
(common glasswort), G. stricta (marsh gumplant), and S. foliosa
(California cordgrass) are present in lower densities due to
natural recruitment (Krause, 2016) and planting (Hammond,
2016), but our imagery did not allow for differentiation between
species. Samples were selected by examining the imagery and
cross-referencing these observations with checks of Google

Earth (©2015 Google) imagery to verify vegetation patterns.
This information was combined with expert knowledge on
vegetation patterns from field visits conducted between 2013
and 2015. Once samples were selected, images were classified by
including a supervised nearest neighbor process algorithm with
the mean brightness, mean NIR and standard deviation of the
red band selected as class-discriminating features. We initially
included the Normalized Difference Vegetation Index (NDVI),
which uses the red and infrared bands to detect green vegetation,
as a classification parameter. However, this led to spurious
identification of algae as vegetation, and misclassified vegetated
areas with apparent mudfilms as mudflat, so we elected not to
include it in the final process decision tree. Following sample
selection and implementation of the nearest neighbor algorithm,
images from all years were separately classified into the three
categories using the classification algorithm in eCognition.
Once images from each year had been classified, the resulting
classifications were imported into ENVI to perform change
detection analysis via simple spatial overlay. Images were masked
to include only the marsh-plain area.

To perform accuracy assessment, we used the Random
Points tool (Standard C Rand function) in ArcGIS v. 10.3
(Esri Inc.) to select between 54 and 87 points per category per
year, excluding training samples, and visually identified cover
categories. Samples that fell along object edges were excluded

from the random point selection. Google Earth images (©2015
Google) from each year were used to manually verify sample
collection points. These points were imported as Regions of
Interest (ROI) into ENVI v.5.2 (Harris Geospatial Inc.) software
to perform accuracy analysis. The ROIs were used to populate
the Confusion Matrix tool, which calculates standard accuracy
metrics (overall accuracy, kappa, user’s, and producer’s accuracies
for different classes) of a classified image based on verified
samples.

Following classification, we analyzed vegetation patch
dynamics. To determine the relationship between vegetation
presence and channel structure, we digitized a vector of the
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major channels at the site, then created a distance raster using
the Euclidean Distance tool in ArcGIS v. 10.3 (Esri Inc.). This
tool calculates the distance from a specified feature and outputs
a continuous raster with corresponding values. We generated
1,000 random points using the Random Points tool in ArcGis
and extracted the vegetation layer from our classification for
each year. Based on this data we used vegetation presence (1) and
absence (0) to run a generalized linear model with a binomial
distribution using the lme4 package in R (Bates et al., 2017).
To determine changes in patch configuration across the three
images, we ran patch statistics using FragStats v. 4 (McGarigal
et al., 2015).

RESULTS

Salinity and Tides
Our results show that salinity was significantly higher during
California’s historic drought, and the magnitude of mean
annual vegetation change was 10.4 times slower during this
period compared to the lower salinity period that preceded
it (Figures 2, 3). Mean salinity was 25.64 ppt for 2009–2010,
and 23.99 ppt for 2010–2011, with an overall mean of 24.82
ppt (CV = 0.198) between 2009 and 2011. Mean salinity was
26.08 ppt for 2011–2012, 28.18 ppt for 2012–2013, 30.12 ppt
for 2013–2014, and 29.50 ppt for 2014–2015, with a mean
salinity of 28.47 ppt (CV = 0.10) between 2011 and 2015
(Figure 5). Salinity was significantly different between these two
periods (p < 0.001, χ2

= 18.40). Salinity significantly decreased
between 2009 and 2011 (p < 0.001, F = 18.69) and significantly
increased between 2011 and 2015 (p < 0.001, F = 16.50). Neither
MHHW (p = 0.354, χ2

= 0.86) nor monthly maximum tide
was significantly different between the two periods (p = 0.354,
χ2

= 43.87) (Figure 2).

Remote Sensing Classification Accuracy
We obtained high classification accuracy for each of our cover
categories in each year. For 2009, we obtained an overall accuracy

of 92.42% and a Kappa Coefficient of 0.88. For 2011, we obtained
an overall accuracy of 95.02% and a Kappa Coefficient of 0.92.
For 2015, we obtained an overall accuracy of 96.83% and a
Kappa Coefficient of 0.95. The lower overall accuracy in the
2009 image was due to over-classification of water on the marsh
surface (Table 1). Vegetation, the focal target of post-restoration
monitoring, was consistently classified with high user’s and
producer’s accuracy exceeding 92% at all times (Table 1). It was
most commonly misclassified with water in 2009 and 2015 and
mudflat in 2011. Some of the overall classification error also
occurred due to misclassification of water and mudflats that did
not correspond to vegetation per se and thus was of lower concern
for our objectives.

Changes in Vegetation Cover and
Distribution
Total vegetation cover increased from 58,154 m2 of the study
area to 99,315 m2 from 2009 to 2011, an increase of 70.77%
at a mean rate of 20,580 m2/year. In contrast, vegetation cover
increased from 99,315 m2 in 2011 to 107,232 m2 in 2015, a 7.97%
change from the 2011 cover at a mean rate of 1,979 m2/year
(Figures 3, 4). For all years, vegetation presence was significantly
related to distance from channel, with areas closer to channel
more likely to support vegetation, but the magnitude of the effect

TABLE 1 | Accuracy assessment for each cover category for 2009, 2011, and

2015.

2009 2011 2015

Overall accuracy:

92.42%

Overall accuracy:

95.02%

Overall accuracy:

96.83%

Class Producer’s User’s Producer’s User’s Producer’s User’s

Channels/

Water

96 82.76 94.12 96 91.8 98.25

Vegetation 98.08 94.44 95.89 92.11 98.67 96.1

Mudflat 87.5 97.67 94.81 98.65 98.82 96.55

FIGURE 2 | SF Bay Salinity, rain years 2009–2015. Data were taken from Station 30 of the bi-monthly USGS Water Quality Cruise (Cloern and Schraga, 2016).
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FIGURE 3 | Cover type change. Mudflat was the dominant cover type across

all 3 years. Vegetation increased at a rate of 20,580 m2/year between 2009

and 2011, and 1,979 m2/year between 2011 and 2015.

was notably larger in the 2015 image (2009: p< 0.001, z=−3.49;
2011: p = 0.002, z = −2.98; 2015: p < 0.001, z = −6.33). In the
2011 image, we observed some vegetation colonization of interior
mudflat areas that did not persist in the 2015 image (Figures 4, 5).
The overall number of patches decreased from 2009 (394 patches)
to 2011 (282 patches) and increased in 2015 (473 patches). Mean
patch area was the largest in 2011 (352 m2), intermediate in 2015
(226 m2), and smallest in 2009 (147 m2; Table 2).

Among non-vegetated surfaces, mudflats were the most
prevalent cover class across all years, declining slightly in 2015,
with total cover of 245,413 m2 in 2009, 247,685 m2 in 2011,
and 230,752 m2 in 2015. Since the amount of water in aerial
images is highly dependent on the timing of image, tidal phase,
and other stochastic factors, changes in water coverage should
be interpreted with caution. In our images, water accounted for
69,764 m2 in 2009, 26,188 m2 in 2011, and 34,787 m2 in 2015
(Figures 3, 4).

DISCUSSION

Post-restoration Vegetation Dynamics in
Tidal Wetlands
Our results demonstrate that drought may impact vegetation
change rates in Mediterranean-type tidal wetland restoration
projects, leading to non-linear recovery patterns. At North
Creek Marsh, vegetation cover increased from 2009 to 2011
and from 2011 to 2015, but the mean annual rate of change
during the first period, when Bay salinity was lower, was more
than 10 times as rapid as change during the second period,
when historic drought conditions elevated salinity levels in
the Bay. By employing remotely sensed imagery to study this
progression, we were able to scale up from previous field
efforts that demonstrated the effect of lowered salinity on
plant productivity (Zedler, 1983; Schile et al., 2011; Woo and
Takekawa, 2012), and restoration trajectories (Chapple et al.,
2017). Previous work from Southern California documented
increased rates of S. foliosa establishment in response to increased

sedimentation rates brought on by El Nino events (Ward
et al., 2003) and increased Spartina biomass and structure in
response to lowered salinity brought on by El Nino events
(Zedler, 1983; Zedler et al., 1986). Our results show that
freshwater availability may also influence the rate of vegetation
expansion in recently restored wetlands dominated by S. pacifica.
These larger-scale observations are supported by experimental
results that demonstrate that increased salinity levels reduced
S. pacifica biomass production (Schile et al., 2011; Woo and
Takekawa, 2012). In contrast to our site, a similar restoration
project in a more freshwater marsh without a notable drought
period reached 90% vegetated over a 10 year period, with
no evidence of slowing pace after initial gains (Tuxen et al.,
2008). This indicates that restoration projects in higher salinity
regions may exhibit more variable, less linear trajectories
due to interannual variability in salinity. While increased
inundation during periods of higher rainfall could be another
factor influencing vegetation change, we found no significant
difference inMHHWormonthlymaximum tide between the two
periods.

Our results also demonstrate that channel structure is a
key determinant of where vegetation establishes, and may
be even more important during periods of elevated salinity.
Vegetation was significantly associated with channel proximity
for all years, but between 2011 and 2015, the strength of the
interaction between vegetation presence and channel proximity
more than doubled. We also visually observed establishment of
new vegetation patches in interiormarsh areas in 2011 (Figure 4),
but these patches did not persist in 2015. Channels drive the
restoration process by improving drainage across the marsh
surface and lowering salinity (Sanderson et al., 2000; Williams
and Orr, 2002; Wallace et al., 2005; O’Brien and Zedler, 2006).
Biomass production of S. pacifica is significantly influenced by
elevated salinity in in poorly drained areas, but has no effect in
well-drained areas adjacent to channels (Schile et al., 2011). Our
results indicate that salinity levels likely interact with the channel
structure at the site, allowing vegetation to persist and expand in
areas adjacent to channels but precluding development in poorly
drained interior areas. Under projected climate change scenarios,
increased prevalence of drought is likely to reduce snowpack and
increase salinity (Callaway et al., 2007). This may slow the overall
rate of vegetation change and increase the importance of channel
structure in the restoration process.

The Potential of OBIA for Wetland
Monitoring and Future Research Needs
Our results also show how OBIA can be used to overcome
some of the challenges with high resolution data to map
vegetation change over time in developing tidal wetlands. The
dynamic nature of tidal processes mean that images are often
different from each other based on how mud and water appear
in the image, which can present problems for comparing
images from different years (Dronova, 2015; Campbell et al.,
2017). Furthermore, local noise and spectral variation, especially
pronounced at higher spatial resolution, pose considerable
challenges for delineating wetland cover type patches as semantic
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FIGURE 4 | Change over time at North Creek Marsh. (A–C) False color imagery for 2009, 2011, and 2015. (D–F) Classifications of cover types for 2009, 2011, and

2015. Aerial images reproduced with permission from ©DigitalGlobe, 2017.

entities (Moffett and Gorelick, 2013), particularly at early post-
restoration stages with higher spatial heterogeneity (Tuxen and
Kelly, 2008; Tuxen et al., 2008; Kelly et al., 2011). By using
object-based methods, we were able to create realistic objects
for our cover types that produced high levels of accuracy,
allowing for comparison between years at high spatial resolution.
While NDVI has historically been employed as a means of
detecting vegetation, we found that classification parameters
that relied too heavily on NDVI led to classification of areas
with green algae on the mudflat surface as vegetation. By
also taking into account spatial parameters, our object-based
approach minimized spurious mapping of vegetation that may
occur when using pixel-based change methods. Our results
highlight the distinct benefit of using OBIA in assessing
early stages of restoration project development to capture
fine scale change and to streamline semi-automated vegetation
detection despite some degree of required specificity of methods
and parameters at individual dates. Although OBIA benefits
in wetland analyses have long been recognized (Tuxen and
Kelly, 2008; Dronova, 2015), this methodology is still under-
utilized in the context of restoration monitoring (Klemas 2013)
and offers powerful opportunities for cost-effective, spatially
comprehensive, and repeated characterizations of vegetation
development and landscape structure.

Notably, different algorithm parameters were needed for
each image to produce images with the highest accuracy.
We were able to attain a high level of accuracy across all

three images, but accuracy was slightly lower in the in the
2009 imagery, when algae and surface water led to more
confusion between classes, highlighting the importance of date-
specific conditions on wetland surface analysis in tidal systems.
Distributions of water and mud across the landscape were
mapped differently in different years, due to different tidal
heights at the time of collection and evolving morphology
of landscape topography that likely led to retention of water
in different areas across the years. We suggest that changes
between mudflat and water should be interpreted with caution,
since they are highly temporally variable and sensitive to when
imagery was collected. While vegetation increased overall, there
were also notable areas of localized vegetation loss (particularly
in areas farther from channels), which indicates that the site
is still evolving. We expect that efforts to monitor multiple
restoration sites will likely need to create separate classifications
for each site to minimize the impact of unique surface conditions
at a given tidal stage and surface variability on classification
effectiveness.

Limitations and Future Directions
In addition to the effects of wet years and drought, the trends we
observed are likely influenced by a combination of other factors.
In the commonly accepted models of tidal wetland development,
sedimentation rates are expected to slow as the marsh plain
reaches equilibrium with tidal inundation (Morris et al., 2002;
Williams and Orr, 2002; D’Alpaos et al., 2012; Schile et al.,
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FIGURE 5 | Change detection image at North Creek Marsh, 2009–2011. Vegetation is largely concentrated along channel edges. Interior areas are largely persistent

mudflat over the entire study period. Some interior areas away from channels contain vegetation in the 2011 classification only that is subsequently lost in 2015.

TABLE 2 | Patch statistics for 2009, 2011, and 2015.

Year Number of patches Mean patch area, m2 Maximum patch area, m2 Standard deviation patch area, m2 Coefficient of variation

2009 394 147.6 4,682.24 385.79 2.61

2011 282 352.18 25,623.7 1,641.05 4.66

2015 473 226.71 21,194.9 1,351.44 5.96

2014), which could explain the observed decrease in the rate
of vegetation expansion we observed. However, sedimentation
data collected at the site shows that annual sedimentation rates
between the breach date in 2006 and 2013 were marginally slower
(1.21 cm/year) than between 2013 and 2016 (1.33 cm/year),
when drought conditions persisted (Krause, 2016). This indicates
that the decreased rate of vegetation expansion is not due to
decreased rates of sedimentation. Further, between 2012 and
2015, S. foliosa was planted across the study site (Hammond,
2016). Since these plantings were largely adjacent to areas of
existing vegetation, they may have contributed to the expansion
we observed, which means that rates of natural expansion during
the drought years may have been even lower than our results
indicate. Lastly, our analysis of tidal height data shows that
differences in tidal inundation did not differ between the wet and
dry periods.

The inability to detect species-level trends is an important
limitation of our study. In addition to the S. foliosa plantings, the

tidal wetland sub-dominant species F. salina (Alkali Heath) and
J. carnosa (Fleshy Jaumea) were also present at the site in very
low densities (Krause, 2016). Work from older restoration and
reference sites in the north SF Bay indicates that Bay salinity can
also influence the dynamics of sub-dominant species (Chapple
et al., 2017), which may be a promising direction for future
studies in these areas. However, S. pacifica is the dominant
species in the early stages of restoration in the area, and is
responsible for the majority of vegetation cover. One of the
major implications of rates of vegetation change is the ability
of developing restoration projects to keep pace with sea level
rise (Goals Project, 2015), so for the purposes of our study
understanding overall rates of vegetation change is appropriate.
Advancing this OBIA-based monitoring framework to develop
a capacity to detect species-level transitions in the future is an
important research need that could benefit from the advances
in high-resolution hyperspectral platforms (Santos et al., 2011;
Lucieer et al., 2014).
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Implications for Restoration and Adaptive
Management
Our results demonstrate that considering non-linear post-
restoration site development trajectories that are dependent on
weather may be crucial for structuring adaptive management
decisions in variable climates. A detailed understanding of how
weather interacts with site geomorphology to influence outcomes
is important for planning effective restoration efforts (Holmgren
and Scheffer, 2001; Vaughn and Young, 2010; Sitters et al.,
2012; Chapple et al., 2017). Importantly, slower progress of
vegetation is not entirely negative, as the intermediate habitat
mosaic of vegetation, mudflat, and water provides habitat for
a number of avian species (Moss, 2015). However, given that
the rapid re-vegetation of tidal wetland restoration projects is
considered to be one of the best means of allowing developing
sites to keep pace with sea-level rise (Goals Project, 2015),
understanding the role of weather in determining these rates will
be essential for managing projects that are resilient to climate
change.

Developing reproducible remote sensing techniques is a
promising, potentially cost effective means of monitoring change
in these projects over time. Future efforts should explore
change over multiple sites to discern how generalized these
weather-dependent trends are and how transferable image
classification settings are between sites. Sampling restoration
sites across a range of salinity levels in the SF Bay would
allow for an exploration of how the spatial context of sites
might influence their temporal development. Since field sampling
is limited by time, scale, funding, and spatial resolution,
remotely sensed products hold high promise for addressing these
issues.

From a restoration management perspective, our findings
supported other work demonstrating that channel edges are
hotspots of vegetation development (Sanderson et al., 2000;
Wallace et al., 2005; O’Brien and Zedler, 2006). Attempts to
add diversity into developing marshes should focus on these

areas, a practice which is already in place in the SF Bay
(Hammond, 2016). Since we show that interior mudflat areas
away from channels may be slow to develop vegetation, proactive
manipulation of elevation in these areas prior to restoring
tidal access may be one way to speed vegetation development.
Further, efforts to actively manipulate channel structure may also
help speed the development of vegetation establishment. These
actions are likely to be more necessary in areas where salinity
levels are currently higher, but may become necessary across a
range of sites as climate change shifts salinity distributions in the
SF Bay (Callaway et al., 2007). Proactive geomorphic intervention
is likely to make these projects more resilient to the impacts of sea
level rise.
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