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The microbial contribution to ecological resilience is still largely overlooked in coral

reef ecology. Coral-associated bacteria serve a wide variety of functional roles with

reference to the coral host, and thus, the composition of the overall microbiome

community can strongly influence coral health and survival. Here, we synthesize the

findings of recent studies (n = 45) that evaluated the impacts of the top three stressors

facing coral reefs (climate change, water pollution and overfishing) on coral microbiome

community structure and diversity. Contrary to the species losses that are typical

of many ecological communities under stress, here we show that microbial richness

tends to be higher rather than lower for stressed corals (i.e., in ∼60% of cases),

regardless of the stressor. Microbial responses to stress were taxonomically consistent

across stressors, with specific taxa typically increasing in abundance (e.g., Vibrionales,

Flavobacteriales, Rhodobacterales, Alteromonadales, Rhizobiales, Rhodospirillales, and

Desulfovibrionales) and others declining (e.g., Oceanosprillales). Emerging evidence also

suggests that stress may increase the microbial beta diversity amongst coral colonies,

potentially reflecting a reduced ability of the coral host to regulate its microbiome.

Moving forward, studies will need to discern the implications of stress-induced shifts

in microbiome diversity for the coral hosts and may be able to use microbiome

community structure to identify resilient corals. The evidence we present here supports

the hypothesis that microbial communities play important roles in ecological resilience,

and we encourage a focus on the microbial contributions to resilience for future research.

Keywords: coral, bacteria, global change biology, environmental stress, symbiosis, global warming, pollution,

overfishing

INTRODUCTION

Corals are diverse meta-organisms that contain not only the conspicuous dinoflagellate partner
Symbiodinium but also a microbiome assembled of bacterial, archaeal, viral, and other eukaryotic
microorganisms (Rosenberg et al., 2007; Ainsworth et al., 2010; Thompson et al., 2014). Host
specific differences in microbiome composition suggest that some bacterial members of the
microbiome are mutualistic (Ainsworth et al., 2015); thus, many recent efforts have focused
on identifying these bacteria and their specific metabolic roles in coral health (Table 1). These
abundant coral-associated bacterial communities are distinct (Box 1) from the surrounding habitat,
containing taxa that drastically differ from free-living seawater microbes (Rohwer et al., 2001;
Carlos et al., 2013).
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TABLE 1 | Overview of the proposed beneficial roles of different coral-associated bacteria.

Role Description Example taxa References

Metabolism Provide nitrogen to Symbiodinium Cyanobacteria (potentially Synenochocous and

Prochlorococcous)

Lesser et al., 2004

Cyanobacteria Lesser et al., 2007

Provide nitrogen to coral larvae’s Symbiodinium Altermonas sp. and Vibrio alginolyticus Ceh et al., 2013a

Provide nitrogen to the coral larvae Rhizobiales Ceh et al., 2013a;

Lema et al., 2014

Provide nitrogen to Symbiodinium and the coral Gammaproteobacteria, specifically Vibrio sp. Olson et al., 2009

Rhizobiales Lema et al., 2012

Provide nitrogen and sulphur to the holobiont Unknown Wegley et al., 2007

Sulphur cycling Roseobacter, Spongiobacter, Vibrio, Altermonas Raina et al., 2009

Cycling sulphur, carbon, nitrogen and phosphorous cycling to

the holobiont, metal homeostasis, organic remediation,

antibiotic resistance, secondary metabolism

Unknown Zhang et al., 2015

Protection 20% of cultured bacteria had antibiotic activity against other

strains and pathogens

Photobacterium, Halomonas, Exiguobacterium, Bacillus,

Altermonas

Ritchie, 2006

∼70% of culturable isolates from corals demonstrated

inhibition to Burkholder agar diffusion assays

Vibrionales, Alteromonadales (e.g., Pseudoaltermonas),

Bacteroidetes

Rypien et al., 2010

Cultured isolates from corals demonstrated inhibition of four

coral pathogens and three fungi

Bacillus, Pseudomonas ElAhwany et al., 2013

Opportunistic Proteobacteria increased when Actinobacteria

were below ∼2.5% relative abundance

Actinobacteria Zaneveld et al., 2016

8% of coral commensals inhibited glycosidases (needed for

growth) and of catabolic enzymes in a coral pathogen,

Serratia marcescens

Exiguobacterium Krediet et al., 2012

Predatory bacteria consume the coral pathogens Vibrio

corallyticus and V. harveyii

Halobacteriovorax sp. Welsh et al., 2016

Displayed antimicrobial activity against other coral cultured

isolates

Pseudoalteromonas Kvennefors et al.,

2011

Recruitment Cultures and filtrates significantly increased larval settlement

suggesting an extracellular factor

Roseivivax sp. 46E8 (Alphaproteobacterium) Sharp et al., 2015

Aspects of coral biology also influence microbiome structure
and function. Similar to humans, compartmentalization of the
microbiome generates distinct microbial communities in the
coral animal, within the surface mucus layer, tissues, skeleton,
and gut (Sweet et al., 2010; Ainsworth et al., 2015; Apprill
et al., 2016) and some particularly associated with Symbiodinium
(Ainsworth et al., 2015). Coral-associated bacteria can be
transferred vertically from parent to larva (Sharp et al., 2012)
or they can be horizontally acquired from the environment
(Apprill et al., 2009; Sharp et al., 2010), including when adult
corals release bacteria (e.g., Altermonas and Roseobacter) as a
by-product of broadcast spawning (Ceh et al., 2013b). Although
recent research has focused on the role of microbiomes in
coral adaptation (Gilbert et al., 2012; Glasl et al., 2016), coral
reef management still largely ignores the role of microbial
communities, with the exception of Symbiodinium, in coral
resilience (McClanahan et al., 2012). With rapid advances
in DNA sequencing technologies, more studies are able to
capture the influence of stressors on the coral microbiome,
but no study to date has reviewed these impacts. Here, we

conduct a synthesis of the results from 45 relevant studies that
evaluated how three key stressors threatening coral reefs (i.e.,
climate change, water pollution and overfishing) altered coral
microbiomes. In addition, we provide hypotheses as to how
the microbiome may provide corals with resistance to these
stressors.

Overview of the Beneficial Roles That
Bacteria Play in Corals
Different coral-associated bacteria are hypothesized to play
varying roles in coral health, nutrition and development
(Table 1). Recent reviews have proposed the term “Beneficial
Microorganisms for Corals” (BMC) to define microbial
symbionts that maintain coral health (Peixoto et al., 2017),
outlined microbiome roles in coral health and resilience
(Bourne et al., 2016) and suggested that coral reef microbial
communities serve as indicators of environmental stress and
coral health (Glasl et al., 2017). Coral-associated microbial
communities contribute to carbon cycling (Kimes et al.,
2010), sulfur cycling (Wegley et al., 2007; Raina et al., 2009),
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BOX 1 | Are coral microbiomes unusually diverse?

Corals are sometimes referred as “highly” diverse meta-organisms. Yet this is a somewhat subjective statement that likely has arisen when coral microbiomes are

compared to other well studied mutualistic symbiotic model systems that are highly canalized (Dubilier et al., 2008). It is now well accepted that microorganisms

colonize most marine species, yet a systematic comparison among marine organisms is currently lacking. For example, sponge tissues contain between 10 and

1,000 bacterial OTUs (Bourne and Webster, 2013), a species richness value well within the range for corals. A recent assessment of tropical reef algal microbiomes

also demonstrate that algae contain even more diverse bacterial communities than corals (Barott et al., 2011). The number of bacterial OTU’s in corals can range up

to 102–104 compared to 101–103 for sponges and 102 for Hydra (Blackall et al., 2015), although as just discussed these richness estimates vary across species,

habitat, and host compartment. With these context dependent numbers, it is thus difficult to say whether corals have a higher richness of microbial taxa than other

marine species. For example, turf and CCA each exhibited overall higher numbers of OTUs (18,926 and 9,559) than the three coral species compared (Acropora

hyacinthus, A. rosaria, and Porites lutea) (951, 2,331, 4,018) (Hester et al., 2016). Similarly, algal (i.e., Dictyota bartayresiana, Halimeda opuntia, turf algae, and CCA)

microbiomes were generally more diverse overall [ranging from 6.22 to 7.82 (Shannon Index)] than those in corals (ranging from 2.84 to 4.51) (Barott et al., 2011).

Therefore, more comparisons among coral species and marine meta-organisms are needed to determine if corals or certain coral species actually have highly diverse

microbial communities.

Additionally, when comparing the composition and dynamics of the coral microbiome to other marine hosts, it is important to differentiate between stable and sporadic

members of the community. It is likely that stable members play more important roles in promoting the health and longevity of the host while transient members might

contribute to only the function of the host under explicit environmental conditions or alternatively play negative and antagonistic roles in the system (albeit, stable

members could also act as opportunistic pathogens). Stable microbes should exhibit consistent relative abundances in the host vs. the sporadic members who will

vary in their prevalence and relative abundance among individuals of the same host (Hester et al., 2016). Sporadic members may opportunistically associate with the

coral and not play a beneficial role. In three coral species there was a high number of stable members to sporadic members: A. hyacinthus (stable = 902, sporadic

= 49), A. rosaria (stable = 2,188, sporadic = 143), P. lutea (stable = 3,662, sporadic = 356) (Hester et al., 2016).

Another way to evaluate this is to conduct “core” microbiome analysis at various levels of stringency. This prevalence-based metric has been used to infer which

members of a coral’s microbiome are mutualistic or opportunistic. In an evaluation of the core coral microbiome (i.e., phylotype presence in 30% of the samples),

Acropora granulosa’s core microbiome consisted of 159 out of 1,508 phylotypes, Leptoseris spp. 204 out of 1,424, and Montipora capitata 350 out of 1,433

(Ainsworth et al., 2015). Importantly, most of these core microbiome members were highly diverse yet found in very low relative abundance compared to the entire

community. Thus, it is important to consider rare microbiome members, as these may be the beneficial resident members researchers are interested in. In another

longitudinal study from three coral species from South Florida, the core coral mucus microbiome consisted of 13 bacterial orders at a >95% prevalence score

(Zaneveld et al., 2016). In this case, the “core” microbiome highly depends on the level of stringency used.

BOX FIGURE 1 | Depiction of a coral reef and associated microbiomes with organismal hosts [i.e., invertebrates (Bourne et al., 2013; Tianero et al., 2014; Hakim

et al., 2016), seagrass (Ettinger et al., 2017; Fahimipour et al., 2017), fish (Ghanbari et al., 2015; Givens et al., 2015; Parris et al., 2016), corals (Barott et al., 2011;

Blackall et al., 2015; Hester et al., 2016), macroalgae (Barott et al., 2011; Burke et al., 2011; Egan et al., 2013; Brodie et al., 2016), sponges (Bourne and Webster,

2013; Blackall et al., 2015), turf algae (Hester et al., 2016)] and environmental parameters [i.e., reef water (McCliment et al., 2012), sediment (Ettinger et al., 2017)].

The size of the bubble indicates a more species rich microbiome (based on OTUs).
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phosphorous fixation, metal homeostasis, organic remediation
(Zhang et al., 2015), production of antibiotics (Ritchie, 2006)
and secondary metabolism (Zhang et al., 2015). For example,
diazotrophs (i.e., nitrogen-fixing microbes) form species-
specific associations with corals and may provide limiting
fixed nitrogen to the algal partner of corals, Symbiodinium,
and to the coral animal itself (Lesser et al., 2004, 2007; Lema
et al., 2012). In the early coral life stages, bacteria provide
nitrogen directly to larvae’s Symbiodinium (Ceh et al., 2013a) and
potentially to the coral larvae (Lema et al., 2014). Bacteria also
play an important role in larval recruitment and settlement, for
example,Alphaproteobacterium, Roseivivax sp. 46E8 significantly
increases larval settlement of Porites astreoides (Sharp et al.,
2015).

Many coral-associated bacteria defend the coral by exuding
antimicrobial compounds to prevent invasions by pathogens or
other exogenous bacteria (Table 1). For example, nearly 70%
of cultivable isolates from Montastrea annularis inhibited the
growth of other bacteria and 11.6% inhibited the growth of
the known coral pathogen, Vibrio shiloi (Rypien et al., 2010).
Approximately 20% of cultivable isolates from Acropora palmata
demonstrated antibiotic activity against other strains and
pathogens (Ritchie, 2006). Isolates from a soft coral, Sarcophyton
glaucum, inhibited the growth of four coral pathogens and
three fungi (ElAhwany et al., 2013). It was also found that
under increased algal cover and temperatures, the relative
abundances of Actinobacteria decreased while opportunistic
Proteobacteria increased within the coral microbiome, suggesting
that opportunists can take advantage of the absence of inhibition
(Zaneveld et al., 2016). Eight percent of native coral bacteria
inhibited the growth of the pathogen Serratia marcescens, with
Exiguobacterium sp. inducing 10–100 fold reductions in growth
within coral mucus (Krediet et al., 2012). Concurrently, the
coral pathogen, Vibrio corallilyticus, has antimicrobial activity
of its own, suggesting that it may use inhibition to colonize
the coral (Kvennefors et al., 2011). There are also some
resident bacteria that actively predate upon these pathogens
within the coral mucus (Welsh et al., 2016). In summary,
given the wide variety of roles vital to holobiont functioning
that are played by coral-associated bacteria, any disruption
or destabilization may influence host fitness and ecosystem
functioning.

RESPONSES OF THE CORAL
MICROBIOME TO STRESSORS
THREATENING CORAL REEFS

Overview of Papers Synthesized
Here, we synthesized 45 relevant studies that each (1) were
peer-reviewed (2) examined coral-associated bacteria and (3)
measured how these bacteria were affected by climate change,
water pollution or overfishing (Table 2). We included a broad
range of methodologies as many researchers use different
methods and we aimed to evaluate the field from a broad
perspective. Over half of the studies focused on climate change
(n = 27) and almost one quarter focused on water pollution

(n= 10); only a small proportion addressed overfishing (n= 4) or
more than one stressor at a time (n= 4) (Figure 1). The majority
of the studies were published in the last 5 years (Figure 1).
Geographically, almost all of the overfishing and water pollution
studies occurred in the Caribbean compared with studies on
climate change, which had a more global distribution of study
sites (Figure 1).

The genera Acropora and Porites were the most represented
corals within these studies, accounting for nearly 50% of all corals
evaluated (Figure 2A). Massive Porites species may be “stress-
tolerant” corals, as they are slow growing and may be able to
survive harsher environments (Darling et al., 2012). Acroporids
are considered “competitive” corals, meaning that they are fast-
growing and dominate reefs in productive environments; they
are also the most sensitive to environmental change (Darling
et al., 2012). As a result, there was a bias toward studying climate
change on competitive life history strategies, specificallyAcropora
in Australia (Figure 2B).

We note here that we report bacterial taxa at the levels of
Phylum, Class and Order to provide consistency across the array
of studies given that many of them reported their data in different
ways and to different taxonomic levels. Additionally, researchers
used varying metrics of community structure to evaluate the
impact of stressors including: richness (i.e., total number of
species), alpha diversity (i.e., the total number of species and their
relative abundances, generally the Shannon and Simpson Index),
evenness (i.e., distribution of species relative abundances) and
beta diversity (i.e., difference in community composition).

Stressors Tend to Increase Coral
Microbiome Richness/Alpha Diversity
While a consequence of human impacts on macro-scale
communities is often species loss, the emerging evidence from
our analysis suggests that similar impacts more commonly lead to
an increase in bacterial richness or alpha diversity within coral-
associated microbial communities (∼60% of the time, Table 3).
Invasion is likely the mechanism underlying these increases, with
stress events appearing to disrupt the functioning microbiome
and facilitating an invasion of microbes not typically resident
on corals, thus increasing the overall number of microbiome
members (Welsh et al., 2015). For example, corals closer to
human disturbance have been shown to harbor higher bacterial
diversity than those farther from the disturbance (Morrow et al.,
2012a). Similarly, corals in lowered pH had higher microbial
diversity (Meron et al., 2011) and microbial diversity increased
in overfishing and eutrophication treatments (Jessen et al., 2013).
Lastly, it was found that upon algal contact, the coral microbiome
increased in species richness (Zaneveld et al., 2016). These
results also are contrary to the patterns found in the human
gut microbiome, in which stress lowers microbial alpha diversity
by allowing opportunistic and pathogenic taxa to dominate the
community (Lozupone et al., 2012). This might be explained by
the nature of the human gut microbiome being a more closed
system compared with corals that are constantly bathed in the
distinct microbial assemblages of seawater. We hypothesize that
when corals are disturbed, their ability to regulate and/or exclude
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TABLE 2 | Overview of the 45 papers that evaluated the influence of climate change, water pollution and overfishing on the coral microbiome, coral species evaluated,

the method they used to capture effects on the microbial community (e.g., DGGE, denaturing gradient gel electrophoresis; TRFLP, terminal restriction fragment length

polymorphism; PFGE, pulsed-field gel electrophoresis), and whether the paper had data that we included on changes in bacterial taxa (i.e., Figure 3) or microbial diversity

(i.e., Table 3).

Author Coral Species Microbial community assessment method Taxa

changes?

Microbial

diversity?

CLIMATE CHANGE

Littman et al., 2010 Acropora tenuis DGGE of 16S y n

Littman et al., 2011 Acropora millepora Metagenomics y n

Salerno et al., 2011 Porites compressa TRFLP of 16S y n

Meron et al., 2011 Acropora eurystoma 16S rRNA clones, DGGE of 16S y y

Webster et al., 2012 Acropora millepora DGGE of 16S y n

Frydenborg et al., 2013 Acropora palmata Culturing y n

Santos et al., 2014 Mussismilia harttii DGGE of 16S, qPCR y y

Morrow et al., 2015 Acropora millepora, Porites cylindrica 454 16S rRNA amplicons y y

Tout et al., 2015 Pocillopora damicornis 454 16S rRNA amplicons, qPCR y y

Webster et al., 2016 Acropora millepora, Seriatopora hystrix 454 16S rRNA amplicons y n

Lee et al., 2016 Acropora muricata 454 16S rRNA amplicons y y

Tracy et al., 2015 Gorgonia ventalina, Orbicella faveolata 454 16S rRNA amplicons y y

Meron et al., 2012 Balanophyllia europaea, Cladocora caespitosa 16S rRNA clones y y

Banin et al., 2003 Oculina patagonica Culturing n n

Ben-Haim et al., 2003 Pocillopora damicornis Culturing n n

Ainsworth and Hoegh-Guldberg, 2009 Acropora aspera, Stylophora pistillata FISH Microscopy n n

Bourne et al., 2007 Acropora millepora RFLP of 16S, DGGE of 16S, colony blotting y y

Kushmaro et al., 1998 Oculina patagonica Culturing y n

Ritchie, 2006 Acropora palmata Culturing, 16S rRNA clones y n

Ben-Haim and Rosenburg, 2002 Pocillopora damicornis, Acropora formasa,

Acropora sp., Cycloseries sp., Fungiidae

Culturing, 16S rRNA clones n n

Koren and Rosenberg, 2006 Oculina patagonica 16S rRNA clones n n

Koren and Rosenberg, 2008 Oculina patagonica Culturing, 16S rRNA clones n n

Cardini et al., 2016 Acropora hemprichii, Stylophora pistillata Measured microbial N2 fixation n n

Ziegler et al., 2017 Acropora hyacinthus Illumina 16S rRNA amplicons y n

Lee et al., 2017 Acropora muricata Illumina 16S rRNA amplicons y n

Hadaidi et al., 2017 Porites lobata Illumina 16S rRNA amplicons, qPCR n n

Gajigan et al., 2017 Acropora digitifera Illumina 16S rRNA amplicons y y

CLIMATE CHANGE AND WATER POLLUTION

Vega Thurber et al., 2009 Porites compressa Metagenomics y n

Welsh et al., 2016 Agaricia sp., Porites sp., Siderastraea siderea 454 16S rRNA amplicons, culturing,

microscopy, predation assays

n n

WATER POLLUTION

Sutherland et al., 2010 Acropora palmata, Siderastrea siderea,

Solenastrea bournoni

PFGE of 16S n n

Looney et al., 2010 Acropora palmata, Montastraea faveolata,

Siderastrea siderea

Culturing n n

Morrow et al., 2012a Montastraea faveolata, Porites astreoides DGGE of 16S, 454 16S rRNA amplicons y y

Röthig et al., 2016 Fungia granulosa Illumina 16S rRNA amplicons y y

Kline et al., 2006 Montastraea annularis Culturing n n

Klaus et al., 2007 Montastraea annularis TRFLP of 16S n n

Garren et al., 2009 Porites cylindrica 16S rRNA clones, DGGE of 16S n n

Ziegler et al., 2016 Pocillopora verrucosa, Acropora hemprichii Illumina 16S rRNA amplicons y y

Mitchell and Chet, 1975 Platygyra Culturing n n

Al-Dahash and Mahmoud, 2013 Porites compressa, Acropora clathrata DGGE of 16S, culturing y y

WATER POLLUTION AND OVERFISHING

Jessen et al., 2013 Acropora hemprichii 454 16S rRNA amplicons y n

(Continued)
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TABLE 2 | Continued

Author Coral Species Microbial community assessment method Taxa

changes?

Microbial

diversity?

OVERFISHING

Vega Thurber et al., 2012 Porites astreoides TRFLP of 16S y y

Barott et al., 2012 Montastraea annularis 454 16S rRNA amplicons y y

Morrow et al., 2013 Montastraea faveolata, Porites astreoides DGGE of 16S n n

Morrow et al., 2017 Porites cylindrica Illumina 16S rRNA amplicons, culturing y y

OVERFISHING, WATER POLLUTION AND CLIMATE CHANGE

Zaneveld et al., 2016 Siderastrea siderea, Porites sp., Agaricia sp. 454 16S rRNA amplicons y y

FIGURE 1 | A world map of studies evaluating the impact of stressors on the coral microbiome, climate change (red), water pollution (blue), overfishing (yellow),

climate change and water pollution (purple), water pollution and overfishing (green), and overfishing, water pollution and climate change (black). The size of the bubble

refers to the number of papers at that latitude/longitude. The timeline on the bottom represents the number of papers published each year from 1975 to 2017 that

were included in the synthesis.

incoming microbial taxa from the surrounding environment
may be reduced. However, this is not always the case, as other
studies have demonstrated no significant change or a decrease
in microbial diversity under these three stressors (Meron et al.,
2012; Tracy et al., 2015; Morrow et al., 2017). These conflicting
results likely are the result of variability in coral microbiome
responses across coral host species, locations and stressors.
Additionally, these diversity changes may reflect differences in
experimental design.

Stressors Decrease the Stability and
Increase Beta Diversity of Microbiome
Community Structure
In addition to increased richness, there is mounting evidence
that stressors induce changes to coral microbiome evenness and
beta diversity. Changes in evenness indicates shifts in microbial
species dominance, and evenness has been found to decrease in

the rhizosphere with added disturbance (van der Voort et al.,
2016). An increase in beta diversity in response to stress may
indicate a destabilized microbiome in mammals (Moeller et al.,
2013; Zaneveld et al., 2017) with the host being unable to
regulate its microbiome. In corals, both temperature extremes
and contact with macroalgae were shown to increase microbiome
beta diversity (Zaneveld et al., 2016). Similarly, microbiome
composition in shallow polluted sites was more variable from
coral to coral than at the control sites (Klaus et al., 2007).
Changes in salinity also impacted community evenness. For
example it was found that the microbiome of hypersaline-treated
corals shifted from a community dominated by a single OTU
(Rhodobacteraceae) to a more even one in which Pseudomonas
veronii was the most abundant taxon (Röthig et al., 2016).

Overfishing on reefs can lead to reduced grazing pressure,
by decreasing herbivorous fish abundance, and increasing
competition between corals and macroalgae for space (Morrow
et al., 2013). Macroalgae are hypothesized to outcompete
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FIGURE 2 | Plot of (A) coral genera and (B) coral life-histories included in all studies on the impact of climate change, water pollution and overfishing on the coral

microbiome. Coral life-histories are taken from Darling et al. (2012). Pictures on the top correspond to coral species and life history strategies included in these papers

left to right: Acropora palmata (competitive) (photo by Ryan McMinds, Global Coral Microbiome Project, licensed under CC BY 2.0), Pocillopora damicornis (weedy)

(photo by Joseph Pollock, Global Coral Microbiome Project, licensed under CC BY 2.0), Orbicella faveolata (generalist) (photo by Joseph Pollock, Global Coral

Microbiome Project, licensed under CC BY 2.0), and Porites lobata (stress tolerant) (photo by Kristina Tietjen).

corals via a variety of mechanisms including alterations to the
microbiome (Smith et al., 2006; Morrow et al., 2012b), faster
growth rates, shading, allelopathic interactions (Rasher and Hay,
2010), and abrasion and preventing coral recruitment (Jompa
and McCook, 2003). For example, macroalgal contact with the
coral Porites astreoides caused multiple changes in the coral
microbiome including increased dispersion (i.e., beta diversity),
disappearance of a potentially mutualisticGammaproteobacteria,
changes in abundance for taxa already present, establishment of
new taxa, and growth of algae-associated microbes within the
coral (Vega Thurber et al., 2012). Macroalgal contact has also
been shown to shift the coral microbiome to becomemore similar
to the macroalgal microbiome (Morrow et al., 2013).

A counter example to the overall trend of stress-induced
community shifts is provided by a study on A. millepora and
Seriatopora hystrix microbiomes, which demonstrated stability
in microbiome composition in the face of both lowered pH

and increased temperatures. While S. hystrix’s microbiome did
show some variability, the overarching conclusion was that corals
demonstrated a more stable and robust microbiome compared to
other key calcifying reef taxa such as foraminifera and crustose
coralline algae (Webster et al., 2016).

Stressors Decrease the Abundance of the
Proposed Bacterial Symbiont,
Endozoicomonas
The studies we synthesized consistently found that the bacterial
order, Oceanospirillales, especially the genus Endozoicomonas,
was underrepresented in corals during stress events, particularly
during climate anomalies (Figure 3). This may be problematic
for corals as Endozoicomonas is a proposed beneficial symbiont
to corals. Two studies used CARD-FISH and FISH probes,
respectively, to reveal that Endozoicomonas was located deep
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TABLE 3 | Changes in microbiome alpha diversity or richness due to stress from climate change, water pollution and overfishing (+, higher diversity; −, lower diversity; 0,

no difference).

Stressor Summary of findings Coral species Lab or field? Overall References

CLIMATE CHANGE

Thermal Stress Higher diversity (Shannon) within a coral

colony during bleaching compared to pre-

and post-bleaching

Acropora millepora Field + Bourne et al., 2007

Diazotroph diversity (Chao1, Shannon) and

richness significantly increased 3-fold with

+2.5◦ and +4◦C increases

Mussismilia harttii Lab + Santos et al., 2014

Diversity (Chao1) was significantly higher

under heat stress (31◦C)

Pocillopora damicornis Lab + Tout et al., 2015

G. ventalina microbial diversity (Shannon)

was significantly lower during the warming

event comparing to pre-warming,

O. faveolata was not significantly different to

pre-warming

Gorgonia ventalina, Orbicella

faveolata

Field −0 Tracy et al., 2015

Richness and diversity (Chao1, Simpson)

increased with increasing temperatures

Acropora muricata Lab + Lee et al., 2016

Alpha diversity (Chao1, Inverse Simpson)

decreased but richness stayed the same

(32◦C)

Acropora digitifera Lab −0 Gajigan et al., 2017

Ocean Acidification Increase in alpha diversity (Shannon) at

lower pH

Acropora eurystoma Lab + Meron et al., 2011

No significant changes except alpha

diversity (Shannon) significantly decreased in

C. caespitosa skeleton

Cladocora caespitose,

Balanophyllia europaea

Field − 0,0,0 Meron et al., 2012

P. cylindrica had lower alpha diversity

(Shannon, Chao1) at low pH while

A. millepora showed no significant change

Porites cylindrica, Acropora

millepora

Lab −,0 Morrow et al., 2015

WATER POLLUTION

Proximity to Humans P. astreoides and M. faveolata had higher

diversity (Shannon) at sites closer to shore

(i.e., < 5km)

Porites astreoides, Montastrea

faveolata

Field +,+ Morrow et al., 2012a

Alpha diversity (Chao1, Shannon, Simpson)

and richness in A. hemprichii was

significantly higher at sites impacted by

sedimentation and sewage, P. verrucosa

showed no significant difference. Both

showed no significant difference at

wastewater outfall

Acropora hemprichii, Pocillopora

verrucosa

Field +,0,0,0 Ziegler et al., 2016

High Salinity Corals within the long-term salinity treatment

increased in microbial diversity 3-fold

(Chao1) and 10-fold (Inverse Simpson)

Fungia granulosa Lab + Röthig et al., 2016

Oil Pollution The number of bands increased after

microcosm experiments exposed corals to 1

ml and 20 ul of crude oil

Porites compressa, Acropora

clathrata

Field + Al-Dahash and

Mahmoud, 2013

WATER POLLUTION AND OVERFISHING

Eutrophication and

Herbivore Exclusion

Diversity (Inverse Simpson, Chao1)

increased over time in all stress treatments:

herbivore exclusion, nutrient enrichment and

herbivore exclusion * nutrient enrichment

Acropora hemprichii Field +,+,+ Jessen et al., 2013

OVERFISHING

Macroalgae Contact Richness increased next to all algae, and

Chao1 was significantly higher in all

treatments (i.e., corals touching Dictyota

menstrualis, Galaxuara obtusata, Halimeda

tuna, Lobophora variegata, Sargassum

polyceratium)

Porites astreoides Field +,+,+,+,+ Vega Thurber et al., 2012

Diversity (Shannon) increased next to CCA

and Dictyota bartayresiana; Decreased next

to Halimeda opuntia and turf algae

Montastraea annularis Field +,+,−,− Barott et al., 2012

(Continued)
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TABLE 3 | Continued

Stressor Summary of findings Coral species Lab or field? Overall References

Diversity (Shannon) was lower but not

significantly different in coral fragments

exposed to extracts from Lobophora sp.

Porites cylindrica Lab 0 Morrow et al., 2017

OVERFISHING, POLLUTION, CLIMATE CHANGE

Thermal Stress, Nutrients,

Macroalgae Contact

Richness increased next to algae Siderastrea siderea, Porites sp.,

Agaricia sp.

Field + Zaneveld et al., 2016

within the coral tissues, suggesting an intimate association with
coral hosts (Bayer et al., 2013; Neave et al., 2016). Additionally,
the first cultivable Endozoicomonas from corals suggests
Endozoicomonas montiporae CL-33 helps corals under stress
through preventing mitochondrial dysfunction and promoting
gluconeogenesis (Ding et al., 2016). Additionally, researchers
have proposed that Endozoicomonas plays a role in sulfur cycling
(Raina et al., 2009), nutritional symbiosis (La Rivière et al., 2013)
and protecting Symbiodinium from bleaching pathogens (Pantos
et al., 2015). By comparing cultured and culture-independent
genomes of Endozoicimonas, researchers demonstrated that
Endozoicimonas likely plays a role in protein and carbohydrate
transport for the host and may have diversified and adapted with
their hosts (Neave et al., 2017). However, they also demonstrated
that Endozoicimonas has a large genome, suggesting it has a
free-living stage. Not only might the observed decrease in these
potentially symbiotic taxa during stress events threaten coral
resistance to stress, it also may influence coral resilience after
the stress is alleviated if Endozoicomonas does not return to its
original abundance and function. In a study of volcanic CO2

seeps where the seawater has naturally reduced pH, researchers
found that Acropora millepora and Porites cylindrica contained
significantly different microbial communities compared to the
same coral species at a control site (>500m away); for
A. millepora this was mainly due to a 50% decrease of this
proposedmutualist Endozoicomonas (Morrow et al., 2015). These
coral species were also less abundant at the volcanic seeps,
potentially due to this loss of symbiont in their microbiomes.
In a separate study, Endozoicomonas was significantly reduced
at low pH in A. millepora showing that this stressor can cause
loss of these symbionts (Webster et al., 2016). Other symbiotic
taxa in addition to Endozoicomonas are likely to decline as
well under stress. At anthropogenic impacted reefs (i.e., close
to metropolitan cities), the main coral symbiotic taxon in
Pocillopora verrucosa (Endozoicomonaceae) and A. hemprichii
(Alteromonadales) declined in relative abundance (Ziegler et al.,
2016).

Stressors Increase Opportunistic and
Pathogenic Bacterial Taxa in the Coral
Microbiome
Stressed corals may have a reduced ability to regulate
their microbiomes and thus have reciprocal increases in
potentially pathogenic and opportunistic microbial taxa
(Figure 3). The overrepresented taxa during all three types

of stressor we evaluated were: Vibrionales, Flavobacteriales,
Rhodobacterales, Alteromonadales, Rhizobiales, Rhodospirillales,
and Desulfovibrionales (Figure 3). The Order Rhodobacterales,
for example, are fast growing opportunistic bacteria (Teeling
et al., 2012) that have been found in both healthy and stressed
corals (Meron et al., 2011; Sharp et al., 2012), potentially
blooming under periods of stress when there is open niche space
(Welsh et al., 2015). OTUs within the Order Flavobacteriales
were shown to make up a large percentage of white band disease
associated OTUs (Gignoux-Wolfsohn and Vollmer, 2015). Thus,
these potentially pathogenic, opportunistic taxa may flourish
when the coral is stressed and cannot regulate its microbiome.

In comparison, a meta-analysis of 16S sequences from 32
papers, showed that the microbiome of bleached corals differed
from that of healthy corals primarily in having a higher
proportion of two specific taxa: Vibrios and Acidobacterias
(Mouchka et al., 2010). An increase in Vibrionales under climate
change stress is unsurprising as the cultivable Vibrio strain
AK-1 was shown to induce coral bleaching (Kushmaro et al.,
1998) (albeit the coral, Oculina patagonica, may have developed
resistance to this bacteria; Mills et al., 2013) and Vibronales are
a common taxa to increase under conditions of thermal stress
(Bourne et al., 2007; Frydenborg et al., 2013; Tout et al., 2015).
Importantly, the coral microbiome may have a temperature
tolerance threshold, as it was found that bacterial community
structure only changes after an elevation of temperature greater
than 1◦C; all exposures at temperatures lower than this threshold
showed no evidence of community alterations (Salerno et al.,
2011). Thus, coral microbiomes may buffer thermal anomalies
within that lower temperature range.

Bleached corals also exhibit different bacterial communities
than “healthy” corals (Koren and Rosenberg, 2008). For example,
during a bleaching event in Australia, the coral microbiome
showed an increase in genes associated with virulence factors
(Littman et al., 2011). Correspondingly, during heat stress
experiments, the known pathogen V. coralliilyticus increased
in abundance by four orders of magnitude (Tout et al.,
2015). One likely mechanism for these observed changes are
strong competition between native commensals and pathogenic
bacteria (i.e., V. shiloi and V. coralliilyticus) on corals, with
temperature stress mediating the growth of the foreigners. This
has been supported by work within Acropora palmata, where
high temperatures tend to select for pathogens in the coral
microbiome (Frydenborg et al., 2013). Increased temperatures
also correlated with increased expression of virulence genes
(Banin et al., 2003), lysis of coral cells (Ben-Haim et al., 2003),
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FIGURE 3 | Summary of the number of papers showing differences in bacterial taxa during stress events (climate change, water pollution or overfishing). The size of

the bubble indicates the number of papers (although, some papers found both an increase and decrease in the taxonomic level (i.e., class or family) if a lower level

was evaluated (i.e., genus or OTU) so the bubble size may be larger than the actual number of papers as both of these changes were plotted) and the color of the

bubble shows the percent of papers that showed that taxa overrepresented under stress (red) or underrepresented under stress (blue). Bacteria were only plotted if

they were represented by a paper in each of the three stressors.

and infection (Kushmaro et al., 1998; Ben-Haim and Rosenburg,
2002) by coral pathogenic bacteria. However, Porites lobata has
been found to have a relatively stable microbiome between
bleached and healthy colonies, suggesting its mucus microbiome
plays a protective role within bleached corals (Hadaidi et al.,
2017).

Furthermore, increased Vibrio and other taxa occur prior to
visual bleaching signs (Bourne et al., 2007; Lee et al., 2016),
suggesting some predictable changes in the bacterial community
could forewarn which corals may bleach. The abundance of
Vibrionales within the microbiome may also be regulated
by factors other than temperature, including what strain of
Symbiodinium is hosted by the coral (Littman et al., 2010).

Importantly, the increases in potentially pathogenic
or opportunistic taxa found in our analysis (Figure 3)
may be due to a variety of mechanisms such as the
induction of temperature sensitive virulence cassettes
found in pathogens, enhanced growth rates under higher
temperatures, or altered microbial-host signals during stress.
Thermally stressed corals often increase production of the

metabolites like dimethylsulphoniopropionate (DMSP),
which is normally exuded by corals (Raina et al., 2013) and
their symbionts (Steinke et al., 2011). It is hypothesized
that DMSP is used as a chemoattractant by bacterial
pathogens to locate thermally stressed corals (Garren et al.,
2014).

While in most cases stressors altered coral microbial
community structure, shifts do not always occur. For example,
O. faveolata’s microbiome did not significantly shift when
the host bleached (Tracy et al., 2015). Furthermore, coral-
associated microbial communities did not undergo major shifts
when transplanted to a natural lower pH environment and
did not harbor microbial pathogens (Meron et al., 2012). This
study (Meron et al., 2012), suggests that for these two coral
species (i.e., Balanophyllia europaea and Cladocora caespitosa),
reduced pH does not pose a significant threat to coral
health. Importantly, environmental conditions can buffer these
microbiome changes, specifically with high water flow buffering
coral microbiome changes under high temperatures (Lee et al.,
2017).
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Climate Change, Water Pollution and
Overfishing Increase Disease Associated
Bacteria
In addition to community structure changes, stressors can
also increase disease on coral reefs (Brandt et al., 2013; Vega
Thurber et al., 2013). For example, exposure of corals to lower
pH resulted in microbiome communities reminiscent of those
associated with diseased and stressed corals as they contained
more Vibrionaceae and Altermonadaceae (Vega Thurber et al.,
2009; Meron et al., 2011). Additionally, reduced pH significantly
changed the microbial communities in A. millepora with the
loss of Proteobacteria sequences typically associated with healthy
corals while Gammaproteobacteria, which are often associated
with diseased and stressed corals, increased (Webster et al., 2012).

Given that coral reefs occur in oligotrophic environments,
added nutrients can dramatically influence ecosystem
functioning and alter microbial communities in ways that
appear to favor disease. In Florida, human sewage supplied a
strain of Serratia marcescens (a common fecal enterobacterium)
into reef water and corallivorous snails acted as a vector,
therefore inducing white-pox like diseases in Acropora palmata,
Siderastrea siderea, and Solenastrea bournoni (Sutherland
et al., 2010). Furthermore, the addition of glucose or inorganic
nutrients improved the survival of S. marcescens in A. palmata
(Looney et al., 2010). Under this water pollution stress, as
with thermal stress (Littman et al., 2011), the microbial
communities shifted toward a higher prevalence of heterotrophic
bacteria relative to autotrophic bacteria (Dinsdale et al., 2008).
Microbiome taxa in polluted sites can be more pathogenic,
as demonstrated by a study in which exposure to pollutants
increased coral mortality except when antibiotics were added,
suggesting a bacterially mediated cause of death (Mitchell and
Chet, 1975). As the proximity and size of human populations
increases adjacent to coral reefs, so does the likelihood of land-
based runoff, and evidence continues to demonstrate that corals
living closer to shore have higher abundances of disease-related
bacteria (Morrow et al., 2012a), and coral disease correlates with
poor water quality and high nutrient levels (Furby et al., 2014).
Nevertheless, the coral microbiome also demonstrates resilience
against water pollution, when coral fragments were transplanted
under eutrophic aquaculture pens, the coral microbiome shifted
toward known pathogens but then showed no physical signs of
disease and after 22 days the communities shifted back to their
original state (Garren et al., 2009).

Overfishing may alter coral microbiomes indirectly, with
decreases in herbivorous fish populations being one means by
which algal growth can be facilitated at the expense of corals.
For example, overfishing in Jamaica, in concert with warming
and hurricanes, caused coral cover to decrease from 50 to 5%
and an increase to 90% macroalgae cover (Hughes, 1994). Shifts
to an algae dominated state can influence the coral microbiome
by changing the water columnmicrobial composition, increasing
algal interactions (Morrow et al., 2013) and triggering coral
disease (Nugues et al., 2004). Increased coral interactions with
turf algae have been associated with an increase in pathogens
and virulence genes (Barott et al., 2011). These authors also

proposed that fleshy algae can alter reefs by increasing both
bacterial respiration and pathogenic invasion (Barott et al., 2012).
Moreover, algae may act as reservoirs for coral pathogens (Sweet
et al., 2013) and thus enhance disease events. Algae harbor
distinctly different microbial communities than corals (Barott
et al., 2011; Vega Thurber et al., 2012) and produce more carbon
exudate that can stimulate heterotrophic microbial growth in
reef waters (Haas et al., 2011). Algae also produce dissolved
organic matter (DOM) that is enriched in dissolved neutral
sugars (DNS). These sugars can spur the growth of fast-growing
bacteria in the water column, the result of which is a community
with less bacterial diversity and dominated by copiotrophic
bacteria like Vibrionaceae and Pseudoaltermonadaceae that
typically carry virulence factors (Nelson et al., 2013). Conversely,
corals exude DOM that selects for high bacterial diversity in
the water column dominated by Alphaproteobacteria and few
representatives with virulence factors (e.g., Hyphomonadaceae
and Erythrobacteraceae) (Nelson et al., 2013). Other stressors in
addition to climate change can also increase virulence sequences,
for example increased nutrients, DOC, temperature or pH can all
increase the abundance of virulence genes in the coral holobiont
(Vega Thurber et al., 2009).

Overfishing also alters fish populations and induces trophic
cascades (Jackson et al., 2001), and changes in fish functional
roles can influence the reef-associated microbial communities.
For example, within the territory of the damselfishes, Stegastes
apicalis and S. nigricans, there were 2–3-fold increases in
coral pathogens in the microbiome and a higher prevalence
of corals with signs of black band disease. These Stegates
species normally exclude macroalgae and cultivate filamentous
algae, thus providing a trophic link among fish behavior, coral
pathogen reservoirs and coral disease (Casey et al., 2014). Other
fishes (i.e., Chaetodontidae) may also act directly as disease
vectors (Raymundo et al., 2009), however, functionally diverse
fish communities have been suggested to alleviate coral disease
(Raymundo et al., 2009) and five Chaetodontidae and one
Labridae species actually slowed the progression of blackband
disease (Cole et al., 2009). Furthermore, damage to corals from
abandoned fishing lines, is correlated with a 4-fold increase in
coral disease and thus can somewhat explain the reduction in
coral disease prevalence between marine reserve and non-reserve
areas (Lamb et al., 2015).

Biases within the Available Data
There are several caveats associated with the data synthesized
here, specifically evaluating changes in bacterial composition
from disparate studies. These biases stem from uneven sequence
library sizes, the use of different primer sets, low DNA
amplification, and most importantly the use of different methods
for assessment of microbiome response (e.g., culturing, 16S
amplicons, metagenomes). Researchers in microbiology use a
wide array of methodologies, which can make it difficult to
compare studies quantitatively. At the same time, studies often
reported only bacterial composition through relative abundance
measures, and are therefore not directly quantifying bacterial
cells within the coral microbiome. For example, if a study
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measures a decrease in a bacterial taxon, that taxon could be
staying in consistent quantity while all other members of the
microbiome are increasing. Thus, it is important to remember
these biases when inferring from these data and keep in mind
they are a broad qualitative overview of what happens to the coral
microbiome under stress.

EVIDENCE THAT CORAL MICROBIOMES
MEDIATE HOST RESISTANCE TO
STRESSORS

Some of the strongest evidence in support of the hypothesis
that coral microbes provide their hosts with resilience or
resistance to stressors comes from studies using antibiotics.
For example, antibiotic treatment of thermally stressed corals
caused tissue loss, significant declines in photosynthetic efficiency
(Gilbert et al., 2012) and increased coral susceptibility to Vibrio
shiloi infection and bleaching (Mills et al., 2013; although
see Bellantuono et al., 2012). Furthermore, when corals were
subjected to antibiotics and subsequently transplanted back onto
the reef, those corals bleached and eventually died compared with
the control corals that did not receive antibiotics (Glasl et al.,
2016).

Early investigations into the role of DSMP cycling suggest
that the coral microbiome likely plays an important role in
coral resistance to stress. Coral-associated bacteria implicated in
sulfur cycling (e.g., Endozoicomonas, Halomonas) (Raina et al.,
2009; Todd et al., 2010) may help corals acclimate to climate
change by protecting Symbiodinium from photosynthesis derived
oxidative stress, as sulfur compounds such as DMSP and its
breakdown products can act as antioxidants for marine algae
(Sunda et al., 2002). As such, in bleaching corals, it was shown
that there is a strong negative correlation between the abundance
of bacterial pathogens and the abundance of the proposed
symbiont Endozoicomonas (Pantos et al., 2015).

Nitrogen fixation and regulation by coral microbiome
residents may also play an important role in coral resistance to
stress. Symbiodinium depend on nitrogen for growth (Béraud
et al., 2013), diazotroph abundance increases with higher
seawater temperatures (Santos et al., 2014), and nitrogen fixation
within corals increases with higher temperatures (Cardini et al.,
2016). However, the mechanism behind and outcome of this
relationship remains an active area of research. For example,
it was recently suggested that these bacterial diazotrophs may
in fact harm corals during heat stress by increasing the N:P
ratio within the cells, causing a destabilization of the host-
Symbiodinium partnership and thus inducing or prolonging
holobiont bleaching events above normal levels (Rädecker et al.,
2015). Yet diazotrophs still may play an important role in
buffering the coral holobiont under water pollution stress by
fixing nitrogen. In eutrophication experiments, nitrogen fixing
and denitrifying bacteria increased in abundance in the coral
Acropora hemprichii, but there were no significant changes to
holobiont physiology (Jessen et al., 2013).

Finally, coral-associated bacteria may support coral resistance
to algal growth simulated by overfishing given that resident

bacteria defend the coral from microbial invasions (Rypien
et al., 2010; Shnit-Orland et al., 2012; Welsh et al., 2016),
thus potentially providing protection from algae altering the
coral microbiome (Vega Thurber et al., 2012). There are clearly
multiple mechanisms that influence these microbial roles and,
as demonstrated above, a conflicting base of evidence. Recent
research further supports the hypothesis that the microbiome
plays a role in coral resistance, with coral microbiomes adapting
to environmental conditions during reciprocal transplants and
microbiomes that were previously exposed to amore variable and
warmer environment having higher resistance during heat stress
experiments (Ziegler et al., 2017). Clarity into these dynamics will
likely grow as evidence increases and we suggest that these are key
research topics to better understand the roles played by microbes
in coral resistance to stress.

CONCLUSIONS AND FUTURE
DIRECTIONS

Our understanding of how the coral microbiome contributes to
reef health is rapidly evolving, with the studies synthesized herein
providing insight into how microbial communities respond to
environmental change and hypotheses regarding the potential
mechanisms underlying microbial support of coral resistance
to stress. When stressors induce changes in coral-associated
bacterial communities their beneficial functions to the coral
holobiont can be lost. Thus, the composition of the coral
microbiome could help to inform resource managers about
which corals are most likely to successfully resist stressors,
but this information has not yet been compiled. However, our
results suggest that stressed corals have more taxonomically
diverse microbiomes and increased beta diversity between coral
colonies, potentially due to the stressed corals’ inability to
regulate incoming microbial members. At the same time, in
stressed corals the opportunistic bacterial taxa Flavobacteriales,
Rhodobacterales and Vibrionales are generally overrepresented,
while the proposed coral symbiont, Endozoicimonas and related
species, is underrepresented. Our results suggest metrics of
microbiome diversity should be further investigated, especially
beta diversity dispersion, which has only recently been applied
to coral microbiome studies as a measure of microbiome stability
between coral colonies (Zaneveld et al., 2016). Researchers should
also utilize metrics of phylogenetic diversity through metrics
like Faiths phylogenetic diversity, mean pairwise distance, and
variation of pairwise distance (Tucker et al., 2017) to better
understand the coral microbiome. In the future, resource
managers may be able to identify stressed corals by the presence
of opportunistic microbe taxa (Pollock et al., 2011) and by
increased microbiome alpha and beta diversity, even if the coral
has not yet shown physical signs of stress or deterioration.

To assist these trajectories, researchers need a better
understanding of coral microbiome variability (e.g., temporal,
spatial, seasonal, coral host species), to assemble databases of
the microbiomes during different coral states (i.e., what is the
normal microbiome for a coral species?), and determine the
function of these bacteria for the coral host. With climate
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projections predicting that future conditions will increase disease
susceptibility, pathogen abundance and virulence on coral
reefs (Maynard et al., 2015) and diverging predicted responses
of marine microbes to anthropogenic change (Hutchins and
Fu, 2017), it is critical that researchers continue to advance
understanding of the relationships between corals and their
microbiomes, and how these change under stress. Promisingly,
ongoing research suggests that wemay have the ability to increase
coral adaptation to these stressors by modifying the coral-
associated microbial community (van Oppen et al., 2015) or by
using coral probiotics (Krediet et al., 2013). This review and
an ever-growing body of evidence suggest that conservationists
may be able to screen for corals with resilient microbiomes to
determine where best to focus management priorities as threats
to coral reefs continue to accumulate.
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