

Biodiversity and Habitat Characteristics of the Bycatch Assemblages in Fish Aggregating Devices (FADs) and School Sets in the Eastern Pacific Ocean

Nerea Lezama-Ochoa^{1*}, Hilario Murua¹, Martin Hall², Marlon Román², Jon Ruiz¹, Nick Vogel², Ainhoa Caballero¹ and Igor Sancristobal¹

¹ Marine Research Unit, AZTI Pasaia, Pasaia, Spain, ² Inter-American Tropical Tuna Commision, La Jolla, CA, United States

OPEN ACCESS

Edited by:

Rob Harcourt, Macquarie University, Australia

Reviewed by:

Manjula Tiwari, Southwest Fisheries Science Center (NOAA), United States Konstantinos Tsagarakis, Hellenic Centre for Marine Research, Greece

> *Correspondence: Nerea Lezama-Ochoa nlezamaochoa@gmail.com

Specialty section:

This article was submitted to Marine Megafauna, a section of the journal Frontiers in Marine Science

Received: 15 May 2017 **Accepted:** 02 August 2017 **Published:** 23 August 2017

Citation:

Lezama-Ochoa N, Murua H, Hall M, Román M, Ruiz J, Vogel N, Caballero A and Sancristobal I (2017) Biodiversity and Habitat Characteristics of the Bycatch Assemblages in Fish Aggregating Devices (FADs) and School Sets in the Eastern Pacific Ocean. Front. Mar. Sci. 4:265. doi: 10.3389/fmars.2017.00265 This study examined diversity and habitat characteristics for bycatch assemblages in two different types of fishing (drifting fish aggregating devices sets and sets made on school of tunas) in the eastern Pacific Ocean (20°S–30°N and 70°–150°W) between 2005 and 2011 using biodiversity metrics and Generalized Additive Models. Bycatch information was based on data collected by onboard observers covering more than 80% of the purse seine fishing trips. Our results suggest that diversity and habitat characteristics of the bycatch assemblages differ depending of the fishing mode. Thus, diversity was mostly explained by area and set type; being higher in fish aggregating devices (FAD) sets than School sets. Concretely, diversity seems to be directly related with the equatorial upwelling and the front system in FAD sets and with the Costa Rica Dome and the coastal upwelling of Panama induced by wind jets in School sets. Among environmental variables, temperature and chlorophyll were the most important predictors to describe the diversity of the bycatch assemblages and their habitat, which could be helpful for the development of an Ecosystem Approach to Fishery Management (EAFM).

Keywords: bycatch, species diversity, purse seine, eastern Pacific Ocean, ecosystem approach to fishery management

INTRODUCTION

Fishing is one of the recognized causes of marine biodiversity loss (Worm et al., 2006), especially when fishing activity alters the diversity, composition, biomass and productivity of the species inhabiting the marine ecosystem by changing and reducing their habitats (Dayton et al., 1995).

Various Regional Fishery Management Organizations have implemented measures to regulate and reduce catches of overfished single species (Cullis-Suzuki and Pauly, 2010). However, to date fisheries management has been generally focused on the protection of a single target species with a substantial economic cost included without addressing the impact on the ecosystems (Link, 2010). The implementation of the Ecosystem Approach to Fishery Management (EAFM), which takes into account that fisheries are embedded and integrated with the environment and cannot be managed in isolation (Garcia, 2003), is a recent approach to fisheries management. In short, the objective of the EAFM is to reduce the mortality of the most vulnerable fished species and maintain the biodiversity in the marine ecosystem (Pikitch et al., 2004). However, the patterns and trends of species diversity in the pelagic ocean are not well-known due to the complexity of the marine ecosystem (Irigoien et al., 2004; Worm et al., 2005). In addition, it is difficult to find good techniques which describe, analyze and model the biodiversity of these species under the impact of the fishing exploitation. Many different types of indicators have been developed to reflect a variety of characteristics of species in simple terms; being species diversity one of the most basic but important indicators (Smeets et al., 1999; Zhu et al., 2011). Describing the spatial-temporal variability of species diversity can provide important information to facilitate the implementation of EAFM (Greenstreet and Rogers, 2006).

The tropical tuna purse seine fishery targeting skipjack (*Katsuwonus pelamis*), yellowfin (*Thunnus albacares*) and bigeye (*Thunnus obesus*) (Arrizabalaga et al., 2012) is one of the most important fisheries for the tuna cannery industry. In the eastern Pacific Ocean, this fishery uses three fishing techniques to capture tropical tuna: sets on tuna schools associated with dolphins, sets on unassociated schools of tunas (Free or School sets), and sets on floating objects [encountered natural objects or objects deployed by the fishers, called fish-aggregating devices (FADs)] (see a recent review Hall and Roman, 2013).

Bycatch, defined as "the part of the capture which is formed by non-target species" (Hall et al., 2000), whether retained and sold or discarded, has become one of the most important issues in fishery management. The worldwide increase of FAD sets during the 1990s has led to higher bycatches (Hall and Roman, 2013), with an associated impact on the population of some particular species, such as sharks or billfishes, which are more vulnerable due to their life histories. Thus, little is known about the differences of the bycatch species assemblages in the purse seine fishery in both fishing modes. Some literature has been published about the biology and habitat characteristics of the tuna and bycatch species in the eastern Pacific Ocean (Olson et al., 2010, 2014; Scott et al., 2012; Duffy et al., 2015). Moreover, tropical tuna purse seine fishery observer data has been used recently to study bycatch species diversity and community structure in the Atlantic and Indian Oceans in different type of sets (Torres-Irineo et al., 2014; Lezama-Ochoa et al., 2015); but not yet in the eastern Pacific Ocean. Understanding the habitat and diversity patterns of these species in the eastern tropical Pacific is essential for the development of future manage strategies to mitigate the effect of purse seiner in the bycatch communities.

The main objectives of this work were to (1) study the structure and species diversity of the tropical tuna purse seiner bycatch assemblages using biodiversity metrics in FAD and School fishing mode and (2) investigate the geographical and habitat characteristics of the bycatch species in the eastern Pacific Ocean. We hypothesize that the diversity patterns of bycatch assemblages could vary according to fishing modes (FAD vs. School sets, as FADs could attract and provide shelter for several

species) and specific oceanographic characteristics of the eastern Pacific Ocean.

MATERIALS

Study Area

The study area encompasses the eastern Pacific Ocean between 20°S-30°N and 70°-150°W. The main surface currents in the eastern Pacific Ocean are the North Equatorial Current (NEC), the North Equatorial Counter Current (NECC), the South Equatorial Current (SEC), and the California and Peru currents (see Supplementary Material Figure 1). Both (NEC and SEC) equatorial currents converge in the Intertropical convergence Zone (ITCZ). An equatorial upwelling takes place along longitudinal gradient characterized by cold waters and high concentrations of nutrients (Kessler, 2006). These surface currents are mainly forced by the wind regime, which follows a seasonal cycle (Fiedler, 1992). California and Peru-Chile currents are eastern boundary currents (Fiedler, 1992), with high productivity associated with coastal upwelling and forming some of the most important fishing areas characterized by cool and low- salinity waters. In addition, some oceanographic processes, such as the Equatorial Front system at north of equator, the Costa Rica Dome and the coastal upwelling generated by wind jets around Central America concentrate high amount of nutrients and influence the abundance and distribution of marine organisms (Fiedler and Talley, 2006).

Data Collection

Bycatch data were collected by the Inter-American Tropical Tuna Commission observer program (2005–2011) conducted in large purse seine vessels (> 363 t carrying capacity). Since 1996 the observer coverage of the trips in large vessels, combining IATTC and national observer programs, has been larger than 90% for FAD sets. In the case of School sets, the coverage has been larger than 85% since 2008 (IATTC, 2015).

Target species were not considered in the analysis because i) they are caught in much more quantities than bycatch species and could drive all the analysis and ii) the objective was to improve the information of the bycatch assemblages related to fishing mode and environmental characteristics.

Data recorded by observers include information about the trip and fishing activities (set type, position of the set, day and hour of the set), and the capture of the bycatch in biomass or number for the different species groups (Lezama-Ochoa et al., 2015). In this study, the numbers of individuals were used to perform the analysis. Bycatch species groups were divided in billfishes, bonyfishes, sharks, rays, turtles and marine mammals. Bycatch was identified to species level in general and to genus or family level in some cases (see "Selection of taxonomic categories" section) (Lezama-Ochoa et al., 2015).

The fishing set was considered as the data unit for the analysis and was categorized into FAD sets and School sets (Lezama-Ochoa et al., 2015). In this study Log sets (sets on natural drifting objects) were removed because of their low number in most recent years (IATTC, 2010), and therefore, only FAD sets were included in the analysis. A total of 45068 sets were observed Lezama-Ochoa et al

				FA	۵							Scho	o			
Trimester	z	Obs. SR	Richness	Rich. se	Chao2	Chao se	Shannon	Sh. se	z	Obs. SR	Richness	Rich. se	Chao2	Chao se	Shannon	Sh. se
-	7171	58	2.71	1.53	62	3.5	0.59	0.46	3560	52	1.30	0.61	54	2.51	0.14	0.28
2	10723	52	3.31	1.89	20	23.62	0.69	0.45	1893	42	1.24	0.53	50	11.66	0.11	0.25
e	9320	57	3.80	2.15	98	49.08	0.80	0.47	1306	40	1.38	0.73	42	2.64	0.16	0.30
4	0966	55	3.60	1.94	58	3.24	0.80	0.44	1135	44	1.31	0.69	104	71.01	0.14	0.29
Total	37174	68	3.40	1.95	71	3.49	0.73	0.46	7894	56	1.30	0.63	68	13.15	0.14	0.28

FIGURE 1 Distribution of sets with presence of bycatch in FAD and School fishing mode between 2005 and 2011.

between 2005 and 2011, from which 7894 were School sets and 37174 were FAD sets. The number of sets in both fishing modes is presented in **Table 1** and **Figure 1**.

Selection of Taxonomic Categories for Biodiversity Study

In the case of high level taxa records (genus, family, order and other levels), the distribution of species and their abundance was assigned based on the species composition for the same group (e.g., genus, family) in the same area (Lezama-Ochoa et al., 2015) for one particular year. As species level identification for the Families Belonidae, Diodotidae and Myliobatidae, and the Genus *Sphyraena* were not possible, they were considered as morphospecies -taxa that are distinguishable on the basis of the morphology (Oliver and Beattie, 1996)—and treated as species in species richness estimates (Lezama-Ochoa et al., 2015).

The list of species selected comprised a total of 72 species (6 billfish species, 20 sharks, 34 bony-fishes, 4 turtles and 8 species of rays).

Environmental Data

For each fishing set (date and position), which covered the period January 2005- December 2011, values of oceanographic variables were provided by CLS (Collecte Localisation Satellite, France, https://www.cls.fr) in the form of global geographic maps for each variable. Temperature at 20, 30, 50 and 75 m depth (SubT20, SubT30, SubT50, and SubT75; in $^{\circ}$ C); depth of the thermocline (Therm. Depth; in m); gradient of the thermocline (Therm. Grad; in $^{\circ}$ C); salinity at 20, 30, 50, and 75 m depth (Sal20, Sal30, Sal50, and Sal75; in PSU); and total surface current speed (WT; in kn) are outputs of MERCATOR general ocean circulation model (http://www.mercator-ocean.fr/en/), with

a 25 Km spatial resolution and a frequency of 2/3 days. Sea Surface Temperature (SST; in $^{\circ}$ C) was derived from AVHRR and MODIS satellite data with 4 km resolution, acquired, respectively from NOAA CLASS (https://www.class.ncdc. noaa.gov/saa/products/welcome;jsessionid=64A6E9D799B84B4 9C1AEC15FB5A00900) and NASA OBPG (https://oceancolor.gsfc.nasa.gov). Chlorophyll concentration the same day of the fishing set and 18 days before (Chl and Chl-18 in mg m-3) with a 4 km resolution was derived from MODIS and MERIS satellite data, acquired, respectively from NASA OBPG and ESA. Sea Level Anomaly (SLA; in cm) and geostrophic current speed (WG; in kn) from altimetry were available with 25 km resolution. These altimetry maps were computed by CLS from different combinations of satellites ERS-2, Topex/Poseidon, Jason-1/2, ENVISAT, GFO, and CRYOSAT.

METHODS

Alpha Diversity

Alpha diversity measures the species diversity of a particular community, defined by two components: the number of species present (species richness) and how even their numerical participation in the community is (evenness) (Magurran, 2004).

Alpha diversity's first component (species richness) was calculated as the total number of observed species and represented using species accumulation curves. This technique shows the cumulative number of species recorded as a function of the sampling effort (i.e., number of samples) or the rate at which new species are found within a community. As a result, a smooth curve is produced by repeating a process of randomly adding the samples to the accumulation curve and then plotting the mean of these permutations (normally as value of 100) (Coleman et al., 1982). All the possible species can be considered found when the asymptote of the curve is reached. In this work, a simulation (5 replicates) of species accumulation curves for both types of fishing selecting randomly the same number of sets (N = 1,000) were also carried out.

Some authors have demonstrated that a raw count of the number of species in an area is far from the best estimate of true species richness (Reese et al., 2014). Despite its wide appeal and apparent simplicity, accurate estimates of species richness can be remarkably difficult to achieve using only the observed number of species. For that reason, there are some extrapolation techniques, such as non-parametric estimators, which allow the total number of species to be estimated using solely information of the observed number of species (Magurran and McGill, 2011). The Chao2 non-parametric estimator (Chao, 1984) (which represents the asymptote of the species accumulation curve), which adjusts the observed species richness by the number of rare taxa defined on occurrence data, was also used to obtain the estimated total species richness vs. observed species richness.

The mean value of the Species richness index was also calculated to compare diversity of the bycatch assemblages between both fishing types and trimesters.

The relative abundance of a species in an assemblage is the main factor that determines its importance in a diversity measure (Magurran, 2004). Thus, the second component of Alpha diversity (evenness) is better to describe the variability in species abundances of an area. A community in which all species have approximately equal numbers of individuals would be considered as an extremely even community (Magurran, 2004).

One of the best known and most informative methods to study the relative abundance of species is the rank/abundance plot or dominance/diversity curve. The vertical axis provides information about the logarithm of abundance, while the horizontal axis provides information about the number of species.

The log-abundance curves represent the relative abundance of the species (number of individuals for each species) from the most abundant to the rarest one. In this work, log-rank abundance curves were constructed for each fishing mode (FAD vs. School) to obtain the abundance of each species.

The shape of the log-rank abundance for each fishing mode can be fitted to different species abundance models: Geometric, Log-series, Log-normal and Broken stick models (Magurran, 2004); which describe the structure of the community. Therefore, the slope of the rank abundance plot describes community structure and diversity. Steep slopes signify assemblages with a high dominance of few species, such as the one that might be found in a Geometric or Log-series distribution, while smaller slopes imply higher evenness, consistent with a Log-normal or a Broken stick model (Magurran, 2004). Whittaker (1965) indicated that low diversity communities are Geometric while medium diversity communities are Log-series and high diversity communities are Log-normal.

The data was fitted to the following species distribution models (using the "vegan" package and "radlattice" function in R software): Null model (or Broken Stick model), Preemption model (or Geometric model), Log-normal model, Zipf model and Zipf-Mandelbrot model. The functional form for each model is explained in Pielou (1975) and Wilson (1991). The best model fit, according to the lowest AIC value or Akaike's Information Criterion (Akaike, 1974), represents best the community structure (Kindt and Coe, 2005).

Other indices, such as the Shannon diversity index, which includes information not only about the number of species of the assemblage but also about the relative abundance (Magurran, 2004), were used.

The Shannon diversity index (Shannon and Weaver, 1949) is defined as,

$$H' = -\Sigma pi \ln \ \cdot \ pi$$

where pi is the proportion of individuals of ith species found. Values range between 1.5 and 3.5; increasing diversity with the increase of the Shannon index. The mean value of the Shannon diversity index was calculated to compare diversity of the bycatch assemblages between both fishing types and by trimesters.

Geographical and Habitat Characteristics of Bycatch Species

Generalized Additive Models (GAMs) (Hastie and Tibshirani, 1990; Guisan et al., 2002) were constructed to identify the spatial

and habitat characteristics of the bycatch species in relation with Species richness and Shannon diversity index between 2005 and 2011. Spatial (latitude and longitude), temporal (month), the type of association (FAD vs. School sets) and oceanographic variables were included in the analysis. The type of fishing was considered as covariate to determine if each bycatch species assemblage has different habitat characteristics. These models were chosen over generalized linear models as they are able of modeling continuous or categorical variables, replacing the linear function by a sum of smooth functions (Hastie and Tibshirani, 1990).

All environmental covariates were considered initially in the models, except those highly correlated between them (Pearson correlation r > 0.6) to avoid overfitting (Wood, 2006). Only one variable was included in the final model when high correlation was found between two variables.

To validate the model performance, a cross-validation was applied with a k-fold partitioning method (with k = 5) (Kohavi, 1995; Elith and Leathwick, 2009). Data was split into two different sets: one set used to fit the model (80% of data), called the training data, and the other set used to validate and obtain the predictions, called the testing data (20% of data).

The degrees of freedom of the smooth functions were determined for each explanatory variable as part of the model fitting process (Lopez et al., 2017). Each GAM was fitted using (i) thin plate regression splines to model nonlinear covariate effects, except for monthly variation, where a cyclic cubic regression spline was used (Wood, 2006) and (ii) a two-dimensional thin plate regression spline surface to account for spatial effects attributable to the location (latitude, longitude) of each fishing set (Lopez et al., 2017).

A GAM with a QuasiPoisson error distribution and logisticlink function was used to model the Species richness index. A GAM with a Gaussian error distribution with identity-link function was used to model the Shannon diversity index. The selection of the family and link function was determined by the distribution of the response variable for each index, respectively. In the case of Species richness index a slight over-dispersion of the response variable was observed; in contrast, for the Shannon index, the response variable showed a normal distribution.

The selection of the effective covariates to include in each GAM was performed applying backward stepwise procedure and selecting significant *p*-values for each geographical/ oceanographic variable. The variables which explain the diversity patterns were considered as the variables included in the final model. After fitting the model, residuals were plotted and Spearman's rank correlation coefficient (rs) was calculated to evaluate the model accuracy. *P*-values lower than 0.05 and correlation coefficients higher than 0.1 provide good model accuracy (Lauria et al., 2011). Model bias was also evaluated using Wilcoxon's signed-rank test to compare observed vs. predicted values. This test compares the median observed vs. predicted diversity, to test biased in the predictions.

Predictions are considered bias (underestimated/ overestimated) if test values are lower than 0.05 (Montero et al., 2016). Finally, the residuals were also plotted to obtain information about the fitting performance.

Spatial prediction maps of average, minimum, maximum and standard deviation of both diversity indices were calculated from

the trained model and using only test data. Spatial prediction maps by fishing mode and trimesters were also produced using the corresponding testing data in each case.

All the analyses were carried out using "vegan" (Oksanen et al., 2013), "BiodiversityR" (Kindt and Kindt, 2015) and "mgcv" (Wood and Wood, 2007) packages of R-3.3.2 free software (R Core Team, 2016).

RESULTS

Alpha Diversity

In general, both fishing modes showed different number of species (**Table 1**), with slightly higher number of species observed in FAD sets (68) in comparison with School sets (56). The simulation of species accumulation curves for both types of fishing showed similar number of total observed species between both fishing modes (Supplementary Material Figure 2). The Kruskall-Wallis statistical test showed not significant differences in the number of species between both fishing modes (Supplementary Material Figure 2) in the simulation.

The Chao2 estimator showed that a total of 71 and 68 species could be observed in FAD and School sets, respectively, if the sample size is large enough (ant in this case, represented by the asymptote in the species accumulation curves) (**Table 1**, **Figure 2**).

The most abundant species in FAD sets was the *Coryphaena hippurus* (2044000 individuals) and *Caranx sexfasciatus* (75299 individuals) in School sets. The 10 most abundant species formed 95.8% with respect the total species in FAD sets and 90.1% in School sets (**Table 2**). In both types of fishing, and with the exception of the silky shark (*Carcharhinus falciformis*), the most bycaught species were small bony-fishes.

After fitting the different species abundance models to the rank abundance curves in both fishing modes, results showed that bycatch assemblages in FAD sets followed a Log-normal distribution, and the bycatch assemblages in School sets a Zipf-Mandelbrot distribution or Log-series distribution based on the lowest AIC values (**Figure 3** and Supplementary Material Table 1). The shape of the curves lead us to suggest that bycatch species are more evenly distributed in FAD sets than in School sets.

Finally, the mean Species richness and Shannon diversity index were calculated in both fishing modes and by trimesters and results are shown in **Table 1**. Bycatch assemblages have higher number of species (3.40) and diversity (0.73) in FAD sets than in School sets.

Mean richness and Shannon index, stratified by quarters in FAD and School sets showed high diversity in the third and fourth quarter (**Table 1**).

Geographical and Habitat Characteristics of Bycatch Species

The final model for species richness included as explanatory variables spatial variables (latitude-longitude interaction), temporal variables (month), type of fishing mode (type as factor) and environmental variables (sea surface temperature,

TABLE 2 | Species abundance in FAD and School sets.

SpeciesRankAbundanceSpeciesRankAbundanceChyphenop Nipuxan1724400Conscienterability17799Acenthocybium solundri2125782Conscienterability311199Ballet Kohrinstein4417874Decateras macandus311191Elagiste Kohrinstein6127289Mala main68587Carcharturus Indeformis6127289Mala main85511Carcharturus Indeformis792031Naucrates doctar79216Aldenas conducturus1037153Aconthocybium solundri1042681Carana endanciabat1037073Malcula tarbation1042681Carana endanciabat1138741Photophen streatschiner1142971Lobates schwanoses13224101Photophen streatschiner122372Kophana analyzan1518900Marta tarbation131913Lobates schwanoses1324401Photophen streatschiner131921Lobates schwanoses1324401Photophen streatschiner142407Kophana analyzan1618469Sphyram sep.151207Kophana analyzan187771Senda nochan18271Kophana analyzan187771Senda nochan191818Lobates schwanoses191818Malabat sochan191818Kophana angenan18271 <th></th> <th>FAD sets</th> <th></th> <th colspan="5">School sets</th>		FAD sets		School sets				
Corphaters hipsours 1 2044000 Caratro socialization 1 75239 Acandros functions 2 1225752 Corphaters inpunus 2 63837 Eligistis biprinutis 4 447574 Dicaptons indicadius 3 17499 Eligistis biprinutis 5 828341 Cardrohmits indications 5 11183 Cardrohmits finitations 6 122789 Moh moh 6 9577 Adverse scriptions 7 95391 Ancintociphan saturation 7 9510 Adverse scriptions 10 37173 Mohatro function 10 2802 Corphateria equisations 12 29219 Mohatro function 11 2427 Dicaptoris macrohitis 13 2707 Mohatro function 13 1613 Scription macrohitis 12 29219 Mohatro function 13 1613 Scription macrohitis 13 29400 Eligistis phyroutin 13 1613 Scription macrohitis 13 29400	Species	Rank	Abundance	Species	Rank	Abundance		
Acardhophur asanchi212572Cycyhaara hegyyaa213537Candhodemin maculata31092801Seriata karva414447Sechtor ogyuna5127259Mole mole655101Sechtor ogyuna6127259Mole mole655101Alterns scoptura716331Mule ratio factorinki655110Alterns scoptura867237Candholythir maculata754061Corphetens acyuta1037073Molu thrustorin102407Corphetens acyuta1139241Honogenes Stockholythir Scienchi112427Decastaria macarabus1229219Molu farustorin131611Serida kandi1395400Engents bipronuta131613Serida kandi142008Istephroze plaipterus141507Serida kandi1395400Engents bipronuta131613Serida kandi142008Istephroze plaipterus141507Serida kandi18207171532207/141320653Serida kandi193690Mulcu targacara199630160101010Nauceta kata193690Mulcu targacara1996301601010101010Nauceta kata193690Mulcu targacara19100101010101010101010<	Coryphaena hippurus	1	2044000	Caranx sexfasciatus	1	75299		
Cardinbermin mancababa31002811Selection contractions311081Eligistis bipinnulatis44147574Decatories micraroble5111853Cardnahning shortomic6127289Mole mole65857Altorias scriptication70501933511Cardnahning shortomic867237Cardinblemis maculatios93436Altorias scriptication993436321132021Cardnahning standardia1037073Machaba truttorin93436Carana sudacababa1037073Molocul granication122014Carana sudacababa1232219Molocul granication131613Carana sudacababa1324060Eligistis bismututi131713Stokia talana1424058Molocul granication141507Kyholasse anabagas1518306Matababa truttorin141507Kyholasse anabagas1618499Shyhoranation151217Kyholasse anabagas187771Sarota molentia19981Makara ingrana212262Sphyma lewni203758Sarota provintia232202Makara ingrana21683Sarota provintia242020Makara ingrana23578Sarota provintia232402Makara ingrana24382Sarota provintia2423022302378S	Acanthocybium solandri	2	1225782	Coryphaena hippurus	2	63837		
Engatic pipmulate41987Decaptions maxemata41987Sacitator copuna5288041Carchaminus facilormis511163Carchaminus facilormis6127250Mol molu665737Altorss sociotos7925911Naucrates ductor765101Corportana aquisate957189Actaribiophum sociotanci99498Corportana aquisate1037073Molcul mutarini1024207Corportana aquisate1136241Principiera stendachmeri112427Decaptieras maxemalus122014102101421014Loboies surfamentis1325400Eligitis bipinutata131517Seriota helend1618459Saryasen seques162217Kipchous analogitanu1618459Saryasen seques16221Naucrates ductor171512Solio helend182721Naucrates ductor187771Solio helenda19968Naucrates ductor182721Solio helenda21663Soliyara suppers28287Markar agricana21663Soliyara suppers292620Salyymu lewini26232Soliyara suppers212620Salyymu lewini26232Soliyara suppers2126202630263263263Soliyara suppers28974Salyara supers26332<	Canthidermis maculatus	3	1092891	Seriola lalandi	3	17199		
Sectal or opunal511183Carcharhinus falolomis511183Carcharhinus falolomis625957Aldens sorphus792091Aldens sorphus997159Acartholomis incaledus8Carons sontascitus997159Acartholomis incaledus8Carons sontascitus1037073Mobula fluetorin1028001Sarola lalandi1136241Phinoplara standachandi112427Carons sontascitus1222010Mobula guaria131613Sarola lalandi1325400Eligalis bpinnutala131613Lobotes simanomasis1518860Maria tersaria161207Kiphosus aralegnas1618860Maria tersaria161207Kiphosus aralegnas1711352Corphaena equisalis17121Kiphosus aralegnas187771Sarola incalina18777Kishara indica193590Mobula fragman20676Sphynan zygaena21262Sphyman zygaena23578Sphynan zygaena222284Precolaritypon volscad24683Sorial parama232020Makina indica24578Sphyman zygaena24183Applas zygaena23278Sphyman zygaena24183Applas zygenolasca24298Carcharhinus indianus251914Applas zygenolasca23<	Elagatis bipinnulata	4	417874	Decapterus macarellus	4	14847		
Cardiantian failational61927Malar and southar61957Alutarus acceptus712281Naucrates ductor75510Corphone aquiseis957163Cardindatermi maculatus854211Corphone aquiseis1037073Mobule hurstori112427Carans cardiscastita1138241Phinoptra standachneri112427Decaptures macmalia122014Mobule japanica122014Labdes surfamentamis1325000Englast biphnutla131513Seniola nolaria1424003Elisphoras plotypens141597Kiphosa atalogos1518000March texts171217Kiphosa atalogus1618453Sphyraem spp.182921Naucrates ductor171152Corphrame aquiseis172911Makara nigricast171525Kalkara adactar196961Urapis helota212852Kalkara adactar216961Seniola prunan232920Makara infrions236961Seniola prunan241939Adoptas sparafolocus24694Seniola prunan241939Adoptas sparafolocus24694Seniola prunan26924Sphyram mokara263920Seniola prunan282020Makara infrions293620Carcharhinus inhatura306316314Sphyram mokara <td>Sectator ocyurus</td> <td>5</td> <td>283641</td> <td>Carcharhinus falciformis</td> <td>5</td> <td>11163</td>	Sectator ocyurus	5	283641	Carcharhinus falciformis	5	11163		
Alterius corplands76281Naucrates ductor76510Altarus monocensos867237Canthiderma macutatus86211Canars sostascitutis9671150Anantholerma macutatus962431Canars sostascitutis103703Mobula fluxistori102829Decatorius macanitus1222014Mucuta generic122014Lobotes sumannensis1325400Blagatis bipinulata131613Lobotes sumannensis1444908bipinulata151297Kyboous anatogua161490Shyrana soon161297Kyboous anatogua1711352Corphana soutasits17121Makara indica193939Mobula tangacans18727Makara indica193939Mobula tangacans13171Makara indica193939Mobula tangacans20650Sinda nangacans21252Kijka oudox21650Sinda paranan222244Perceptinytrygon voltacau21650Sinda paranan236714Mohair ingitas26429Caracharius timptamus26924Syntra mokara26429Solyman app.27912Makair indica27382Sinda paranan28924Syntra mokara28429Caracharius timptamus29924Syntra mokara29429Solyma	Carcharhinus falciformis	6	127259	Mola mola	6	5857		
Adversary acquisableB67237Cantheckernia macaluthatB5211Coryphanan equisable057763Acanthocyburn solandri03438Carvas aedisacturas1037073Mobal furston102487Sariola ilaradi1135241Principlera steindachineri112427Carvas aedisacturas1229210Mobal gancia131613Deceptors macroscola1325400Elagatis bipinulata131613Sariola involanta142400Istochorus platypterus141997Kyphosus analogus1518060Mota birostris169241Naucrates ductor1618459Sphyraena gyne acquisele17281Naucrates ductor187771Sariola involanta19088Naucrates ductor203526Sphyraena equisele19088Naucrates ductor212822Kajka audax21683Sariola pranana222020Makaira ingicuras23678Sariona purana241914Appas paleque24604Sariona purana241914Appas paleque24604Sariona purana241914Appas paleque24604Sariona purana241914Appas paleque24604Sariona purana261914Appas paleque24604Sariona purana281914Appas paleque24604 </td <td>Aluterus scriptus</td> <td>7</td> <td>92391</td> <td>Naucrates ductor</td> <td>7</td> <td>5510</td>	Aluterus scriptus	7	92391	Naucrates ductor	7	5510		
Carphrane equivalies957:59Acardracyatoris93438Carlar saukassitus1037073Mobula thurstori102880Carlar saukassitus1138241Pinopera steindachneri122014Decapterus macarellus1229219Mobula japania122014Lobotes surinamensis132800Bizgotis bipinulata131613Schola indamin1424098Mobula japania161771Kyphosus elagistas araikagus1518805Merta bizcatris151297Kyphosus elagistas araikagus1618459Stypravar app.162424Naucrates ductor1711362Coryphaena equivaleits17921Makafa indira187771Sorida involana18727Makafa inginicars187771Sorida involana13727Makafa inginicars193590Mobula trapacana13727Sphyma syganna222824Piropalytrypan viducea23656Sphyma syganna232020Makafa indica23650Sohna hovini241930Appas superalicous24936Sohna hovini251914Appas paragis26924Sphyma hovini26924Sphyma makara26924Sphyma hovini28897Burace anymchus28937Sphyma hovini29897Burace anymchus29924 <td>Aluterus monoceros</td> <td>8</td> <td>67237</td> <td>Canthidermis maculatus</td> <td>8</td> <td>5211</td>	Aluterus monoceros	8	67237	Canthidermis maculatus	8	5211		
Caranx selasistab.1037073Mobula thurstori102800Saniola kilandi1135241Principlara staindachneri1224271Carbo kilandi1229710Mobula tipranica131613Lobotes surhamenses1424080Blagatis bipinnibulata131613Sorica nolama1424080Blagatis bipinnibulata131613Kiphosus aratiogus1518066Manta birostris1512971Kiphosus selgars1618490Sphyreena spine182721Makata ingicars187771Seriola rolama182721Makata ingicars187771Seriola rolama206856Sphyrma sypeena205856Sphyrma levini206850Sphyrma sygeena212852Kajika audax216850Sphyrma sygeena232202Makara ingicars23678Sphyrma sygeena251914Alpae speldicus24640Sphyrma sygeena26924Sphyrma synehara28924926Sphyrma sygeena26924Sphyrma zynehara29626924Sphyraena spo.211914Alpae speldicus29926926Carcharinus Indiatus30631Sphyrma zynehara313131Sphyraena spo.211914Alpae speldicus313131Sphyraena spo.21926Makar	Coryphaena equiselis	9	57159	Acanthocybium solandri	9	3436		
Seriala lalandi 11 35241 Phinophera sehandachneri 11 2427 Decapterus macarelus 12 28219 Mobula japanica 12 2014 Lobotes surinamentos 13 25400 Bialgais bipinvulata 13 1913 Seriala rivolana 14 24008 Istlophorus platypterus 14 1927 Kyphosus elegans 16 1456 Schyrane space 18 221 Naucratas cluctor 17 11352 Corpheare equiselis 17 180 Naucratas cluctor 18 771 Schola krolana 18 727 Makara indica 19 3599 Mobula tarapacare 19 688 Urasys fehola 20 2854 Schola trapacare 21 685 Seriala peruana 21 285 Schyran typino triviana seque 22 650 Safar crumenchthatmus 23 2202 Makara indica superians 23 526 Safar crumenchthatmus 25 1914 Alopias superiansus<	Caranx sexfasciatus	10	37073	Mobula thurstoni	10	2680		
Decaptenus macarelus 12 28219 Mobula japanica 12 2014 Lobotes suriamensis 13 25400 Elegats binimulata 13 1513 Schlan Avallana 14 24090 Islighorbus faitylipturus 14 1597 Kyphosus analogus 15 18806 Marta binostris 15 1297 Kyphosus degars 16 18459 Sphyrame sp. 16 924 Makaira indica 17 11352 Copyheare aquisolis 17 921 Makaira indica 20 3559 Mobula tarapacana 19 6663 Sphyrana zygaena 21 2852 Kalkia valkar 21 663 Sphyrana zygaena 23 2020 Mekaira infricaras 21 663 Sphyrana kinik 23 2020 Mekaira infricaras 23 264 Sphyrana kinik 24 1939 Alopas superaliosus 24 294 Sphyrana kinik 27 1914 Alopas superaliosus 28	Seriola lalandi	11	35241	Rhinoptera steindachneri	11	2427		
Lobotes summennesis 13 25400 Elagatis bipinulata 13 1613 Seniote involaria 14 24903 Isticphonus plitypterus 14 1997 Kyphosus indegus 15 18800 Marka binstris 15 1297 Kyphosus indeguas 16 1440 Syhyaana sp. 16 242 Naucrates ductor 17 11352 Corphaena equiselis 17 261 Makaria nigricans 18 7771 Seriota involaria 18 727 Makaria nigricans 19 3599 Makaria nigricans 21 668 Seriota peruana 22 2284 Pteropletrynygon violacea 23 676 Seriota peruana 23 202 Makaria nigricans 23 576 Malar main 24 1309 Malaria indica 24 504 Selar commenchrhaitmus 26 924 Prenpletrynygon violacea 29 682 Carcharhinus induca 20 681 Malaria indica 21	Decapterus macarellus	12	29219	Mobula japanica	12	2014		
Seriola rivolana 14 24908 Isticphorus platypterus 14 1577 Kyphosus elgens 15 19806 Marta birestris 15 1297 Naucrates ductor 17 11352 Coryphaena equiselis 17 921 Makaira indican 18 7771 Seriola rivolana 18 727 Makaira indican 19 5909 Mobula targacana 19 688 Uraspis helvola 20 3526 Sphyrma isewini 20 675 Sphyrma isgup 21 2852 Kajka auduk 21 680 Sphyrma isgup 23 2020 Makaira ingricans 23 578 Selar curmenophthimus 25 1914 Alopias superciliosus 25 928 Carchatrinus longimanus 26 924 Sphyrma isgup 28 928 928 928 928 928 928 928 928 928 928 928 928 928 928 928 928 928	Lobotes surinamensis	13	25400	Elagatis bipinnulata	13	1613		
kiphoaus analogus 15 18806 Manta birostris 15 1297 Kiphosus elegaris 16 14499 Sphyraen spp. 16 024 Makaira nigricans 18 7771 Sariola rivoliana 18 727 Makaira nigricans 19 3599 Mobula trapacana 19 698 Unagais hukola 20 3563 Sphyrna lowain 20 675 Sphyrna zygeana 21 2852 Kajikia audax 21 683 Sariola peruana 22 2284 Pteroplatytrygon violacea 22 650 Sphyrna zygeana 23 2020 Makara nigricans 26 429 Salor currenorphthalmus 25 1914 Alopias speciliosus 26 429 Garcharhinus longimanus 26 924 Sphyrae zygeana 26 429 Garcharhinus longimanus 28 927 Balaise inricana 28 32 Sphyraen zygeana 29 689 Eucooclus volitans 29 <td< td=""><td>Seriola rivoliana</td><td>14</td><td>24908</td><td>Istiophorus platypterus</td><td>14</td><td>1597</td></td<>	Seriola rivoliana	14	24908	Istiophorus platypterus	14	1597		
Kyphoaus elegans 16 14459 Sphyraena spp. 16 924 Naucrates ductor 17 11382 Corphaena equiselis 17 921 Makaira inficans 18 771 Sariola inviciana 19 698 Urasois helvola 20 3526 Sphyra lawini 20 675 Sphyra organa 21 2822 Kalika audrak 20 676 Sphyra organa 22 284 Pteroplatytrygon violacea 22 680 Sohra organa 23 202 Makaira infricans 23 678 Mola mola 24 1914 Alopias pelogicus 25 429 Carcharhinus longimanus 26 924 Sphyran mokaran 26 922 Sphyrane spp. 27 912 Makaira infricans 29 322 Kajika audax 28 977 Isuras organinchara 30 322 Kajika audax 28 977 Isuras organinchara 30 322 <	Kyphosus analogus	15	18806	Manta birostris	15	1297		
Naucrates ductor 17 1352 Coryphaena equiselis 17 921 Makaira indipcars 18 7771 Sorloa holena 18 7271 Makaira indipcars 18 7771 Sorloa holena 18 7271 Makaira indipcars 20 3528 Sphyma lewini 20 6751 Sphyma zygaena 21 2852 Kajika audax 21 683 Seriola peruana 22 2284 Pteroplatytrygon violacea 22 650 Sphyma lewini 23 1914 Alopias superollosus 24 504 Selar crumenophtalmus 25 1914 Alopias pelogicus 25 429 Sphyma engana 27 912 Makaira indica 27 382 Carcharhius longimanus 28 897 kustas aindica 28 378 Peroplatytrygon violocea 29 640 Autarus monoceras 31 301 Stardarhius linbatus 30 631 Sphyma angaera 32 2777 <td>Kyphosus elegans</td> <td>16</td> <td>18459</td> <td>Sphyraena spp.</td> <td>16</td> <td>924</td>	Kyphosus elegans	16	18459	Sphyraena spp.	16	924		
Makaira nigricans 18 7771 Seriola rivoliana 18 727 Makaira indica 19 3599 Mobula trapacana 19 683 Uraspis helvola 20 3526 Sphyrna Jewini 20 675 Sphyrna Jegena 21 2852 Kajiki audax 21 660 Seriola peruana 22 284 Pteropletytrygon violacea 22 650 Solar crumenophthalmus 23 2702 Makaira ingricans 23 578 Mole mole 40 1939 Alopias superolitosus 25 429 Carcharthinus longimanus 25 1914 Alopias superolitosus 26 382 Sphyraen aspp. 27 912 Makaira indica 29 382 Sphyraen aspp. 27 912 Makaira indica 30 328 Isturs onyrinchus 30 631 Superonichus woniccurs 31 301 Isturs onyrinchus 32 294 Prionace glauca 32 297	Naucrates ductor	17	11352	Coryphaena equiselis	17	921		
Makara indica 19 3599 Mobula tarapacana 19 698 Uraspis helvola 20 3526 Sphyma kwini 20 675 Sphyma pagena 21 2552 Kajika audax 21 680 Sphyma lewini 23 2202 Makaina ingicans 23 578 Mola mola 24 1939 Alopias superollosus 24 504 Selar cumenophthalmus 25 1914 Alopias superollosus 26 392 Garcharbinus longimanus 26 924 Sphyma mokaran 26 392 Sphyma espis 27 912 Makaina indica 27 392 Sphyma mokaran 28 897 Lsurus oryinchus 29 362 Staphonus platypterus 31 406 Alutarus monocaros 31 301 Surus oryinchus 32 224 Prionace glauca 33 240 Mobula thurstori 34 208 Mobula murkina 34 203	Makaira nigricans	18	7771	Seriola rivoliana	18	727		
Uraspis halvola 20 3526 Sphyma lewini 20 675 Sphyma zogeana 21 2852 Kaljkla audax 21 663 Seriola peruana 22 2202 Malar injorcans 23 578 Mola mola 23 2202 Malar injorcans 23 578 Mola mola 24 1939 Alopias superciliosus 24 504 Selar crumenophthalmus 25 1914 Alopias pelogicus 26 392 Sphyran alewini us longinanus 26 924 Sphyran alewini notas 28 378 Carcharhinus longinanus 27 912 Malaria indica 28 378 Pteroplatyrgon violacea 28 897 Isurus onyrinchus 28 378 Carcharhinus limbatus 30 631 Sphyran alewina rus onyrinchus 30 282 Sphyran lewiny rus olacea 31 406 Aluterus monoceros 31 301 Istrus onyrinchus 32 294 Prionace glauca 32	Makaira indica	19	3599	Mobula tarapacana	19	698		
Sphyma zygaena 21 2852 Kajika audax 21 663 Seriola peruana 22 2284 Pteroplatyrygon violacea 22 650 Sphyma lewini 23 2202 Makara ingicans 23 578 Mola mola 24 1939 Alopias pelagicus 24 504 Selar curmenophthalmus 25 1914 Alopias pelagicus 25 429 Carcharhinus longimanus 26 924 Sphyma mokaran 26 392 Sphyna spp. 27 912 Makara indica 27 382 Kajika audax 28 897 Isurus oxyrinchus 28 378 Pteroplatytrygon violacea 29 689 Exocetus volitans 29 362 Staurs oxyrinchus 31 406 Aluterus monoceros 31 301 Isurus oxyrinchus 32 224 Prionae glauca 32 247 Sphyma mokaran 33 222 Carcharhinus limbatus 33 240	Uraspis helvola	20	3526	Sphyrna lewini	20	675		
Nombod Percoplatytrygon violacea Percoplatytrygon viol	Sphyrna zygaena	21	2852	Kajikia audax	21	663		
Sphyma lewini 23 2202 Makara nigrcans 23 578 Mola mola 24 1939 Alopias superciliosus 24 504 Selar curnenophthalmus 25 1914 Alopias superciliosus 25 429 Carcharhinus longimanus 26 924 Sphyma mokaran 26 392 Sphyrana spp. 27 1912 Makaira indica 27 382 Kajika audax 28 897 Isurus oxyrinchus 28 378 Pieroplatytrygon violacea 29 689 Exocoetus volitars 29 362 Carcharhinus limbatus 30 631 Sphyma zygaana 30 281 Isiorus oxyrinchus 32 294 Prionace glauca 32 277 Sphyma mokaran 33 222 Carcharhinus limbatus 33 240 Mobula turustoni 34 203 Balistes polylepis 36 149 Xiphias gladius 36 141 Alopias suporitiosus 36 149 <td>Seriola peruana</td> <td>22</td> <td>2284</td> <td>Pteroplatytrygon violacea</td> <td>22</td> <td>650</td>	Seriola peruana	22	2284	Pteroplatytrygon violacea	22	650		
Mola mola 24 1939 Alopias superciliosus 24 504 Selar crumenophthalmus 25 1914 Alopias pelagicus 25 429 Carchathinus fongimanus 26 924 Sphryma nokaran 26 392 Sphryaena spp. 27 912 Makaira indica 27 382 Sphryaena spp. 28 897 Isurus oxyrinchus 28 378 Pteroplatytrygon violacea 29 689 Exocoetus volitans 29 362 Carcharhinus limbatus 30 631 Sphryma oncoeros 31 301 Isurus oxyrinchus 32 294 Prionace glauca 32 240 Mobula trustori 34 208 Mobula munkiana 34 203 Balistes polylepis 35 183 Aluterus scriptus 35 184 Tetraturus angustrostris 36 149 Xphias gladius 36 178 Alopias superciliosus 40 96 Kyphosus analogus 40 <td< td=""><td>Sphyrna lewini</td><td>23</td><td>2202</td><td>Makaira nigricans</td><td>23</td><td>578</td></td<>	Sphyrna lewini	23	2202	Makaira nigricans	23	578		
Selar orumenophthalmus251914Alopias pelagicus25429Carcharhinus longimanus26924Sphyma mokaran26932Sphynean spp.27912Makaia indica27382Kajika audax28397Isurus oxyrinchus28378Pleroplathytyon violacea29689Exocoetus voltans29362Carcharhinus limbatus30631Sphyma zygaena30328Istiophorus platypterus31406Aluterus monoceros31301Isurus oxyrinchus32222Carcharhinus limbatus33203Sphyma mokaran34203Aluterus scriptus35184Mobula trustoni34203Aluterus scriptus35184Tetrapturus angustrostris36149Xiphias gladius36178Mobula spancia37137Alopias volginus36178Alopias superciliosus39125Lobotes surinamensis39104Alopias superciliosus4096Kyphosus analogus4054Rarzania laevis4189Carcharhinus porosus4134Alopias vulpinus45361783136Iepidocheys olivacea4270Remora remora4231Alopias superciliosus4096Kyphosus analogus4054Alopias superciliosus4189Carcharhinus porosus4134 <td>Mola mola</td> <td>24</td> <td>1939</td> <td>Alopias superciliosus</td> <td>24</td> <td>504</td>	Mola mola	24	1939	Alopias superciliosus	24	504		
Carcharhinus longimanus 26 924 Sphyrna mokarran 26 992 Sphyraena spp. 27 912 Makaira indica 27 382 Kajika audax 28 897 Isurus oxyrinchus 28 378 Pteroplatytnygon violacea 29 689 Exocoetus volitans 29 362 Carcharhinus limbatus 30 631 Sphyrma zygaena 30 328 Istorborus platytpterus 31 406 Aluterus monocearos 31 301 Isturs oxyrinchus 32 294 Prionace glauca 32 277 Sphyrma mokarran 33 222 Carcharhinus limbatus 33 240 Mobula thurstori 34 208 Mobula surptinus 33 240 Mobula pancia 35 183 Aluterus monocearos 33 240 Mobula pancia 36 183 Aluterus monocearos 33 240 Mobula fayancia 36 183 Aluterus soriptus 36 184 </td <td>Selar crumenophthalmus</td> <td>25</td> <td>1914</td> <td>Alopias pelagicus</td> <td>25</td> <td>429</td>	Selar crumenophthalmus	25	1914	Alopias pelagicus	25	429		
Sphyraena spp. 27 912 Makaira indica 27 382 Kajikia audax 28 897 Isurus oxyrinchus 28 378 Pteroplatytrygon vidacea 29 689 Exocoetus volitans 29 682 Carcharhinus limbatus 30 631 Sphyrae zgeena 30 328 Istiophorus platypterus 31 406 Aluterus monoceros 31 301 Isurus oxyrinchus 32 294 Prionace glavca 32 277 Sphyrae mokarran 33 222 Carcharhinus limbatus 33 240 Mobula thurstoni 34 208 Mobula munkiana 34 203 Bailses polylepis 35 183 Aluterus scriptus 36 178 Mobula japanica 37 137 Alopias ygladius 37 162 Alopias superciliosus 39 125 Lobotes surinamensis 39 104 Alopias superciliosus 41 89 Carcharhinus porosus 41 <	Carcharhinus longimanus	26	924	Sphyrna mokarran	26	392		
Arrow 28 897 Isurus oxyrinchus 28 378 Pteroplatytrygon violacea 29 689 Exocoetus volitans 29 362 Carcharhinus limbatus 30 631 Sphyrna zygaena 30 328 Istophorus platybterus 31 406 Aluterus monoceros 31 301 Isurus oxyrinchus 32 294 Prionace glauca 32 277 Sphyrma mokarran 33 222 Carcharhinus limbatus 33 240 Mobula thrustoni 34 208 Mobula murkiana 34 203 Balistes polylepis 35 183 Aluterus scriptus 36 178 Mobula typanica 37 137 Alopias vulpinus 37 162 Xiphias gladius 38 129 Sectator ocyurus 38 161 Alopias supercilicusus 39 125 Lobotes surinamensis 39 104 Alopias supercilicusus 41 89 Carcharhinus porosus 41 <t< td=""><td>Sphyraena spp.</td><td>27</td><td>912</td><td>Makaira indica</td><td>27</td><td>382</td></t<>	Sphyraena spp.	27	912	Makaira indica	27	382		
Percoplatytrygon violacea29689Exocoetus volitans29362Carcharhinus limbatus30631Sphyrna zygaena30328Istiophorus platypterus31406Aluterus monoceros31301Isurus oxyrinchus32294Prionace glauca32277Sphyrma mokarran33222Carcharhinus limbatus33240Mobula thurstoni34208Mobula munkiana34203Balistes polylepis35183Aluterus scriptus35184Tetrapturus angustrostris36149Xiphias gladius36178Mobula japanica37137Alopias vulpinus37162Xiphias gladius39125Lobotes surinamensis39104Alopias superciliosus4096Kyphosus analogus4054Ranzania laevis4189Carcharhinus porosus4134Ubulu tarapacana4270Remora remora4231Lepidochelys olivacea4354Tetrapturus angustirostris4330Prionace glauca4536Lepidochelys olivacea4517Alopias vulpinus4536Lepidochelys olivacea4517Alopias vulpinus4536Lepidochelys olivacea4517Alopias vulpinus4536Lepidochelys olivacea4516Remora remora4720Ablennes hians47<	Kajikia audax	28	897	Isurus oxyrinchus	28	378		
Carcharhinus limbatus30631Sphyrna zygaena30328Istiophorus platypterus31406Aluterus monoceros31301Isurus oxyrinchus32294Prionace glauca32277Sphyrna mokarran33222Carcharhinus limbatus33240Mobula thurstoni34208Mobula munkiana34203Baltse polylepis35183Aluterus scriptus36184Tetrapturus angustirostris36149Xiphias gladius36178Mobula japanica37137Alopias vulpinus37162Xiphias gladius86129Sectator coyurus38161Alopias superciliosus4096Kyphosu analogus4054Ranzania laevis4189Carcharhinus porosus4134Mobula tarapacana4270Remora remora4231Lepidochelys olivacea4354Ertapturus angustirostris4330Prionace glauca4536Lepidochelys olivacea4424Motula tarapacana4536Lepidochelys olivacea4517Alopias vulpinus4536Lepidochelys olivacea4517Alopias vulpinus4628Kyphosus elegans4616Remora remora4720Ablennes hians4714Evocoetus volttans4813Taractes rubescens4811 <td>Pteroplatytrygon violacea</td> <td>29</td> <td>689</td> <td>Exocoetus volitans</td> <td>29</td> <td>362</td>	Pteroplatytrygon violacea	29	689	Exocoetus volitans	29	362		
Istophorus platypterus31406Aluterus monoceros31301Isurus oxyrinchus32294Prionace glauca32277Sphyrna mokarran33222Carcharhinus limbatus33240Mobula thurstoni34208Mobula munkiana34203Balistes polylepis35183Aluterus scriptus35184Tetrapturus angustirostris36149Xiphias gladius36178Mobula japanica37137Alopias vulpinus37162Xiphias gladius38129Sectator ocyurus38161Alopias superciliosus39125Lobotes surinamensis39104Alopias superciliosus4096Kyrphosus analogus4054Ranzania laevis4189Carcharhinus porosus4134Mobula tarapacana4270Remora remora4231Lepidochelys olivacea43541612424Manta birostris4354Tetraptruus angustirostris4330Prionace glauca4556Myliobatidae4424Manta birostris4628Kyrphosus elegans4616Remora remora4720Ablennes hians4714Exocoetus volitans4813Taractes rubescens4811Chelonia mydas498Carcharhinus longimanus497	Carcharhinus limbatus	30	631	Sphyrna zygaena	30	328		
Isurus oxyinchus 32 294 Prionace glauca 32 277 Sphyrna mokarran 33 222 Carcharhinus limbatus 33 240 Mobula thurstoni 34 208 Mobula munkiana 34 203 Balistes polylepis 35 183 Aluterus scriptus 36 184 Tetrapturus angustirostris 36 149 Xiphias gladius 36 178 Mobula japanica 37 137 Alopias vulpinus 37 162 Xiphias gladius 38 129 Sectator ocyurus 38 161 Alopias superciliosus 39 125 Lobotes surinamensis 39 104 Alopias superciliosus 40 96 Kyphosus analogus 40 54 Razania kevis 41 89 Carcharhinus porosus 41 34 Mobula tarapacana 42 70 Remora remora 42 31 Lepidochelys olivacea 43 54 16 17 14 <t< td=""><td>Istiophorus platypterus</td><td>31</td><td>406</td><td>Aluterus monoceros</td><td>31</td><td>301</td></t<>	Istiophorus platypterus	31	406	Aluterus monoceros	31	301		
Sphyma mokarran 33 222 Carcharhinus limbatus 33 240 Mobula thurstori 34 203 Mobula munkiana 34 203 Balistes polylepis 35 183 Aluterus scriptus 35 184 Tetrapturus angustirostris 36 149 Xiphias gladius 36 178 Mobula japanica 37 137 Alopias vulpinus 37 162 Xiphias gladius 38 129 Sectator ocyurus 38 161 Alopias superciliosus 39 125 Lobotes surinamensis 39 104 Alopias superciliosus 40 96 Kyphosus analogus 40 54 Ranzania laevis 41 89 Carcharhinus porosus 41 34 Mobula tarapacana 42 70 Remora remora 42 31 Lepidochelys olivacea 43 54 Tetrapturus angustirostris 43 30 Prionace glauca 44 54 54 Remora remora 45 </td <td>Isurus oxyrinchus</td> <td>32</td> <td>294</td> <td>Prionace glauca</td> <td>32</td> <td>277</td>	Isurus oxyrinchus	32	294	Prionace glauca	32	277		
Nobula thurstoni34208Mobula munkiana34203Balistes polylepis35183Aluterus scriptus35184Tetrapturus angustirostris36149Xiphias gladius36178Mobula japanica37137Alopias vulpinus37162Xiphias gladius38129Sectator ocyurus38161Alopias pelagicus39125Lobotes surinamensis39104Alopias superciliosus4096Kyphosus analogus4054Ranzania laevis4189Carcharhinus porosus4134Mobula tarapacana4270Remora remora4231Lepidochelys olivacea4354Tetrapturus angustirostris4330Prionace glauca4628Kyphosus elegans4616Remora remora4720Ablennes hians4714Exocoetus volitans4813Taractes rubescens4811Chelonia mydas498Carcharhinus longimanus497	Sphyrna mokarran	33	222	Carcharhinus limbatus	33	240		
Balistes polylepis35183Aluterus scriptus35184Tetrapturus angustirostris36149Xiphias gladius36178Mobula japanica37137Alopias vulpinus37162Xiphias gladius38129Sectator ocyurus38161Alopias pelagicus39125Lobotes surinamensis39104Alopias superciliosus4096Kyphosus analogus4054Ranzania laevis4189Carcharhinus porosus4134Mobula tarapacana4270Remora remora4231Lepidochelys olivacea4354Tetrapturus angustirostris4330Prionace glauca4450Myliobatidae4424Alopias vulpinus4628Kyphosus elegans4616Remora remora4720Ablennes hians4714Exocoetus volitans498Carcharhinus longimanus497	Mobula thurstoni	34	208	Mobula munkiana	34	203		
Tetrapturus angustirostris36149Xiphias gladius36178Mobula japanica37137Alopias vulpinus37162Xiphias gladius38129Sectator ocyurus38161Alopias pelagicus39125Lobotes surinamensis39104Alopias superciliosus4096Kyphosus analogus4054Ranzania laevis4189Carcharhinus porosus4134Mobula tarapacana4270Remora remora4231Lepidochelys olivacea4354Tetrapturus angustirostris4330Prionace glauca4450Myliobatidae4424Alopias vulpinus4628Kyphosus elegans4616Remora remora4720Ablennes hians4714Exocoetus volitans4813Taractes rubescens4811Chelonia mydas498Carcharhinus longimanus497	Balistes polylepis	35	183	Aluterus scriptus	35	184		
Mobula japanica37137Alopias vulpinus37162Xiphias gladius38129Sectator ocyurus38161Alopias pelagicus39125Lobotes surinamensis39104Alopias superciliosus4096Kyphosus analogus4054Ranzania laevis4189Carcharhinus porosus4134Mobula tarapacana4270Remora remora4231Lepidochelys olivacea4354Tetrapturus angustirostris4330Prionace glauca4536Lepidochelys olivacea4517Alopias vulpinus4628Kyphosus elegans4616Remora remora4720Ablennes hians4714Exocoetus volitans4813Taractes rubescens4811Chelonia mydas498Carcharhinus longimanus497	Tetrapturus angustirostris	36	149	Xiphias gladius	36	178		
Xiphias gladius38129Sectator ocyurus38161Alopias pelagicus39125Lobotes surinamensis39104Alopias superciliosus4096Kyphosus analogus4054Ranzania laevis4189Carcharhinus porosus4134Mobula tarapacana4270Remora remora4231Lepidochelys olivacea4354Tetrapturus angustirostris4330Prionace glauca4450Myliobatidae4424Alopias vulpinus4628Kyphosus elegans4616Remora remora4720Ablennes hians4714Exocoetus volitans4813Taractes rubescens4811Chelonia mydas498Carcharhinus longimanus497	Mobula japanica	37	137	Alopias vulpinus	37	162		
Alopias pelagicus39125Lobotes surinamensis39104Alopias superciliosus4096Kyphosus analogus4054Ranzania laevis4189Carcharhinus porosus4134Mobula tarapacana4270Remora remora4231Lepidochelys olivacea4354Tetrapturus angustirostris4330Prionace glauca4450Myliobatidae4424Manta birostris4536Lepidochelys olivacea4517Alopias vulpinus4628Kyphosus elegans4616Remora remora4720Ablennes hians4714Exocoetus volitans4813Taractes rubescens4811Chelonia mydas498Carcharhinus longimanus497	Xiphias gladius	38	129	Sectator ocyurus	38	161		
Alopias superciliosus4096Kyphosus analogus4054Ranzania laevis4189Carcharhinus porosus4134Mobula tarapacana4270Remora remora4231Lepidochelys olivacea4354Tetrapturus angustirostris4330Prionace glauca4450Myliobatidae4424Manta birostris4536Lepidochelys olivacea4517Alopias vulpinus4628Kyphosus elegans4616Remora remora4720Ablennes hians4714Exocoetus volitans4813Taractes rubescens4811Chelonia mydas498Carcharhinus longimanus497	Alopias pelagicus	39	125	Lobotes surinamensis	39	104		
Ranzania laevis4189Carcharhinus porosus4134Mobula tarapacana4270Remora remora4231Lepidochelys olivacea4354Tetrapturus angustirostris4330Prionace glauca4450Myliobatidae4424Manta birostris4536Lepidochelys olivacea4517Alopias vulpinus4628Kyphosus elegans4616Remora remora4720Ablennes hians4714Exocoetus volitans4813Taractes rubescens4811Chelonia mydas498Carcharhinus longimanus497	Alopias superciliosus	40	96	Kyphosus analogus	40	54		
Mobula tarapacana4270Remora remora4231Lepidochelys olivacea4354Tetrapturus angustirostris4330Prionace glauca4450Myliobatidae4424Manta birostris4536Lepidochelys olivacea4517Alopias vulpinus4628Kyphosus elegans4616Remora remora4720Ablennes hians4714Exocoetus volitans4813Taractes rubescens4811Chelonia mydas498Carcharhinus longimanus497	Ranzania laevis	41	89	Carcharhinus porosus	41	34		
Lepidochelys olivacea4354Tetrapturus angustirostris4330Prionace glauca4450Myliobatidae4424Manta birostris4536Lepidochelys olivacea4517Alopias vulpinus4628Kyphosus elegans4616Remora remora4720Ablennes hians4714Exocoetus volitans4813Taractes rubescens4811Chelonia mydas498Carcharhinus longimanus497	Mobula tarapacana	42	70	Remora remora	42	31		
Prionace glauca4450Myliobatidae4424Manta birostris4536Lepidochelys olivacea4517Alopias vulpinus4628Kyphosus elegans4616Remora remora4720Ablennes hians4714Exocoetus volitans4813Taractes rubescens4811Chelonia mydas498Carcharhinus longimanus497	Lepidochelys olivacea	43	54	Tetrapturus angustirostris	43	30		
Manta birostris4536Lepidochelys olivacea4517Alopias vulpinus4628Kyphosus elegans4616Remora remora4720Ablennes hians4714Exocoetus volitans4813Taractes rubescens4811Chelonia mydas498Carcharhinus longimanus497	Prionace glauca	44	50	Myliobatidae	44	24		
Alopias vulpinus4628Kyphosus elegans4616Remora remora4720Ablennes hians4714Exocoetus volitans4813Taractes rubescens4811Chelonia mydas498Carcharhinus longimanus497	Manta birostris	45	36	Lepidochelys olivacea	45	17		
Remora remora4720Ablennes hians4714Exocoetus volitans4813Taractes rubescens4811Chelonia mydas498Carcharhinus longimanus497	Alopias vulpinus	46	28	Kyphosus elegans	46	16		
Exocoetus volitans4813Taractes rubescens4811Chelonia mydas498Carcharhinus longimanus497	Remora remora	47	20	Ablennes hians	47	14		
Chelonia mydas 49 8 Carcharhinus longimanus 49 7	Exocoetus volitans	48	13	Taractes rubescens	48	11		
	Chelonia mydas	49	8	Carcharhinus longimanus	49	7		

(Continued)

TABLE 2 | Continued

F	AD sets		School sets			
Species	Rank	Abundance	Species	Rank		
Rhincodon typus	50	8	Chelonia mydas	50		
Belonidae	51	7	Diodontidae	51		
Carcharhinus obscurus	52	6	Carcharhinus leucas	52		
Carcharhinus leucas	53	5	Carcharhinus plumbeus	53		
Caretta caretta	54	5	Caretta caretta	54		
Carcharhinus porosus	55	4	Eretmochelys imbricata	55		
Caranx caballus	56	3	Ranzania laevis	56		
Carcharhinus brachyurus	57	3				
Mobula munkiana	58	3				
Sphyrna media	59	3				
Ablennes hians	60	2				
Carcharhinus altimus	61	2				
Carcharhinus galapagensis	62	2				
Eretmochelys imbricata	63	2				
Carangoides orthogrammus	64	1				
Cubiceps capensis	65	1				
Diodontidae	66	1				
Masturus lanceolatus	67	1				
Remora osteochir	68	1				

chlorophyll and current speed).

$$S = f1(Lon, Lat) + f2(SST) + f3(Chl) + f4(WT)$$
$$+ f5(month) + type$$

The estimated parameters for species richness and *p*-values are listed in **Table 3** and **Figure 4**. The model explained 44% of the variance with a R2 of 0.38 with 39179 samples. The individual contribution of the variables is showed in **Table 3**; where the most significant explanatory variables for the species richness was the area (35%, lat*long) followed by set type (29%), chlorophyll

(21%) and SST (17.5%). The correlations between the variables are showed in Supplementary Material Figure 3. The distribution of residuals is showed in Supplementary Material Figure 4. The Normal Q-Q plot showed a normal distribution; as well as the relationship between fitted and response values. The good distribution of residuals suggests a correct identification of areas of high diversity.

Predictions from GAMs (mean, minimum, maximum and standard deviation) using testing data (20% of data) are shown in **Figure 5**. Predictions from GAMs by trimesters are shown in **Figure 6**.

The results showed higher diversity observed in FAD sets than in School sets. Diversity was higher at north of the Equator (0– 10°N) and at around 85–95°W and 120–140°W during May-November. Furthermore, highest richness values were found in areas with high sea surface temperatures (>25°C), high concentrations of chlorophyll (> 2 mg/m3), and velocities of the total current lower than 3 knots.

In order to relate Shannon diversity index with environmental variables in space and time, the final model includes Shannon diversity index as response variable, latitude and longitude as geographical variables (interaction), month as temporal variable, type of association as a factor and sea surface temperature, chlorophyll, gradient of the thermocline, sea level anomaly and velocity of the current as environmental variables.

$$SH = f1(Lon, Lat) + f2(SST) + f3(Chl) + f4(WT)$$
$$+ f5(Therm.Grad) + f6(SLA) + f7(month) + type$$

Gaussian model for Shannon diversity index explained 37.4% of the variance with a R2 of 0.37 with 30081 samples (**Table 3**). Results showed similar diversity patterns as with species richness (Supplementary Material Figure 5) and therefore, only models with species richness were represented. Similar to species richness, the most significant explanatory variables (based on the individual contribution of each variable) for the Shannon diversity index was the area (31%, lat*long) followed by set type (27%), chlorophyll (19%), and SST (15%).

In general, predicted maps for both indices showed highest diversity around the Equatorial area and lowest diversity values were found along the Peru and California coast (**Figure 5** and Supplementary Material Figure 5). Based on the predicted maps from GAMs, large diversity in FAD sets seems to be around the Equatorial area and in School sets around the Costa Rica Dome (**Figure 7** and Supplementary Material Figure 5).

The evaluation of the models using Spearman's correlation showed a good model accuracy; with significant positive correlation between observed and predicted diversity for both indices (r = 0.62, p < 0.05 for Species richness index and r = 0.63, p < 0.05 for Shannon index). In contrast, Wilcoxon's signed-rank test showed significant *p*-values lower than 0.05 using the Species richness index, suggesting some bias in the model (Supplementary Material Table 2). The latter indicates that although the model is capable of describing the species richness of the bycatch species, the model overestimated and underestimated the observed values.

DISCUSSION

This study examined the diversity of the bycatch assemblages with a variety of measures using data collected by observer programs from tropical tuna purse seine fishery in FAD and School sets. Results showed a variety of diversity patterns (based on the number of species and abundances) as a function of the time of year and fishing mode. Furthermore, they provided new information about the habitat characteristics of these species in the eastern Pacific Ocean. We suggest that both fishing modes represent different assemblages and therefore, the structure, diversity and environment characteristics of these bycatch assemblages and the areas where these species are found are also different.

Alpha Diversity

Species diversity of the bycatch assemblages could be a useful indicator, in conjunction with other ecosystem indicators, to monitor the ecosystem status and effect of the fishery in the ecosystem provided that a good sample size is available for a correct estimation of species diversity. Our results showed that the sample size used in this study with nearly 100% coverage rate was sufficient to find almost all species in FAD and School sets, as shown by the shape of the accumulation curves where the asymptote is reached. Although it is known that the number of species of the bycatch in FAD sets is higher than in School sets (Amandè et al., 2010; Torres-Irineo et al., 2014), our work suggests that the total number of bycatch species (and not the number of species per set) caught in the tropical tuna purse seiners is the same for both set types provided that sufficient sample size and the coverage rate is reached irrespective of the fishing mode.

As such, observer programs can provide the necessary information for diversity studies; but with limitations depending on the observer coverages. For example, lower sample size and coverage rate (around 10%) is available in other oceans and, therefore the results should be discussed taking into account the observer coverages. However, accumulation curves also showed that the asymptote was reached in some cases and, hence, species richness can be used as biodiversity measures in the Indian (Lezama-Ochoa et al., 2015) and Atlantic Ocean (Lezama-Ochoa et al., submitted). Differences in the number of the total observed species between fishing modes were more notable in the Indian and Atlantic Oceans, which could be explained by the lower coverage rate, especially for School sets, in these Oceans. Thus, sufficient observer coverage is needed to detect all the possible bycatch species in both types of fishing for biodiversity studies.

Our results suggest that Chao2 estimator, as used in the work of Torres-Irineo et al. (2014) and Lezama-Ochoa et al. (2015) is a good option for estimating the total species richness in both fishing modes. The Chao2 estimator showed that FAD and School sets could reach the asymptote with 71 and 68 species, respectively, which means that almost all species caught in the purse-seine fishery in the studied area were observed and the sample size was enough for obtaining bycatch diversity estimates. Chao2 non-parametric estimator is considered to be more accurate than parametric estimators or curve extrapolations (Gotelli and Colwell, 2011) to estimate total species richness (Chao, 1984). This is because it does not need any predetermined requirement as other models (Colwell and Coddington, 1994; Chao et al., 2005).

A evenly distributed species community is more diverse than a community with the same number of species but dominated by few species (Stirling and Wilsey, 2001). The shape of the log-abundance curves showed the same results than in Lezama-Ochoa et al. (2015) for both fishing modes in the Indian Ocean in

TABLE 3 | Summary results for the optimal GAMs selected for Species richness index and Shannon diversity index.

	Species	richness		Shannon index				
Family	Quasip	oisson		Gaussian				
Link function	Lc	og		Ider	ntity			
Adjusted R2	0.0	38		0.0	37			
Deviance explained	44	%		37	4%			
	Estimate	p-value	% Deviance	Estimate	p-value	% Deviance		
Latitude * Longitude	28.673	< 2e-16	35	28.368	< 2e-16	30.60		
Month	7.494	< 2e-16	9.39	7.859	< 2e-16	7.19		
SST	6.123	< 2e-16	17.50	7.237	< 2e-16	14.80		
Туре	1.136	< 2e-16	29.6	0.675	< 2e-16	27.10		
Chlorophyll	8.753	< 2e-16	20.60	8.128	< 2e-16	18.70		
WT	7.972	< 2e-16	3.95	8.234	1.9e-14	3.50		
SLA	-	-	-	1	0.0217	3.74		
Therm.Grad	-	-	-	3.969	0.0131	0.48		

Individual contribution of each variable (%Deviance) running the model separately. *Interaction.

relation with the species abundance models. In general, the Logseries distribution (Zipf model) model describes communities with higher number of rare species than the Log-normal model does. Bycatch assemblages in FAD sets are formed by permanent species (species which are aggregated under FADs for hours or days) in the same habitat and evenly distributed (Magurran, 2004), in large and natural areas (Log-normal model). On the contrary, bycatch species in School sets are formed by different and rare species that migrate in oceans for reproductive or feeding activities with migratory species, such as tunas (Zipf-Mandelbrot model) (Lezama-Ochoa et al., 2015). The structure of these bycatch assemblages let us to infer that both fishing modes represent different assemblages and therefore, with different characteristics. Richness is commonly used as the sole measure of diversity, ignoring community evenness and species' relative abundances (Connolly et al., 2013). Log-abundance curves provide good information about the most common and rarest species; in our case, about bycatch species from the tropical tuna purse-seine fishery on the pelagic ecosystem. In this work, *Coryphaena hippurus*, was the bycatch species mostly caught in FAD sets and *Caranx sexfasciatus* in Free School sets. Species having life history strategies similar to the target species, such as teleost fishes ("r" strategist species), may not be affected to the same degree as those species with significantly different life history features, such as sharks ("k" strategist species) (Alverson, 1994). The most abundant species in this work are characterized by "r" strategies; with the exception of *Carcharhinus falciformis*,

which is normally caught in FAD sets and is considered a more vulnerable species. Technological developments to mitigate incidental catch of vulnerable species, such as *Carcharhinus falciformis* are necessary to achieve effective fishery management and reduce their mortalities (Gilman, 2011). For example, in recent years, their survival rate has been increased by using new methods developed for mitigating the capture of sharks and other vulnerable species (Gilman, 2011; Poisson et al., 2014) in purse seiners.

Geographical and Habitat Characteristics of Bycatch Assemblages

Habitat distribution of pelagic communities normally match the distribution of water masses (Angel, 1993), but determination of the dominant factors influencing the distributions of these communities is difficult. In this work, GAMs contributed to relate diversity of the bycatch assemblages with the geographical and environmental conditions in the eastern Pacific Ocean.

Our results suggest that the geographical location and the type of set are the most important predictor variables to describe diversity for these species. Specifically, the highest predicted diversity of the bycatch species is on FAD sets compared to School sets. Differences found on diversity patterns between areas and fishing modes lead us to suggest that each bycatch species assemblage has different habitat characteristics. We observed a general diversity patterns on bycatch assemblages in both fishing modes. We found that bycatch assemblages are more diverse in equatorial areas in FAD sets and in warm coastal areas (Panama, Costa Rica and Nicaragua) in School sets (Figure 7). In contrast, the permanent coastal upwelling areas of California and Peru showed high productivity rates but low species diversity. These results, as described in Irigoien et al. (2004) and Sala and Knowlton (2006), showed that diversity in general in the open oceans, and particularly in the tropics, is lower at high disturbance levels and high productivity rates. More diverse communities are located in ecosystems with stable oceanographic conditions and less undisturbed (Cusson et al., 2014) (such

as equatorial and seasonal coastal upwelling systems of this work), whereas permanent coastal upwelling areas support high disturbance levels with short trophic chains and, therefore, less diversity.

Diversity patterns of bycatch assemblages in both fishing modes in the eastern tropical Pacific match reasonably well with the principal characteristics of its oceanography, hydrography and circulation (Fiedler and Talley, 2006; Kessler, 2006; Lavín et al., 2006; Pennington et al., 2006). In the case of the environmental variables, the sea surface temperature and chlorophyll were the environment predictors that better explained diversity patterns (Table 3). Concretely, the higher values of diversity could be related to water masses associated with seasonal coastal and equatorial upwelling processes. Thus, diversity patterns from the models indicated that bycatch assemblages in FAD sets could be associated with the equatorial tongue $(10^{\circ}N-5^{\circ}S/120^{\circ}-140^{\circ}W)$ (from August to October) which is developed when the southeast trade winds are strongest during southern Winter (Wyrtki, 1981), with the North Equatorial Countercurrent, and with two physical features particularly significant in the Tropical Surface Water (TSW): the Equatorial Front (Fiedler and Talley, 2006) and the countercurrent thermocline ridge (along 10°N) (Ballance et al., 2006; Hoegh-Guldberg and Bruno, 2010).

All these sites are characterized by warm waters $(>25^{\circ}C)$ with low-salinity and intermediate productivity concentrations, strong currents and with great biological significance, where marine predators and prey may aggregate during September-October.

In the case of the bycatch assemblages in School sets, results from the model (low thermocline gradients and high chlorophyll concentrations) lead us to suggest that highest species diversity could be associated with coastal upwelling regions around Costa Rica and Panama in the equatorial area (Costa Rica Dome and Gulf of Panama) ($10-20^{\circ}$ S/80- 100° W). Located within the warm pool and with low thermocline depth, these warm, productive and low-salinity waters are affected by the wind jets in winter (Pennington et al., 2006). Thus, winter northwesterly strong winds, most intense from November to March (Pennington et al., 2006; Change, 2007), induce upwelling of colder and

nutrient-rich waters to the surface, giving place to cool and very productive, but stable surface waters.

Importance of Ecosystem Indicators for Fisheries Management

Biodiversity indices provide information on trends in species diversity regarded as important by society and have potential to inform on progress toward established management objectives (Hutchings and Baum, 2005). In that sense, biodiversity is a concept with multiple meanings which can be measured in different ways (Buckland et al., 2005). In this work, we considered the number of species and the relative abundance of them as good measures to describe the biodiversity of the bycatch assemblages. Both types of fishing should be considered to estimate species diversity indices and patterns, as the integration of data from both fishing modes provides more complete information (spatially and temporally) than separately. Nonetheless, as more species are attracted to FADs due to species aggregative behavior, more specific works are necessary to understand the complete effect of the FAD fishery on the biodiversity of the bycatch at local (specific areas) and global (Oceans) scale.

Despite the fact that trends in biodiversity can vary enormously between areas or habitats, observer programs should be designed to monitor this spatial variation (Buckland et al., 2005). These differences in biodiversity between areas could be explained by the fact that some species are restricted to some areas but, in some cases, also as a consequence of the different fishing effort, time of year or many other possible factors, such as environmental events (e.g., ENSO cycle). The major limitation of this study is the use of fisheries-dependent data, which is focused on catching tuna, not bycatch species. Thus, diversity patters could be partially biased by the nature of the data and fishery behavior (Montero et al., 2016). Although in the Atlantic and Indian Oceans the observer coverage is low (around 10% of coverage rate) (Lewison et al., 2004), which can compromise the analysis and results (Lennert-Cody, 2001), the high coverage of the eastern Pacific Ocean increase the representativeness of the estimates. IATTC observer programs

in the eastern Pacific Ocean provide important information for evaluating spatial-temporal variability of fish assemblages and impacts of commercial fisheries on the most vulnerable species (Montero et al., 2016). In that sense, the IATTC purse-seine database covers a large area and period of years compared with the other Oceans, so the information about the species involved is of high quality and quantity; even considering the limitations mentioned above (Montero et al., 2016). Anyway, the inclusion of fisheries independent data would considerable contributes to improve the conclusions of this study.

CONCLUSION

This work has improved our understanding of diversity and habitat characteristics of the bycatch assemblages in the eastern Pacific Ocean. Indicators based on the number of species in a community and the relative abundance of them (richness and evenness) were calculated. Moreover, diversity and the environmental characteristics of the bycatch species in the eastern Pacific Ocean were explained based on both fishing modes (i.e., FAD and School sets). The prediction of diversity was good, with 40% of the variation explained by the models. Modeling the biodiversity of bycatch using data from observer programs provide new and useful information for future management plans. This study contributed to the understanding and integration of different components of the ecosystem in order to progress in the implementation an Ecosystem Approach Fishery Management.

REFERENCES

- Akaike, H. (1974). A new look at the statistical model identification. *Autom. Contr. IEEE Trans.* 19, 716–723. doi: 10.1109/TAC.1974.1100705
- Alverson, D. L. (1994). A Global Assessment of Fisheries Bycatch and Discards. FAO Fisheries Technical Paper. Rome: Food & Agriculture Org.
- Amandè, M. J., Ariz, J., Chassot, E., De Molina, A. D., Gaertner, D., Murua, H., et al. (2010). Bycatch of the European purse seine tuna fishery in the Atlantic Ocean for the 2003–2007 period. *Aquat. Living Resour.* 23, 353–362. doi: 10.1051/alr/2011003
- Angel, M. V. (1993). Biodiversity of the pelagic ocean. Conserv. Biol. 7, 760–772. doi: 10.1046/j.1523-1739.1993.740760.x
- Arrizabalaga, H., Murua, H., and Majkowski, J. (2012). Global status of tuna stocks: summary sheets. *Rev. Invest. Mar.* 19, 645–676.
- Ballance, L. T., Pitman, R. L., and Fiedler, P. C. (2006). Oceanographic influences on seabirds and cetaceans of the eastern tropical Pacific: a review. *Prog. Oceanogr.* 69, 360–390. doi: 10.1016/j.pocean.2006.03.013
- Buckland, S., Magurran, A., Green, R., and Fewster, R. (2005). Monitoring change in biodiversity through composite indices. *Philos. Trans. R. Soc. B Biol. Sci.* 360, 243–254. doi: 10.1098/rstb.2004.1589
- Change, I. P. O. C. (2007). Climate Change 2007: The Physical Science Basis. Paris: Agenda 6, 333.
- Chao, A. (1984). Nonparametric estimation of the number of classes in a population. *Scand. J. Stat.* 11, 265–270.
- Chao, A., Chazdon, R. L., Colwell, R. K., and Shen, T. J. (2005). A new statistical approach for assessing similarity of species composition with incidence and abundance data. *Ecol. Lett.* 8, 148–159. doi: 10.1111/j.1461-0248.2004. 00707.x
- Coleman, B. D., Mares, M. A., Willig, M. R., and Hsieh, Y.-H. (1982). Randomness, area, and species richness. *Ecology* 63, 1121–1133. doi: 10.2307/19 37249

AUTHOR CONTRIBUTIONS

NL, HM, MH, MR, JR, NV, AC, and IS designed research; NL, HM, and MH performed research; NL analyzed data; and NL, HM, MH, and AC wrote the paper.

FUNDING

This study was part of the PhD thesis (Lezama-Ochoa, 2016) conducted by the first author (NLO) at AZTI-Tecnalia marine institute and funded by Iñaki Goenaga (FCT grant). The authors declare that the publication of this work is in line with the author's university policy. This is contribution 824 from AZTI-Tecnalia Marine Research Division.

ACKNOWLEDGMENTS

The observer data analyzed in this study was collected by IATTC observer programs and the oceanographic data has been provided by the CLS (https://www.cls.fr). Thanks to Robert Olson for his comments and suggestions.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fmars. 2017.00265/full#supplementary-material

- Colwell, R. K., and Coddington, J. A. (1994). Estimating terrestrial biodiversity through extrapolation. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* 345, 101–118. doi: 10.1098/rstb.1994.0091
- Connolly, J., Bell, T., Bolger, T., Brophy, C., Carnus, T., Finn, J. A., et al. (2013). An improved model to predict the effects of changing biodiversity levels on ecosystem function. J. Ecol. 101, 344–355. doi: 10.1111/1365-2745.12052
- Cullis-Suzuki, S., and Pauly, D. (2010). Failing the high seas: a global evaluation of regional fisheries management organizations. *Mar. Policy* 34, 1036–1042. doi: 10.1016/j.marpol.2010.03.002
- Cusson, M., Crowe, T. P., Araújo, R., Arenas, F., Aspden, R., Bulleri, F., et al. (2014). Relationships between biodiversity and the stability of marine ecosystems: comparisons at a European scale using meta-analysis. J. Sea Res. 98, 5–14. doi: 10.1016/j.seares.2014.08.004
- Dayton, P. K., Thrush, S. F., Agardy, M. T., and Hofman, R. J. (1995). Environmental effects of marine fishing. Aqua. Conserv. 5, 205–232. doi: 10.1002/aqc.3270050305
- Duffy, L. M., Olson, R. J., Lennert-Cody, C. E., Galván-Magaña, F., Bocanegra-Castillo, N., and Kuhnert, P. M. (2015). Foraging ecology of silky sharks, *Carcharhinus falciformis*, captured by the tuna purse-seine fishery in the eastern Pacific Ocean. *Mar. Biol.* 162, 571–593. doi: 10.1007/s00227-014-2606-4
- Elith, J., and Leathwick, J. R. (2009). Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697. doi: 10.1146/annurev.ecolsys.110308.120159
- Fiedler, P. C. (1992). Seasonal Climatologies and Variability of Eastern Tropical Pacific Surface Waters. NOAA/National Marine Fisheries Service, NOAA Technical Report NMFS, 109.
- Fiedler, P. C., and Talley, L. D. (2006). Hydrography of the eastern tropical Pacific: a review. *Prog. Oceanogr.* 69, 143–180. doi: 10.1016/j.pocean.2006.03.008
- Garcia, S. M. (2003). The Ecosystem Approach to Fisheries: Issues, Terminology, Principles, Institutional Foundations, Implementation and Outlook. FAO Fisheries Technical Paper. Rome: Food & Agriculture Org.

- Gilman, E. L. (2011). Bycatch governance and best practice mitigation technology in global tuna fisheries. *Mar. Policy* 35, 590–609. doi: 10.1016/j.marpol.2011.01.021
- Gotelli, N. J., and Colwell, R. K. (2011). Estimating species richness. *Biol. Divers.* 12, 39–54.
- Greenstreet, S. P., and Rogers, S. I. (2006). Indicators of the health of the North Sea fish community: identifying reference levels for an ecosystem approach to management. *ICES J. Mar. Sci.* 63, 573–593. doi: 10.1016/j.icesjms.2005.12.009
- Guisan, A., Edwards, T. C. Jr., and Hastie, T. (2002). Generalized linear and generalized additive models in studies of species distributions: setting the scene. *Ecol. Modell.* 157, 89–100. doi: 10.1016/S0304-3800(02)00204-1
- Hall, M. A., Alverson, D. L., and Metuzals, K. I. (2000). By-catch: problems and solutions. *Mar. Pollut. Bull.* 41, 204–219. doi: 10.1016/S0025-326X(00)00111-9
- Hall, M., and Roman, M. (2013). Bycatch and Non-Tuna Catch in the Tropical Tuna Purse Seine Fisheries of the World. FAO Fisheries and Aquaculture Technical Paper 568.

Hastie, T. J., and Tibshirani, R. J. (1990). Generalized Additive Models. CRC Press.

- Hoegh-Guldberg, O., and Bruno, J. F. (2010). The impact of climate change on the world's marine ecosystems. *Science* 328, 1523–1528. doi: 10.1126/science.1189930
- Hutchings, J. A., and Baum, J. K. (2005). Measuring marine fish biodiversity: temporal changes in abundance, life history and demography. *Philos. Trans. R. Soc. B Biol. Sci.* 360, 315–338. doi: 10.1098/rstb.2004.1586
- IATTC (2010). Inter-American Tropical Tuna Commission (IATTC). 2010. Fishery Status Report n 7. La Jolla, CA: IATTC.
- IATTC (2015). Inter-American Tropical Tuna Commission (IATTC). 2015. Annual Report. La Jolla, CA: IATTC.
- Irigoien, X., Huisman, J., and Harris, R. P. (2004). Global biodiversity patterns of marine phytoplankton and zooplankton. *Nature* 429, 863–867. doi: 10.1038/nature02593
- Kessler, W. S. (2006). The circulation of the eastern tropical Pacific: a review. Prog. Oceanogr. 69, 181–217. doi: 10.1016/j.pocean.2006.03.009
- Kindt, R., and Coe, R. (2005). Tree Diversity Analysis: A Manual and Software for Common Statistical Methods for Ecological and Biodiversity Studies. Nairobi: World Agroforestry Centre.

Kindt, R., and Kindt, M. R. (2015). Package BiodiversityR.

- Kohavi, R. (1995). "A study of cross-validation and bootstrap for accuracy estimation and model selection," in *Proceedings of the 14th International Joint Conference of Artificial Intelligence (IJCAI)*, Vol. 2, (Montreal, QC: Morgan Kaufmann), 1137–1145.
- Lauria, V., Vaz, S., Martin, C. S., Mackinson, S., and Carpentier, A. (2011). What influences European plaice (*Pleuronectes platessa*) distribution in the eastern English Channel? Using habitat modelling and GIS to predict habitat utilization. *ICES J. Mar. Sci.* 68, 1500–1510. doi: 10.1093/icesjms/fsr081
- Lavín, M. F., Fiedler, P. C., Amador, J. A., Ballance, L. T., Färber-Lorda, J., and Mestas-Nuñez, A. M. (2006). A review of eastern tropical Pacific oceanography: summary. *Prog. Oceanogr.* 69, 391–398. doi: 10.1016/j.pocean.2006.03.005
- Lennert-Cody, C. (2001). Effects of sample size on bycatch estimation using systematic sampling and spatial post-stratification: summary of preliminary results. *IOTC Proc.* 4, 48–53.
- Lewison, R. L., Crowder, L. B., Read, A. J., and Freeman, S. A. (2004). Understanding impacts of fisheries bycatch on marine megafauna. *Trends Ecol. Evol.* 19, 598–604. doi: 10.1016/j.tree.2004.09.004
- Lezama-Ochoa, N. (2016). Biodiversity and Habitat Preferences of the By-Catch Communities from the Tropical Tuna Purse-Seine Fishery in the Pelagic Ecosystem: The Case of the Indian, Pacific and Atlantic Oceans. PhD Thesis. Department of Zoology and Animal Cell Biology, University of the Basque Country, 282.
- Lezama-Ochoa, N., Murua, H., Chust, G., Ruiz, J., Chavance, P., de Molina, A. D., et al. (2015). Biodiversity in the by-catch communities of the pelagic ecosystem in the Western Indian Ocean. *Biodivers. Conserv.* 24, 2647–2671. doi: 10.1007/s10531-015-0951-3
- Link, J. (2010). Ecosystem-Based Fisheries Management: Confronting Tradeoffs. New York, NY: Cambridge University Press.
- Lopez, J., Moreno, G., Lennert-Cody, C., Maunder, M., Sancristobal, I., Caballero, A., et al. (2017). Environmental preferences of tuna and non-tuna species associated with drifting fish aggregating devices (DFADs) in the Atlantic Ocean,

ascertained through fishers' echo-sounder buoys. Deep Sea Res. II Top. Stud. Oceanogr. 140, 127–138. doi: 10.1016/j.dsr2.2017.02.007

- Magurran, A. E. (2004). Measuring Biological Diversity. Cornwall: Blackwell.
- Magurran, A. E., and McGill, B. J. (2011). Biological Diversity: Frontiers In Measurement And Assessment. New York, NY: Oxford University Press.
- Montero, J. T., Martinez-Rincon, R. O., Heppell, S. S., Hall, M., and Ewal, M. (2016). Characterizing environmental and spatial variables associated with the incidental catch of olive ridley (*Lepidochelys olivacea*) in the Eastern Tropical Pacific purse-seine fishery. *Fish. Oceanogr.* 25, 1–14. doi: 10.1111/fog.12130
- Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O'Hara, R., et al. (2013). *Package 'vegan*.' R Packag Version.
- Oliver, I., and Beattie, A. J. (1996). Designing a cost-effective invertebrate survey: a test of methods for rapid assessment of biodiversity. *Ecol. Appl.* 6, 594–607. doi: 10.2307/2269394
- Olson, R. J., Duffy, L. M., Kuhnert, P. M., Galván-Magaña, F., Bocanegra-Castillo, N., and Alatorre-Ramírez, V. (2014). Decadal diet shift in yellowfin tuna Thunnus albacares suggests broad-scale food web changes in the eastern tropical Pacific Ocean. *Mar. Ecol. Prog. Ser.* 497, 157–178. doi: 10.3354/meps10609
- Olson, R. J., Popp, B. N., Graham, B. S., López-Ibarra, G. A., Galván-Magaña, F., Lennert-Cody, C. E., et al. (2010). Food-web inferences of stable isotope spatial patterns in copepods and yellowfin tuna in the pelagic eastern Pacific Ocean. *Prog. Oceanogr.* 86, 124–138. doi: 10.1016/j.pocean.2010.04.026
- Pennington, J. T., Mahoney, K. L., Kuwahara, V. S., Kolber, D. D., Calienes, R., and Chavez, F. P. (2006). Primary production in the eastern tropical Pacific: a review. *Prog. Oceanogr.* 69, 285–317. doi: 10.1016/j.pocean.2006.03.012
- Pielou, E. (1975). Ecology Diversity. New York, NY: Wiley, J. and Sons.
- Pikitch, E. K., Santora, C., Babcock, A., Bakun, E. A., Bonfil, R., Conover, D. O., et al. (2004). Ecosystem-based fishery management. *Science* 305, 346–347. doi: 10.1126/science.1098222
- Poisson, F., Séret, B., Vernet, A.-L., Goujon, M., and Dagorn, L. (2014). Collaborative research: Development of a manual on elasmobranch handling and release best practices in tropical tuna purse-seine fisheries. *Mar. Policy* 44, 312–320. doi: 10.1016/j.marpol.2013.09.025
- R Core Team (2016). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
- Reese, G. C., Wilson, K. R., and Flather, C. H. (2014). Performance of species richness estimators across assemblage types and survey parameters. *Global Ecol. Biogeogr.* 23, 585–594. doi: 10.1111/geb.12144
- Sala, E., and Knowlton, N. (2006). Global marine biodiversity trends. Annu. Rev. Environ. Resour. 31, 93–122. doi: 10.1146/annurev.energy.31.020105. 100235
- Scott, M. D., Chivers, S. J., Olson, R. J., Fiedler, P. C., and Holland, K. (2012). Pelagic predator associations: tuna and dolphins in the eastern tropical Pacific Ocean. *Mar. Ecol. Prog. Ser.* 458, 283–302. doi: 10.3354/meps09740
- Shannon, C. E., and Weaver, W. (1949). Themathematical Theory of Communication. Urbana: University of Illinois Press.
- Smeets, E., Weterings, R., and voor Toegepast-Natuurwetenschappelijk, N. C. O. (1999). Environmental *Indicators: Typology and Overview*. Copenhagen: European Environment Agency Copenhagen.
- Stirling, G., and Wilsey, B. (2001). Empirical relationships between species richness, evenness, and proportional diversity. Am. Nat. 158, 286–299. doi: 10.1086/321317
- Torres-Irineo, E., Amandè, M. J., Gaertner, D., de Molina, A. D., Murua, H., Chavance, P., et al. (2014). Bycatch species composition over time by tuna purse-seine fishery in the eastern tropical Atlantic Ocean. *Biodivers. Conserv.* 23, 1157–1173. doi: 10.1007/s10531-014-0655-0
- Whittaker, R. H. (1965). Dominance and Diversity in Land Plant Communities Numerical relations of species express the importance of competition in community function and evolution. *Science* 147, 250–260. doi: 10.1126/science.147.3655.250
- Wilson, J. B. (1991). Methods for fitting dominance/diversity curves. J. Vegetation Sci. 2, 35–46. doi: 10.2307/3235896
- Wood, S. (2006). Generalized Additive Models: An Introduction with R. Boca Ratón, FL: CRC Press.
- Wood, S., and Wood, M. S. (2007). *The Mgcv Package*. Available online at: www. r-project. org.

- Worm, B., Barbier, E. B., Beaumont, N., Duffy, J. E., Folke, C., Halpern, B. S., et al. (2006). Impacts of biodiversity loss on ocean ecosystem services. *Science* 314, 787–790. doi: 10.1126/science.1132294
- Worm, B., Sandow, M., Oschlies, A., Lotze, H. K., and Myers, R. A. (2005). Global patterns of predator diversity in the open oceans. *Science* 309, 1365–1369. doi: 10.1126/science.1113399
- Wyrtki, K. (1981). An estimate of equatorial upwelling in the Pacific. J. Phys. Oceanogr. 11, 1205–1214.
- Zhu, J., Dai, X., and Chen, Y. (2011). Species composition and diversity of pelagic fishes based on a longline fishery catch in the North Pacific Ocean. *Chin. J. Oceanol. Limnol.* 29, 261–269. doi: 10.1007/s00343-011-0122-7

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2017 Lezama-Ochoa, Murua, Hall, Román, Ruiz, Vogel, Caballero and Sancristobal. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.