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In the present study we investigate the bio-geo-optical boundaries for the possibility

to identify dominant phytoplankton groups from hyperspectral ocean color data. A

large dataset of simulated remote sensing reflectance spectra, Rrs(λ), was used. The

simulation was based on measured inherent optical properties of natural water and

measurements of five phytoplankton light absorption spectra representing five major

phytoplankton spectral groups. These simulated data, named as C2X data, contain more

than 105 different water cases, including cases typical for clearest natural waters as well

as for extreme absorbing and extreme scattering waters. For the simulation the used

concentrations of chlorophyll a (representing phytoplankton abundance), Chl, are ranging

from 0 to 200mg m−3, concentrations of non-algal particles, NAP, from 0 to 1,500 g

m−3, and absorption coefficients of chromophoric dissolved organic matter (CDOM) at

440 nm from 0 to 20 m−1. A second, independent, smaller dataset of simulated Rrs(λ)

used light absorption spectra of 128 cultures from six phytoplankton taxonomic groups to

represent natural variability. Spectra of this test dataset are compared with spectra from

the C2X data in order to evaluate to which extent the five spectral groups can be correctly

identified as dominant under different optical conditions. The results showed that the

identification accuracy is highly subject to the water optical conditions, i.e., contribution

of and covariance in Chl, NAP, and CDOM. The identification in the simulated data is

generally effective, except for waters with very low contribution by phytoplankton and for

waters dominated by NAP, whereas contribution by CDOM plays only a minor role. To

verify the applicability of the presented approach for natural waters, a test using in situ

Rrs(λ) dataset collected during a cyanobacterial bloom in Lake Taihu (China) is carried

out and the approach predicts blue cyanobacteria to be dominant. This fits well with

observation of the blue cyanobacteria Microcystis sp. in the lake. This study provides

an efficient approach, which can be promisingly applied to hyperspectral sensors, for

identifying dominant phytoplankton spectral groups purely based on Rrs(λ) spectra.
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INTRODUCTION

Phytoplankton play a fundamentally key role in oceans, seas, and
freshwater basin ecosystems, as well as in related biogeochemical
cycles. Phytoplankton communities are characterized by large
taxonomic diversity that strongly determines their role in the
ecosystem and their biogeochemical functioning (Uitz et al.,
2015). The aquatic environment, whether inland, coastal, or
open-ocean waters, is rarely comprised of a single algal class
(IOCCG, 2014). Different phytoplankton groups adapt to
environmental conditions such as high or low light, temperature,
nutrient availability, and turbulence level (Aiken et al., 2008).
Specific phytoplankton groups are characterized by some specific
pigments—biomarkers—and can, thus, be identified from
pigment inventories derived from in situ samples (Alvain et al.,
2005). Recently, different bio-optical and ecological models have
been developed for identifying phytoplankton functional types
(PFTs), phytoplankton taxonomic composition, and specific
phytoplankton species (e.g., Craig et al., 2006; Astoreca et al.,
2009) by means of light absorption spectra, spectral response
based on reflectance anomalies, backscatter-based derivation
of the particle size distribution, phytoplankton abundance, or
through look-up table of Rrs(λ) that incorporates the range of
absorption and scattering variability (e.g., Ciotti and Bricaud,
2006; Alvain et al., 2008, 2012; Hirata et al., 2008; Bracher
et al., 2009; Kostadinov et al., 2009; Mouw and Yoder, 2010;
Brewin et al., 2015; Lorenzoni et al., 2015). Two recent review
articles provide an overview of the different methodological
approaches, remote sensing algorithms, and a gap analysis for
obtaining phytoplankton diversity from ocean color (Bracher
et al., 2017; Mouw et al., 2017). One technical requirement
for better phytoplankton identification comprises the utilization
of hyperspectral ocean color data over the full visible range
between 400 and 700 nm. A limited traceability of uncertainties in
connection with phytoplankton group information for all water
types has been identified as a current gap of knowledge (Bracher
et al., 2017).

With recent advances in optical measurements and future
improvements in satellite sensors, approaches of phytoplankton
group discrimination have been proposed based on various
types of data from in situ measurements, model simulations
and satellite sensors (Hunter et al., 2008; Lubac et al., 2008;
Nair et al., 2008; Taylor et al., 2011; Isada et al., 2015). The
rapid development of hyperspectral sensors allows providing
more comprehensive remote sensing data of water reflectance
spectral properties, attributable to the full range of visible light,
i.e., to more wavebands, and higher spectral resolution. The
increasing quantity of hyperspectral satellite missions, from
existing Hyperion (Folkman et al., 2001), CHRIS (Barnsley
et al., 2004), and HICO (Corson et al., 2008) (terminated in
2014) to the expected missions such as EnMAP (Foerster et al.,
2015), PRISMA (Meini et al., 2015), HyspIRI (Lee et al., 2015),
HYPXIM (Michel et al., 2011), and PACE (Gregg and Rousseaux,
2017), has and will provide much potential for applications
of hyperspectral satellite data in aquatic ecosystems (Guanter
et al., 2015; Xi et al., 2015). Band placement for improving PFTs
retrieval from remote sensing data was investigated by analyzing

dominant spectral features in the absorption spectra of the
PFTs determined with different methods, with recommendations
of using continuous hyperspectral data as they will provide
better results (Wolanin et al., 2016). Attempts on hyperspectral
identification and differentiation of phytoplankton taxonomic
groups have been carried out with various approaches (e.g.,
Bracher et al., 2009; Torrecilla et al., 2011; Sadeghi et al., 2012;
Uitz et al., 2015; Xi et al., 2015; Kim et al., 2016). Progresses
achieved so far have not only provided recommendations on
the directions into which more effort need to be put, but
also suggested the constraints and difficulties lying in these
approaches. Our previous study has shown that identification of
phytoplankton taxonomic groups is successful when using light
absorption spectra, but the identification performance varies in
different water types when using remote sensing reflectance,
Rrs(λ), as variability in water optical components changes Rrs(λ)
spectra significantly, both in magnitude and spectral shape
(Xi et al., 2015). Light absorption spectra of phytoplanktonic
algae are determined by pigment composition and pigment
cell concentrations, both can alter e.g., with light condition
during growth (photoacclimation). Modeling and identification
approaches that are based on phytoplankton absorption features
also need to take these intra-taxa and intra-species variability
into account, but are due to computer performance issues usually
based on just a few single spectra representing a taxonomic or
spectral group.

Given that a commonly used parameter obtained directly from
hyperspectral Earth observation sensors is the remote sensing
reflectance of the water surface, we focused on phytoplankton
identification using Rrs(λ) only. In a former study (Xi et al.,
2015) we have also shown that absorption features of pure
water in Rrs(λ) affect the identification performance when
phytoplankton concentration is low. In the present study,
based on five standard absorption spectra representing five
phytoplankton spectral groups, an extensive dataset including
105 Rrs(λ) spectra was simulated using HydroLight with various
water optical conditions. This simulated dataset is part of a
database compiled within the ESA SEOM C2X project (C2X,
2015). An identification approach is proposed to determine
phytoplankton groups with the use of the C2X database. The
objectives of this study are (i) to test the skill of the identification,
(ii) to investigate how and to what extend other water optical
constituents impact the accuracy of this identification, and (iii)
to show the applicability of this approach in natural waters using
in situ data.

DATA AND METHODS

Absorption Data
In order to obtain spectral absorption coefficient of different
phytoplankton groups, 128 cultures of various algal species
from six major phytoplankton taxonomic groups were
prepared. Cultures had been prepared from 68 different
species, these included 19 diatom species [Heterokontophyta
(Bacillariophyceae)], 13 species of dinophytes [Dinophyta
(Dinophyceae)], four species of prymnesiophytes [Haptophyta

Frontiers in Marine Science | www.frontiersin.org 2 August 2017 | Volume 4 | Article 272

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Xi et al. Hyperspectral Identification of Phytoplankton Groups

(Prymnesiophyceae)], three species of cryptophytes [Cryptophyta
(Cryptophyceae)], 23 species of chlorophytes [Chlorophyta
(Chlorophyceae, Picocystophyceae, and Trebouxiophyceae)],
and six species of cyanobacteria (Cyanophyceae). Culture
preparation, growth and light conditions are detailed in Xi
et al. (2015) and included different light conditions for each
species to introduce some spectral variability for each species.
The absorption coefficient spectrum of each culture, aph(λ)

(m−1), was measured with a Point-Source Integration-Cavity
Absorption Meter (PSICAM) following the procedures outlined
in Röttgers et al. (2007). All measurements were done at least in
triplicate against pure water as the reference. The PSICAM offers
accurate determinations of the absorption coefficient without
errors induced by light scattered on the algal cells. aph(λ) spectra
were measured and area-normalized in the full spectral range of
photosynthetically active radiation, i.e., 400–700 nm (Xi et al.,
2015).

Datasets of Simulated Remote Sensing
Reflectance
In-water radiative transfer simulations have been carried
out using HydroLight (version 5.2; Sequoia Scientific, Inc.,
USA; Mobley, 1994). The numerical model computes radiance
distributions and other related quantities such as remote sensing
reflectance, Rrs(λ), for any given water body. Optical properties

of the homogeneous water body are varied in a controlled light
environment, i.e., clear maritime atmosphere, moderate wind,
and the sun is at its zenith. Two datasets of Rrs(λ) were modeled
using HydroLight’s “Case-2” model, assuming the same external
conditions but differ in the number of representative spectra
for the phytoplankton spectral groups. Thus, they have some
similarities but are quasi-independent. The so-called C2X dataset
(from ESA’s Case-2 Extreme Water Project) that is based on
five phytoplankton absorption spectra representing five spectral
(taxonomic) groups is used as the standard database and the
second one, which comprises optical situations based on 128
phytoplankton absorption spectra from cultures, is for testing;
detailed descriptions of the datasets are provided in Hieronymi
et al. (2017) and Xi et al. (2015), respectively (the test dataset
used here contains more different CDOM absorption and non-
algal particles, NAP, concentrations than in the previous study of
Xi et al., 2015). Basic information about the HydroLight input for
the two datasets is provided in Table 1.

The main feature of the C2X database is that it covers most
water types, from clearest oceanic Case-1 waters to CDOM-
dominated (extreme absorbing) and sediment-dominated
(extreme scattering) Case-2 waters. For example, the total
(organic and inorganic) particulate backscattering coefficient
at 510 nm, bbp(510), varies between 0.0007 and 15.4m−1 and
the combined absorption coefficient of detritus and gelbstoff
at 412 nm, adg(412), is between 0.004 and 120.2 m−1. On the

TABLE 1 | Specifications of the two used Rrs (λ) datasets, C2X database and test data, both simulated with the “Case-2” model of HydroLight (with references in Mobley

and Sundman, 2013).

Description Notation Unit C2X database Test data

Number of Rrs spectra N [−] 100,000 15,360

Wavelengths λ [nm] 380: 2.5: 1,100 400: 2.5: 700

Water Pure water absorption and scattering coefficients aw, bw [m−1] data from WOPP v2 by Röttgers et al. (2016)

Water temperature T [◦C] [0 30] 10

Water salinity S [PSU] [0 35] 30

Chlorophyll-bearing

particles

Chlorophyll-a (Chl) concentration [Chl] [mg m−3] [0.02 200] 0.1, 0.3, 0.5, 1, 5, 10, 50,

100

Number of chlorophyll-specific absorption

coefficient spectra, aph
* [ m2 mg−1]

5 (as mixtures of two of these 5

spectra with 80 and 20%)

128

Scattering coefficient by Chl bph [m−1] Standard power law

Scattering phase function βph [sr−1] Fourier-Forand with specified

backscatter fraction

Petzold phase function for

“average particle”

Particle backscatter fraction of phase functions Bph [−] [0.002 0.022] 0.018

CDOM Absorption coefficient of colored dissolved organic

matter at 440 nm

aCDOM(440) [m−1] [0 20] 0, 0.05, 0.1, 0.5, 1, 2

Slope of CDOM absorption between 300 and 440

nm

SCDOM [nm−1] [0.0004 0.032] 0.014

Non-algal particles Concentration of non-algal particles (minerals) [NAP] [g m−3] [0 1,500] 0, 0.5, 1, 5, 10, 50

Mass-specific NAP absorption coefficient at 440

nm

aNAP
*(440) [m2 g−1] 0.0615 (from average of in situ

spectra)

0.051 (from one in situ

spectrum)

Mass-specific NAP scattering coefficient at 440 nm bNAP
*(440) [m2 g−1] [0.273 1.093] 0.8902 (standard average)

NAP scattering phase function βNAP [sr−1] Fourier-Forand with specified

backscatter fraction

Petzold phase function for

“average particle”

NAP backscatter fraction of phase functions BNAP [−] [0.001 0.035] 0.018

Two values in square brackets refer to a range.
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basis of the Xi et al. (2015) study, five fundamental spectral
shapes of chlorophyll-specific absorption were selected. The five
absorption spectra (of different species of algae) are supposed to
have the highest potential for identification of these five different
spectral groups from a remote sensing reflectance spectrum.
These normalized spectra are shown in Figure 1A and stand for:
(1) a “brown spectral group” representing Heterokontophyta,
Dinophyta, and Haptophyta, (2) a “green spectral group”
representing Chlorophyta, (3) a group for Cryptophyta, (4) a
blue-green cyanobacteria, and (5) a red cyanobacteria. The first
four spectra are absorption spectra from single cultures that are
close to the mathematical mean for all spectra of cultures from
this group (from the 128 measured culture absorption spectra).
As an example, the absorption spectrum for the “brown spectral
group” was chosen from all the cultures in the brown group
in Figure 1B. These culture-spectra are realistic as very similar
spectra can be found in the HZG in situ database (unpublished
data). The spectrum of the red cyanobacteria was obtained
from field measurements in the Baltic Sea during a bloom of
cyanobacteria (most likely Nodularia sp.). Culture spectra (e.g.,
a red Synechococcus sp.) of this type mostly exhibit much higher
phycobilin-related absorption peaks around 570 nm. In order
to account for natural variability in the simulation for the C2X
database, the actually used aph

∗(λ) spectra are always mixtures

from two of the five groups with individual contributions of

80 and 20%, respectively. The total phytoplankton absorption,

aph, is related to the spectral chlorophyll-specific absorption and

chlorophyll a concentration (denoted as [Chl] hereafter), aph (λ)

= aph
∗ (λ) × [Chl]. The natural variability of phytoplankton

absorption is very high (e.g., Bricaud et al., 2004); and the
full range of observed natural variability is included in the

simulations (Figure 2). Basis for estimating distributions, ranges,

and covariances of optical properties and concentrations are

several in situ datasets (e.g., Valente et al., 2016), but mainly

our HZG in situ data from the North and Baltic Sea. The

simulated data have been compared with in situ observations,
e.g., bbp(510) and adg(412) vs. different reflectance band ratios

(Hieronymi et al., 2016), and we generally found a good
agreement. But we have also found some discrepancies partly
related to plausible measuring uncertainties and possibly due to
model simplifications. In this context, it should be mentioned
that the model assumptions for spectral scattering properties
are identical for all five phytoplankton groups, i.e., the particle
backscatter fraction depends on chlorophyll a concentration
(Twardowski et al., 2001), but not on algae-specific (back-)
scattering properties.

For the HydroLight simulations, the considered Rrs(λ) is fully
normalized, i.e., the sun is at zenith and the viewing angle is
perpendicular; the water is infinitely deep; inelastic scattering,
i.e., Raman scattering and Chl and CDOM fluorescence,
are taken into account. Nonetheless, how inelastic scattering
processes and their natural variability influence the results is

FIGURE 2 | Phytoplankton absorption coefficient at 440 nm, aph(440), vs.

chlorophyll a concentration [Chl] used in simulations for the C2X database.

The trend line is also shown in comparison to that by Bricaud et al. (2004).

FIGURE 1 | (A) Five area-normalized absorption spectra of phytoplankton used in Rrs(λ) simulation for the C2X database, and (B) corresponding spectra of cultures

representing the “brown spectral group.”
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out of scope of this work. Ultimately, the C2X database built
with HydroLight simulations includes in total 1 × 105 Rrs(λ)
spectra with five phytoplankton groups with various water optical
conditions; while the test dataset includes 15,360 Rrs(λ) spectra,
for 120 different water conditions ([Chl] varys from 0.1 to
100mg m−3, [NAP] from 0 to 50 g m−3, and CDOM from 0
to 2 m−1) with 128 phytoplankton absorption spectra (Table 1).
The corresponding concentration values were listed in Table 1,
and rational of the water condition settings was described and
discussed in Xi et al. (2015) where this dataset was firstly used.

Phytoplankton Group Identification
The general scheme of the identification approach is illustrated
in Figure 3. At first, all Rrs(λ) spectra are area-normalized
and then second-order derivative is calculated. Details on the
normalization and derivative transformation are described in
Xi et al. (2015). To identify the corresponding phytoplankton
groups in a test data set, each Rrs(λ) spectrum in the test data set
is compared to all spectra in the C2X database using the similarity
index (SI) as an angular distance (Millie et al., 1997):

SI = 1−
2

π
× arccos

(

x1 · x2

|x1| |x2|

)

(1)

where x1 is a second-derivative spectrum of Rrs(λ) in the C2X
database, and x2 is one in the test dataset. The SI is a number
between 0 and 1, where 0 indicates no similarity and 1 indicates
perfect similarity between the two spectra. It is noteworthy that
only the second-derivative spectra of Rrs(λ) in the range of 420–
620 nm was used for SI calculation to minimize the influence of
noises at shorter wavelengths, where reflectance is often low, and

FIGURE 3 | Flowchart showing the approach for dominant phytoplankton

group identification.

that of strong water absorption features at longer wavelengths (Xi
et al., 2015).

This approach produces 105 SI values for each spectrum of the
test dataset. The first 20 spectra in the C2X database providing
highest SI values for each test spectrum are selected and their
corresponding known phytoplankton spectral group is recorded.
The group that is dominant in these 20 spectra is taken as the
identified spectral group for this test spectrum. For each test
spectrum one of the five spectral groups is identified as being
dominant. Each taxonomic group in the test data is represented
by five to 48 Rrs(λ) spectra (from 5 to 48 different cultures), and
all taxonomic groups are categorized into five spectral groups,
the spectral group identification accuracy is thus determined
by calculating the percentage of the correctly identified Rrs(λ)
spectra in each spectral group. In the end, given that there are
120 water optical conditions in the test data, 120 values for the
identification accuracy of each group are calculated.

In situ Rrs(λ) Data of Lake Taihu
An investigation campaign was carried out from 5th to 17th
October 2008 in Lake Taihu (China). A set of in situ Rrs(λ) spectra
was obtained by measuring the water-leaving radiances and sky
radiances with a dual channel spectrometer, ASD FieldSpec Pro
Dual VNIR (FieldSpec 931, ASD Inc., USA), following NASA
ocean optics protocols (Mueller et al., 2003). When performing
the measurements, the viewing angels of the two channels from
the water surface at the zenith angle and the azimuth angle
were 40◦ and 135◦, respectively. Radiances of a 25 cm by 25
cm plaque with 25% reflectivity, water and sky radiances (each
preceded by a dark offset reading) were measured and repeated
five times. The measurements were performed at a location that
minimized shading, reflections from superstructure, ship’s wake,
foam patches, and whitecaps. Moreover, the location was also
pointed away from the sun to reduce the sunglint effect. Upon the
upward radiance (Lu), sky radiance (Lsky), gray plaque radiance
(Lplaq), and the water-air interface reflectivity determined based
on the lake state at that time, Rrs(λ) were calculated referring
to the method proposed by Mobley (1999). Details of the
approaches for radiance measurements and Rrs(λ) calculation
are illustrated in Ma et al. (2006). Water samples were taken
simultaneously with the spectrometer for lab measurements of
Chl, NAP, and CDOM concentrations. Absorption spectra by
the total particles and the NAP were determined by quantitative
filter technique (QFT) method (Mitchell, 1990) and aph (λ)
was obtained by subtracting aNAP(λ) from ap(λ). aCDOM(λ)
was also measured spectrophotometrically in a 10 cm cuvette
using 0.7 mm Whatman GF/F-filtered water sample pads by the
same UV-2401 spectrophotometer. More details on the above
determinations are described in Xi (2011).

As one of the biggest freshwater lakes in China, Lake Taihu
covers an area of 2427.8 km2 with highly varying water quality
from area to area. Water types in Lake Taihu are mainly classified
into two categories: optically deep waters (ODWs) and optically
shallow waters (OSWs) (Xi, 2011). ODWs cover most area of the
lake with highly eutrophicated and turbid waters and frequent
occurrence of cyanobacteria blooms, while the southeastern area
is mostly OSWs with clear waters and abundant aquatic plants.
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Data used here are from ODWs only, as Rrs(λ) from OSWs has
much influence from the submerged aquatic plants and the lake
bottom and are thus not suitable for use in this study. Due to the
large area of the lake, water optical conditions in ODWs are also
diverse. Variations of the water components are known: [Chl]
varied from 4.0 to 180mg m−3, [NAP] from 9.5 to 95 g m−3 and
CDOM from 0.4 to 1.7 m−1. For the present study, Rrs(λ) spectra
together with other optical parameters for 66 stations in ODWs
are obtained. This additional “Taihu dataset” is used to test the
applicability of the presented approach in natural waters.

RESULTS

Spectral Analysis of C2X Reflectances
The C2X database contains simulated Rrs(λ) spectra that
included as model input a standard absorption spectrum for
each of five different phytoplankton spectral groups. These
Rrs(λ) spectra show different spectral features reflecting various
water optical conditions. Prior to utilizing the C2X data in
the identification approach, Rrs(λ) spectra in the database are
firstly normalized and transformed to the second derivative
spectra. To have an general understanding on the C2X database,
representative Rrs(λ) spectra of the five phytoplankton groups
and their second derivatives are selected for a few water cases.
For each water case, five Rrs(λ) spectra with similar water
optical conditions representing the five phytoplankton groups
are chosen. Figure 4 shows examples of Rrs(λ) spectra and their
second derivative spectra, for different phytoplankton groups in
five water cases. The five water cases are however not exhaustive.
According to Hieronymi et al. (2017), 13 different water optical
classes in total are classified by a fuzzy logic classification
approach, but they are not completely included here as this
study is not focusing on water type interpretation. Only examples
of five water cases are chosen to show spectral variations in
different scenarios. These five water cases possess the following
conditions:

(1) low [Chl], low [NAP], and low CDOM (Figure 4A–C);
(2) low [Chl], low [NAP], and moderate CDOM (Figure 4D–F);
(3) low [Chl], moderate [NAP], and moderate CDOM

(Figure 4G–I);
(4) high [Chl], moderate [NAP], and moderate CDOM

(Figure 4J–L); and
(5) moderate [Chl], extremely high [NAP], and moderate

CDOM (Figure 4M–O).

The corresponding water optical conditions of the five water
cases and the variation of water optical components are listed in
Table 2. Note that the ranges of “low,” “moderate,” and “high”
concentrations are a bit varying from case to case which may
cause slight difference in the spectral magnitude as well as the
chlorophyll fluorescence. Water case (1) represents clear Case-
1 waters (Figure 4A) where phytoplankton, CDOM and pure
water are the main contributors to the Rrs(λ); phytoplankton
absorption contributes to the suppression at 440 nm and the
reflectance in the blue spectral region is high; low scattering and
the high absorption by water at red and near infrared wavelengths
results in low reflectance in this region. In absorbing waters

such as water case (2) where CDOM is moderate but other
concentrations are low (Figure 4D), reflectance is lower in the
blue band suggests a strong CDOM absorption, and the peak
at about 682 nm is due to the fact that Chl fluorescence was
included in the simulations. In scattering dominated waters as
water case (3) (Figure 4G), NAP are the dominating component;
the reflectance is high in the whole visible region and the
maximum is shifted to longer wavelength with the increase of
NAP concentrations; peaks and troughs attributable to pigment
absorption are suppressed. In high [Chl] waters as water case
(4), the contribution by different phytoplankton pigments in
the Rrs(λ) spectra is clearly seen (Figure 4J), suggesting that
it is relatively easy to identify phytoplankton groups in such
waters. Scattering by NAP results in higher reflectance at
longer wavelengths (>550 nm), therefore when sediment load
is extremely high, as shown in Figure 4M, the reflectance
shows an increasing pattern with wavelengths in the visible
region. In NAP-dominated waters, little spectral difference
can be observed among the different phytoplankton groups
(Figure 4N); absorption and scattering by sediments mask the
algae pigment features. This masking effect is a generally known
limitation and uncertainty source for remote sensing of biomass
in turbid Case-2 waters (e.g., IOCCG, 2000).

Though phytoplankton groups exhibit distinct spectral
features in some water cases, the corresponding second derivative
spectra of Rrs(λ) in Figure 4 (third column) show much
variation in different water cases even for the same dominating
phytoplankton group, due to the different contribution of
other water optical constituents to the reflectance spectra. This
indicates a possible difficulty in identifying phytoplankton groups
for highly variable natural waters, by only inter-comparing the
reflectance spectra without references. Given that, our theoretical
basis is the C2X database that in the following is used as a look-
up table (LUT) of standard reflectance spectra with information
about the dominating phytoplankton groups, so that any test
spectrum can be spectrally compared to the LUT and a certain
phytoplankton group can be allocated to it. With the use of the
simulated test data, the performance by the LUT identification
approach can be evaluated for various water optical conditions.

Phytoplankton Spectral Group
Identification
In order to investigate how accurate the phytoplankton groups
can be identified under different water optical conditions, Rrs(λ)
spectra of the test data are compared with those in the C2X
database by following the identification approach described
above. Identification accuracy based on the 120 water conditions
is generated for each spectral group via the proposed approach.
The identification accuracy is presented for each spectral group
as a function of the different water conditions using a ternary plot
(Figure 5). Since a triangular diagram displays the proportion
of three variables that sum to a constant, absorption coefficients
by phytoplankton and NAP are used here to represent [Chl]
and [NAP], respectively. CDOM itself is typically represented by
the absorption of CDOM. The sum of these three absorption
coefficients can be normalized to be 1, ignoring the absorption
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FIGURE 4 | Representatives of Rrs(λ) spectra (first column), the corresponding area-normalized Rrs(λ) spectra (second column) and second derivative spectra (third

column) for five phytoplankton spectral groups and different water conditions. (A–C) Low [Chl], [NAP], and CDOM; (D–F) low [Chl] and [NAP], moderate CDOM; (G–I)

low [Chl], moderate [NAP] and CDOM; (J–L) high [Chl], moderate [NAP] and CDOM; and (M–O) moderate [Chl], extremely high [NAP], and moderate CDOM. Note

that the second derivative spectra were only for 420–620 nm, i.e., the spectral range used in the identification approach.

TABLE 2 | Corresponding variations of [Chl], [NAP] and CDOM for Rrs (λ) spectra

in Figure 4.

Figure 4 [Chl] (mg m−3) [NAP] (g m−3) CDOM (m−1)

A–C Low: 0.25–0.27 Low: 0.1–0.2 Low: 0.01–0.015

D–F Low: 0.25–0.3 Low: 0.1–0.2 Moderate: 0.1–0.15

G–I Low: 0.25–0.27 Moderate: 5–8 Moderate: 0.1–0.15

J–L High: 30–60 Moderate: 10–20 Moderate: 0.1–0.2

M–O Moderate: 5–10 Extremely high: 200–400 Moderate: 0.1–0.3

of pure water. Their proportions for all the 120 water conditions
can be well displayed in a ternary plot. [Chl] and [NAP] are
thus transformed to the corresponding absorption coefficients
at 440 nm, aph(440) and aNAP(440), and used together with
aCDOM(440). Four hundred and forty nanometers is chosen as
all components do significantly absorb light at this wavelength,
and contribution by pure water is low. The transformation from
[Chl] to aph(440) is based on the relationship shown in Figure 2:

aph(440) = 0.06 × [Chl]0.728 and aNAP(440) = aNAP
∗(440) ×

[NAP], where the mass-specific NAP absorption at 440 nm,
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FIGURE 5 | Ternary plots showing the identification accuracy of phytoplankton groups (A) Cyanobacteria (red and blue), (B) Chlorophyta (green spectral group), (C)

Cryptophyta (red), and (D) Brown spectral group in different water conditions with respect to fractions of phytoplankton, NAP, and CDOM absorption at 440 nm:

Contour lines indicate the accuracy of identification. Colors of dots indicate Chl concentrations; sizes of dots indicate NAP concentrations.

aNAP
∗(440) = 0.0615 m2 g−1 as shown in Table 1. Different

colors and sizes of the dots are used to represent the actual [Chl]
and [NAP] respectively, as the position in the ternary plot only
shows each relative contribution.

Contour lines of the identification accuracy are plotted
for each spectral group (Figure 5). The contour lines indicate
different distribution of the identification accuracy for the
different groups. However, a main finding in common is that
low identification (50% contour line) for all groups located in
the plot area where [NAP] is high (bigger dots) and [Chl]
(blue dots) is low. However, this is not always true. If taking
a further look on the plots one can see that the identification
accuracy is also dependent on the absorption contribution of each
water components but not only on concentrations. In Figure 5,
for simplification, blue and red cyanobacteria are combined, as
they show distinct spectral features compared to other groups
and their identification results are highly similar. Cyanobacteria

blue and red (combined in Figure 5A) show a relatively distinct
contour pattern: the contour lines are roughly parallel with
low Chl contributions, e.g., the identification rate of 90% is
approximately at aph(440) taking up only 10% of the total non-
water absorption (aph+CDOM+NAP), and the 99% contour line
is between 10 and 20%, meaning that cyanobacteria can be
successfully identified when aph(440) takes up more than 20%
of the total non-water absorption. The approach also performs
well on the green spectral group (Chlorophyta), as Figure 5B

shows that the identification rates falls in 90% only when [Chl]
is extremely low [aph(440) is <5%] and [NAP] is as high as 50 g

m−3, in all other conditions chlorophytes are correctly identified.
The identification contour lines for cryptophytes in Figure 5C

show more variations for different water conditions, due to the
fact that there are only five cultures for Cryptophyta in the
test dataset and one culture showed higher similarity with red
cyanobacteria and is thus misidentified at some water conditions.
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This has lowered 20% of the identification rate. The overall
performance of identifying species of the brown spectral group
show that 90% of the cultures fromHeterokontophyta,Dinophyta,
and Haptophyta are correctly identified as being brown when
aph(440) contributes more than 20% and aNAP(440) contributes
<60% to the total non-water absorption (Figure 5D).

Applicability Test Using Taihu In situ

Dataset
Thoughtheperformanceofusingthesimulatedtestdatasetshowed
satisfactory results at specific water conditions, the ultimate goal
of our approach is to identify phytoplankton groups by using
reflectance spectra of natural waters. A set of in situ Rrs(λ) spectra
of Lake Taihu is taken to perform an additional test on the
applicability of the proposed approach. The second derivative
spectra of in situ Rrs(λ) in 420–620 nm are compared with that
in C2X database to produce highest SIs leading us to find the
corresponding dominating phytoplankton groups. Results show
that only two phytoplankton spectral groups are found, blue
cyanobacteria and Chlorophyta, In the examined 66 stations,
for 52 (80%) the dominating phytoplankton are identified as
cyanobacteria (blue)and14(20%)aschlorophytes.Figure 6 shows
theclassifiedspectraof insituRrs(λ),thecorrespondingnormalized
Rrs(λ) in400–700nm,andthesecondderivativespectra. It isclearly
seen that most spectra identified as Chlorophyta exhibit higher
reflectance in 500–600 nm and lower chlorophyll fluorescence
peaks around 690 nm, indicating higher sediment concentrations
and lower Chl concentrations. On the contrary, spectra that are
identified as cyanobacteria show distinct absorption peaks at
675 nm and more pronounced fluorescence (Figure 6B). Table 3
lists the identification results for Lake Taihu when stations are
selected by different [Chl], showing that the identification rate of
cyanobacteria increases with the increasing minimum [Chl]: 90%
when[Chl]>10mgm−3, 98%when[Chl]>20mgm−3, and100%
when [Chl]> 30mgm−3.

It has been known in the context that [Chl] has an order of
two in magnitude, and water optical conditions highly varied
from station to station in Lake Taihu. The information we had
from the campaign was that in waters where [Chl] was roughly
30mg m−3 or higher, cyanobacteria aggregated obviously and
were the dominating group. Whereas, lower [Chl] waters could
either be green algae or cyanobacteria dominated according
to the identification. To explore whether the two identified
groups are relating to the absorption contributions of each
water component, proportions of aph(440), aNAP(440), and
aCDOM(440) to the total non-water absorption at 440 nm were
statistically summarized for cyanobacteria identified stations and
green algae identified stations, respectively (Table 4). The overall
[Chl] and contribution of aph(440) at cyanobacteria dominating
stations are higher than that at green algae dominating stations.
Mean aph(440) contribution is 16.1% for cyanobacteria while
only 9.8% for green algae. aNAP(440) contribution shows the
opposite with aph(440), with lower mean value (58.1%) for
cyanobacteria but slightly higher for green algae; no difference
is found in CDOM contribution between the two groups. These
statistical results in Table 4 also reveal that CDOM has little

FIGURE 6 | Phytoplankton-group-classified spectra of (A) in situ Rrs (λ) in Lake

Taihu in 400–700 nm, (B) the corresponding area-normalized Rrs(λ), and (C)

second derivative spectra in 420–620 nm.

TABLE 3 | Phytoplankton groups identification in Lake Taihu with different [Chl]

ranges.

Number of

stations

[Chl] (mg m−3) Identification rate of

cyanobacteria

Identification rate of

chlorophyta

66 (all) 4–180 80% (52 stations) 20% (14 stations)

56 10–180 90% 10%

39 20–180 98% 2%

25 30–180 100% 0

influence in the identification, in agreement with results from
the simulated test dataset. Lower phytoplankton contribution
in green algae dominating stations might suggest that the
identification of green algae is less accurate.
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TABLE 4 | Identified phytoplankton groups with relation to contributions of aph (440), aNAP(440), and aCDOM(440) to the total non-water absorption.

Number of stations [Chl] (mg m−3) % aph(440) % aNAP(440) % aCDOM(440)

Min Max Mean (SD) Min Max Mean (SD) Min Max Mean (SD)

Cyanobacteria 52 8–180 5.5 46.1 16.1 (8.6) 27.9 84.2 58.1 (11.3) 8.6 54.3 27.4 (9.7)

Chlorophyta 14 4–26 5.2 16.5 9.8 (3.1) 53.6 77.0 62.4 (6.1) 14.9 39.5 27.8 (6.2)

DISCUSSION

Simulated C2X Data
Generally, the simulated reflectance spectra in the C2X database
are plausible and fit to in situ measurements. For example,
many lakes have signal-dominating CDOM fractions and exhibit
reflectance spectra as shown in Figure 4D (e.g., Eleveld et al.,
2017) and Figure 4M shows similar spectra as measured in
a turbid estuary (e.g., Knaeps et al., 2012). Nonetheless, the
simulations are based on some spectral assumptions that
may lead to inaccuracy and therefore uncertainties in the
group identification. One simplification regards the scattering
properties of phytoplankton; some natural variability is included
in the simulations, but due to the lack of reliable specific
information, all phytoplankton groups are modeled with the
same scattering assumptions. But due to different particle shapes
and size distribution, it is evident that the spectral scattering
properties vary (e.g., Morel, 1987; Evers-King et al., 2014;
Harmel et al., 2016). Robertson Lain et al. (2017) showed the
potentially considerable influence of different phytoplankton
phase functions on modeled remote sensing reflectance over
the entire visible range. A second point of model uncertainties,
particularly in the range 650–700 nm, regards inelastic scattering
effects such as CDOM and phytoplankton fluorescence; in
nature, the quantum yield efficiency of phytoplankton varies
significantly depending on nutrient- and light-availability and
algae species (e.g., Greene et al., 1994). However, in the
HydroLight simulations, the standard quantum yield efficiency
was used.

Identification Approach and Its Skill
The proposed approach was chosen for phytoplankton group
identification based on the idea of whether we can identify
phytoplankton groups by only knowing Rrs(λ), which is a directly
obtained parameter from satellite sensors. All other inversion
models require information on water inherent optical properties
and the retrieval accuracy can be various (e.g., Werdell et al.,
2014; Wang et al., 2016). In our previous study, we have made a
performance comparison between using Rrs(λ) directly and using
QAA-inverted absorption spectra from Rrs(λ) for phytoplankton
group differentiation (Xi et al., 2015). Results show that the
inverted absorption spectra performed less precise compared
to the Rrs(λ). Due to the retrieval algorithm constraints,
pigment information in the derived absorption spectra might
be lost or distorted as theoretical or empirical relationships
between the IOPs and AOPs are normally used in the retrieval
algorithm. Upon the simulated extensive Rrs(λ) database, a direct
comparison in spectral shapes between the second derivatives of

a test Rrs(λ) spectrum and that of the spectra in the database
is carried out by the current approach, omitting the knowledge
of optical properties as well as the retrieval errors introduced
by inversions. The benefit of this approach would be that we
provide a straightforward way allowing us to know the dominant
phytoplankton group (if it is one of the five) once Rrs(λ) is
obtained from either in situ measurements or hyperspectral
satellite data.

Skill of the proposed approach varies in different water
conditions. Results derived by using the test dataset for
various water optical properties indicated that the identification
accuracy was highly subject to the water optical conditions; the
identification was effective for waters with high phytoplankton
contribution but less effective in NAP dominated waters, whereas
CDOM has little influence even when it is extremely high. It is
not only in agreement with the results by Xi et al. (2015) that
phytoplankton groups differentiation is unsuccessful in waters
with [Chl] lower than 1mg m−3, but also suggested the low
efficiency in high [NAP] waters. However, regarding the optical
boundaries of the successful identifications, it should be clarified
that the accuracy of the identification is not only dependent
on the concentrations of water components but also on the
contribution of absorption by each water component to the
total absorption. That means the identification accuracy can
possibly be high both in case 1 clear waters and in highly
turbid productive (phytoplankton abundant) waters. There are
no clear concentration boundaries. And the optical boundaries
in terms of absorption contribution are nicely shown in the
ternary plots (Figure 5). Regarding this matter, ternary plots
exhibit clearly the contour line distribution of the identification
accuracy for all water optical conditions generated by 120 points
representing 120 water optical conditions. We can roughly wrap
up some general findings from the ternary plots, that are—the
identification accuracy is higher than 90% when the absorption
by phytoplankton is taking up more than 20% and the NAP
contribution is <60% to the total absorption; for the groups of
cyanobacteria and green algae, the identification accuracy is even
higher at the above boundaries.

Though there were only 120 water optical conditions
considered in the test dataset, it included most of the natural
aquatic environment from clear to moderate turbid and
productive waters. The findings have provided us a basic
knowledge that the proposed approach for phytoplankton
group identification performs well except for waters where
phytoplankton contribution to the overall absorption is low
and for NAP dominated waters. Regarding the five spectral
groups included in C2X database, they are not exhaustive but
are chosen to represent natural common groups. In addition,
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due to modeling and computing constraints, the phytoplankton
groups that were taken into account in the simulation have to be
representative and the number of the groups should be as low as
possible to allow extensive simulations. This database is however
adjustable, when absorption features of other phytoplankton
groups (or species with typical features) are important.

Phytoplankton Group Identification in Lake
Taihu
To test the applicability of the proposed approach in natural
waters, in situ remote sensing reflectance data obtained from
Lake Taihu were used. Though lacking the information of
dominant phytoplankton species or pigment analysis for this
campaign in October 2008, previous investigations on the
phytoplankton community and composition in Lake Taihu
can be taken as reference. Chen et al. (2003) revealed that
phytoplankton groups commonly observed in Lake Taihu
are cyanobacteria, Chlorophyta, Bacillariophyta, and flagellates.
A study on phytoplankton community structure succession
in Lake Taihu from 1992 to 2012 by Deng et al. (2014)
showed that Cryptomonas (Cryptophyta) was the dominant
species in spring during the early 1990s. Dominance then
shifted to Ulothrix (Chlorophyta) in 1996 and 1997. However,
Cryptomonas again dominated in 1999, 2000, and 2002,
with Ulothrix regaining dominance from 2003 to 2006. The
bloom-forming cyanobacterial species Microcystis sp., a typical
blue cyanobacteria, dominated in 1995, 2001, and 2007–2012.
Another study revealed thatMicrocystis sp. is themost commonly
seen cyanobacteria species, approximately taking up 85% of
algae biomass and forming algal blooms each summer (Zhu
et al., 2007). More importantly, a year-long investigation
in dominant phytoplankton species from October 2008 to
October 2009 conducted in the lake showed that Microcystis
sp. dominated in October 2008, when our in situ data was
collected, contributing more than 90% of total biovolume
in most area of the lake, coexisted with minor portion of
the cyanobacteria Dolichospermum flos-aquae and the diatom
Cyclotella meneghiniana (Ai et al., 2015). Our identification
results showed good agreement with these investigations, except
that chlorophytes were identified as the dominant group at some
stations when [Chl] was moderate. Comparison in absorption
contributions between cyanobacteria and green algae identified
stations shows that phytoplankton contribute <10% on average
to the total non-water absorption at green algae identified
stations (Table 4), leading to lower identification accuracy
as indicated in Figure 5. It is highly likely that this is a
misinterpretation, as still cyanobacteria were codominant.

The in situ data of Lake Taihu are used as a first example.
Coinciding data of spectral reflectance and information of
phytoplankton taxonomic composition are still quite rare.
However, this first example has given optimistic outcome and the
fact that the approach is applicable in this optically complex lake.
More datasets in different water types are under collection and
processing, with expectations to testify further the identification
approach in more natural waters.

CONCLUSIONS AND OUTLOOK

A database of Rrs(λ) spectra, C2X database, based on five
phytoplankton groups was built using HydroLight simulations
for various water optical conditions. A similarity-index approach
was proposed to identify phytoplankton groups, using remote
sensing reflectance spectra only, by spectrally comparing an input
test spectra with the Rrs(λ) in C2X database. The performance of
the approach was tested using another simulated Rrs(λ) dataset
with 128 spectra of phytoplankton algae from six taxonomic
groups arranged into five spectral groups. For 120 water optical
conditions, the identification was high at most occasions except
for waters with a low phytoplankton contribution and for waters
dominated by NAP. Whereas, the influence of CDOM is less
pronounced and only significant at extremely high level. Though
the proposed approach was based on simulated datasets, its
applicability in natural waters was also tested by using in situ
Rrs(λ) spectra from Lake Taihu, China. Despite of possibly
wrong identification of chlorophytes that could not be validated,
cyanobacteria were successfully identified in Lake Taihu as a
dominating group in high [Chl] waters, proving the applicability
of the approach in natural waters when a single group is
dominating.

The current approach is only capable of identifying spectral
groups that are already presented in the C2X database. However,
the database can be expanded by running the same HydroLight
simulations with different absorption characteristics of other
phytoplankton groups. The following aspects might be worth
to investigate: (1) more validation with in situ data and
measurements; (2) applicability in extreme events such as floating
algae in highly turbid waters; (3) determination on the required
or lowest spectral resolution for a wider use of hyperspectral
Rrs(λ); and (4) examination of using hyperspectral satellite
data in consideration of influences of radiometric, spectral, and
atmospheric effects on Rrs(λ) from the space.
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