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Relationships between satellite-derived water quality variables and river discharges,

concentrations and loads of nutrients, organic carbon, and sediments were investigated

over a 9-year period (2003–2011) in Pensacola Bay, Florida, USA. These analyses were

conducted to better understand which river forcing factors were the primary drivers

of estuarine variability in several water quality variables. Remote sensing reflectance

time-series data were retrieved from the MEdium Resolution Imaging Spectrometer

(MERIS) and used to calculate monthly and annual estuarine time-series of chlorophyll a

(Chla), colored dissolved organic matter (CDOM), and total suspended sediments (TSS).

Monthly MERIS Chla varied from 2.0mg m−3 in the lower region of the bay to 17.2mg

m−3 in the upper bay. MERIS CDOM and TSS exhibited similar patterns with ranges of

0.51–2.67 (m−1) and 0.11–8.9 (gm−3). Variations in the MERIS-derived monthly and

annual Chla, CDOM, and TSS time-series were significantly related to monthly and

annual river discharge and loads of nitrogen, organic carbon, and suspended sediments

from the Escambia and Yellow rivers. Multiple regression models based on river loads

(independent variables) and MERISChla,CDOM, or TSS (dependent variables) explained

significant fractions of the variability (up to 62%) at monthly and annual scales. The

most significant independent variables in the regressions were river nitrogen loads, which

were associated with increased MERIS Chla, CDOM, and TSS concentrations, and

river suspended sediment loads, which were associated with decreased concentrations.

In contrast, MERIS water quality variations were not significantly related to river total

phosphorus loads. The spatially synoptic, nine-year satellite record expanded upon the

spatial extent of past field studies to reveal previously unseen system-wide responses to

river discharge and loading variation. The results indicated that variations in Pensacola

Bay Chla, CDOM, and TSS were primarily associated with riverine nitrogen loads. Thus,

reducing these loads may improve water quality issues associated with eutrophication,

turbidity, and water clarity in this system.

Keywords: MERIS chlorophyll a, CDOM, suspended sediments, estuary, nutrient loads, organic matter loads,

sediment loads, Pensacola Bay
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INTRODUCTION

Like many estuarine and coastal systems worldwide, the
Pensacola Bay system in northwest Florida exhibits symptoms
of eutrophication associated with watershed nutrient loading.
Mean annual primary production in this system of 290 g C
m−2 y−1 (Murrell et al., 2007) is moderately high being in
the 70th percentile globally in comparison to other estuaries
(Caffrey and Murrell, 2016). Hypoxia (O2 < 2mg l−1) occurs
in bottom waters over seasonal scales due to both bottom
water respiration driven by organic matter supply and strong
vertical stratification of the water-column driven by a halocline
(Hagy and Murrell, 2007). There have also been large declines
in seagrass extent in the bay (Handley et al., 2007) with the
present extent of 14.3 km2 (Yarbro and Carlson, 2013) being
about 38% of the extent from the 1960s when seagrass covered
8% of the bay bottom (Caffrey and Murrell, 2016). Though
it is still largely unknown what caused this loss of seagrass,
restoration activities in the northern Gulf are targeting water
clarity improvements as a means to restore seagrass (Conmy
et al., 2017). Management strategies for both hypoxia and water
clarity are being pursued by targeting non-point source nutrient
reductions in the watershed as well as by reducing runoff of
sediments in order to reduce bay chlorophyll a (Chla), colored
dissolved organic matter (CDOM), and total suspended sediment
(TSS). Thus, gaining a more quantitative understanding of how
bay Chla, CDOM, and TSS dynamics are related to river loads is
important for improving our understanding of this system and
its management.

Estuarine studies that relate watershed discharges and loads to
estuarine water quality have largely relied on empirical studies
based on time-series analyses or comparative analyses across
systems. For example, there are documented relationships of
estuarine Chla with river discharge (Harding et al., 2016) and
nutrients (Boynton et al., 1982; Monbet, 1992; Lehrter, 2008) and
between suspended sediment loads and water clarity (Borkman
and Smayda, 1998). However, in most estuarine systems there
are insufficient observations to perform these types of analyses.
Water quality measures obtained from high temporal and spatial
resolution ocean color satellites can therefore be useful for
supplementing or establishing baseline water quality conditions
and trends.

Further the satellite data allow for characterizing water quality
dynamics in relation to time-series of river discharge and inputs
of dissolved and particulate constituents (Acker et al., 2005;
Green and Gould, 2008; Green et al., 2008; Chen et al., 2013; Le
et al., 2014, 2016). In this study, we add to the previous work
by examining the relationships of satellite-derived, estuarine
water quality constituents with river concentrations, and loads of
organic and inorganic nitrogen and phosphorus, organic carbon,
and suspended sediment. Specifically, we used a 9-year, water
quality time-series of MERIS-derived Chla, CDOM, and TSS
to explore relationships of these variables with monthly and
annual river discharges, concentrations, and loading dynamics
in Pensacola Bay. The application of MERIS for this analysis
provided data that were otherwise unavailable and allowed for a
synoptic analysis across the entire Pensacola Bay system.

MATERIALS AND METHODS

Study Area
Pensacola Bay is located in the Florida Panhandle of the northern
Gulf of Mexico. The bay has an area of 480 km2 and is
comprised of several distinct hydrographic regions including
oligohaline and mesohaline regions that are river dominated and
polyhaline regions that are more lagoonal in nature (Caffrey
and Murrell, 2016). The river-dominated regions include two
distinct lobes of the upper bay, namely Escambia Bay and East
Bay (Figure 1). Escambia Bay receives the freshwater discharge
of the Escambia River and East Bay receives the discharge of
the Yellow River. The lagoonal region is Santa Rosa Sound.
The Lower Bay region exchanges with the Gulf of Mexico
with which it shares similar hydrographic characteristics (Hagy
and Murrell, 2007). Mean depth in Pensacola Bay is ∼3.0m
with a mean diurnal tide of ∼0.4m (Caffrey and Murrell,
2016) and an average water residence time of 27 days (Bricker
et al., 1999). The Pensacola Bay watershed has an area of
18,100 km2 and land-use/land-cover is comprised primarily of
evergreen (42.6%) and deciduous (10.1%) forest, agriculture
(17.1%), rangeland (9.6%), and urban (7.0%) land uses (Le et al.,
2015). Human population in the watershed is ∼371,000 (Bricker
et al., 1999).

Watershed Discharges and Concentrations
and Loads of Nitrate, Phosphorus, Organic
Carbon, and Suspended Solids
Mean daily river discharge rates (Q) for the largest rivers draining
to Pensacola Bay were obtained from the U.S. Geological Survey
(USGS) for the study period 2003–2012. Discharge data were
retrieved for gaging sites on Escambia River (USGS 02376033),
Big Coldwater Creek (USGS 02370500), Blackwater River (USGS
02370000) and Yellow River (USGS 02369600; Figure 1). The
discharge from the Escambia (mean = 190m3 s−1) and Yellow
rivers (mean = 64m3 s−1) comprised 91% of the total river
discharge (279m3 s−1) to the bay. The remaining 9% is attributed
primarily to the Blackwater River and Big Coldwater Creek,
which drain into upper East Bay. Thus, subsequent analyses were
restricted to the Escambia and Yellow river data. Because elevated
river NO−

3 and Chla were observed under low discharge, baseflow
conditions (discussed below), we considered whether baseflow
loads may be important explanatory variables of estuarine water
quality. Daily baseflow discharges (Qb) for Escambia and Yellow
rivers were calculated using a hydrograph separation method
(Gustard et al., 1992). Briefly, this method consisted of four steps:
(1) Divide the daily discharge record into non-overlapping blocks
of 5 days and compute the minimum of each block that we call
Q1, Q2, Q3,... Qn. (2) Next we consider the series (Q1, Q2, Q3),
(Q2, Q3, Q4),... (Qi−1, Qi, Qi+1). For each series, if 0.9 × center
value < outer values, then we save the center value and its date
as a point for the baseflow line. This results in a series of values
Qb1, Qb2, Qb3, Qbn with different time periods between them.
(3) Linearly interpolate between Qbi values to estimate daily
values of Qb. (4) For the interpolated series, if Qbi > Qi then
set Qbi = Qi.
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FIGURE 1 | Map of the Pensacola Bay system and sampling sites. Sub-regions of the Bay are delimited by dashed lines between stations PB14 and PB15, which

separates East Bay and Escambia Bay, and between PB07 and PB06, which separates Lower Bay and Escambia Bay. The Pensacola Bay watershed is shown in

gray in the upper panel.

Observed NO−

3 , total Kjeldahl nitrogen (TKN), total
phosphorus (TP), chlorophyll a (ChlaRiver), total organic
carbon (TOC), and total suspended sediment (TSSRiver),
collected by the Florida Department of Environmental
Protection, were obtained from the U.S. water quality
portal (https://www.waterqualitydata.us/). Approximately
monthly samples were collected at the Escambia River site
(21FLBFA_WQX-33020007), which was co-located with the
USGS Escambia River discharge gage. Seasonal samples were
collected at the Yellow River site (21FLBFA_WQX-33040003),

which was co-located with the USGS Yellow River discharge
gage.

In order to calculate monthly averages, a rating curve method
was applied to observed NO3

−, TKN, TP, ChlaRiver, TOC, and
TSSRiver observations (Cohn et al., 1989, 1992). The rating curve
regression model equation was

ln (C) = β0 + β1ln

(

Q

Q′

)

+ β2

(

T − T′
)

+ β3

(

T − T′
)2

+β4 sin (T) + ε, (1)
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where C was a vector of observed constituent concentrations,
Q was a vector of daily discharge rates for the dates (T,
converted to radians) when C were collected, and Q′ and
T′ were centering variables. C and Q were log transformed
to obtain normally distributed residuals. β0, β1, β2, β3, and
β4 were regression coefficients calculated for each regression
model and the last term, ǫ, was the error. Using the regression
models, daily concentrations for each constituent were calculated
for the study period based on the daily observed discharge
rates and time. Then, mean monthly and annual discharge
and constituent concentrations were calculated from the daily
time-series. Finally, monthly and annual constituent loading
time-series were calculated as the products of discharges and
constituent concentrations.

Derivation of MERIS Chla, CDOM, and TSS
The in situ water quality and optical observations used to
develop empirical algorithms for retrieving Chla, CDOM, and
TSS from MERIS observations in Pensacola Bay have been
described previously (Le et al., 2016; Conmy et al., 2017). Here,
a brief summary of the methods is presented for field sampling,
laboratory measurements, and validation of satellite observations
in comparison to measurements.

Water samples for Chla, CDOM, and TSS analysis (n =

161) were collected from the surface of Pensacola Bay (0.5m
depth) at 15 stations (Figure 1) approximately every 6 weeks
from September 2009 to December 2011. Water samples were

processed on the day of collection and retained sample filter pads
and filtrate were stored at −70◦C until analysis. Chla samples
were collected on 25mm GF/F filters (nominal pore size = 0.7
µm), and then, later, extracted from the filter pad with hot
methanol and assayed fluorometrically (Welschmeyer, 1994).
TSS samples from ameasured volume of bay water were collected
on pre-weighed, combusted (550◦C for 4 h) 47mm GF/F filters.
TSS was measured gravimetrically by drying the sample filter
pad (105◦C), reweighing, and subtracting the initial filter weight.
CDOM in the filtrate obtained from TSS processing was assayed
by measuring the specific absorption at 443 nm in a 10-cm quartz
cell on a dual-beam scanning spectrophotometer (Shimadzu UV-
1700). The absorption spectra from λ = 400–700 nm of dissolved
organic matter [ag(λ)] were further measured on the dissolved
fraction (Pegau et al., 2003). Absorption spectra from particles
[ap(λ)] and non-algal detrital particles [ad(λ)] were quantified on
a dual-beam scanning spectrophotometer using the quantitative
filter technique (Kiefer and SooHoo, 1982; Kishino et al., 1985).
After measuring ap(λ), phytoplankton pigments were extracted
from the filter with warm methanol and then the spectra of
the filter pad was scanned again to obtain ad(λ). Phytoplankton
absorption spectra [aph(λ)] were calculated as the difference
between ap(λ) and ad(λ).

Remote sensing reflectance (Rrs) spectral data were measured
at each station with a spectroradiometer (HyperSAS, Satlantic
Inc., Halifax, Nova Scotia) mounted to the top of the boat,
2m above the water surface. The HyperSAS collected spectra

FIGURE 2 | Daily river discharge from the Escambia River (upper) and Yellow River (lower). The red line in both plots shows the calculated baseflow discharge.
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(1 nm resolution at λ 350–800 nm) of above-water radiance, sky
radiance, and downwelling sky irradiance. At each station, An
AC-s (Wet-Labs, Philomath, OR) was used to collect vertical
water-column profiles of absorption and beam attenuation.
Absorption and beam attenuation were measured at 1 nm
resolution from 400 to 735 nm. AC-s absorption, attenuation,
and calculated scattering spectra were corrected for changes

in salinity and temperature, measured with a Seabird CTD
(Wet-Labs; Sullivan et al., 2006). AC-s data were averaged from
the surface of the water column to the observed Secchi depth and
used to correct the Rrs spectra (Gould et al., 1999, 2001).

Rrs bands corresponding with MERIS bands were extracted to
calculate empirical algorithms relating observed Rrs to observed
Chla (mgm−3), CDOM (m−1), and TSS (gm−3; Le et al., 2016).

FIGURE 3 | River concentrations during the study period. Left column are the Escambia river time-series and the right column are the Yellow River time-series.

Concentration units are mmol m−3 for all variables except for Chla (mg m−3) and TSS (g m−3 ). The solid red lines in each plot show the rating curve model fits to the

observations.
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Only data collected on cloud-free days and with wind speed
<3m s−1 were used to develop algorithms. ForChla, the NIR-red
band ratio of Rrs(709)/Rrs(665) was selected in order to minimize
interference from CDOM and non-algal detritus. For CDOM,
the NIR-green band ratio of Rrs(709)/Rrs(510) was used due to
uncertainties in the atmospheric correction at blue bands (443
and 490 nm) and interference from phytoplankton absorption
in the red bands (665 and 681 nm). For TSS, the band ratio
Rrs(709)/Rrs(681) gave the best fit. The equations for the band
ratio algorithms were

Chla = 29.3

(

Rrs(709)

Rrs(665)

)4.15

, R2 = 0.70 (n = 150) (2)

CDOM = 1.41

(

Rrs(709)

Rrs(510)

)0.89

, R 2
= 0.79 (n = 129) (3)

TSS = 13.9

(

Rrs(709)

Rrs(681)

)3.67

, R2 = 0.71 (n = 143), (4)

where R2 were the percentage of variation in the observed data
explained by the algorithms and n were the number of samples.

Daily MERIS level-2 data were obtained from NASA (http://
oceancolor.gsfc.nasa.gov/) for the study period January 1, 2003
to April, 2012. Downloaded products included MERIS Rrs(λ) in
all the spectral bands with 300-m spatial resolution as well as
quality control flags for clouds, atmospheric correction warning,
and stray light. Pixels along the shoreline with water depths
< 2m were masked to avoid issues with bottom-reflectance.
Algorithm Equations (2–4) were then applied to the MERIS Rrs
time-series to generateMERISChla,CDOM, and TSS time-series.
To validate the algorithms, MERIS Rrs(λ) data were extracted
for the dates and locations of sampling stations with a time
window of ±1 d and calculating a median Rrs(λ) from a 3 ×

3 pixel box centered on the sampling location (Le et al., 2013).
For subsequent comparisons with river discharge, concentration,
and loading time-series, the MERIS Chla, CDOM, and TSS have
been averaged to monthly and annual values for the period from
January 2003 to December 2011.

Relating River Discharge, Concentrations,
and Loads to MERIS Chla, CDOM, and TSS
On a per pixel basis, Pearson correlations among MERIS
monthly Chla, CDOM, and TSS time-series and time-series of
Q, Qb, river concentrations, and river loads were calculated.
We examined correlations with concurrent (0-month), 1-
month, and 2-month lagged river time-series. In order to
further identify how multivariate combinations of river loads
could explain variation in MERIS bio-optical water quality,
the MERIS data were averaged over discrete regions, namely
Escambia Bay, East Bay, and Lower Bay (Figure 1), and the
regional time-series were then regressed against monthly and
annual time-series of river loads. We used a partial least
squares (PLS) regression model because of the high degree
of correlation between independent variables (described below
in Results) and because for the annual time-series there
were more independent variables (see Equation 5 below) than
annual samples (n = 9 years). PLS regression reduces the

number of predictor variables by combining the variables
into factors similar to principal component analysis. Nine
regression models were developed: 3 MERIS water quality
variables (i = Chla, CDOM, and TSS) by 3 bay regions (j =
Escambia, East, and Lower). The regression equation had the
form

MERIS WQij ∼ QNO−

3 + QTKN + QTP + QChl+ QTOC

+ QTSS+ QbNO−

3 + QbTKN + QbTP

+ QbChl+ QbTOC + QbTSS (5)

where MERIS WQij were the log transformed MERIS water
quality time-series per bay region, and variables on the right
hand side were the log transformed time-series of river loads
(variables beginning with a Q) and baseflow loads (variables
beginning with a Qb). For Escambia Bay (j = 1) and Lower Bay
(j = 3), the Escambia River loads were used as the independent
variables. For East Bay (j = 2), the Yellow River loads were
used.

TABLE 1 | Mean river concentrations and loads.

NO−

3
TKN TP Chla TOC TSS

Concentrations mmol

m−3
mmol

m−3
mmol

m−3
mg

m−3
mmol

m−3
g m−3

Escambia 15.8 26.3 1.17 1.62 454 9.4

Yellow 8.8 22.9 0.73 1.18 448 8.7

Loads kg

d−1
kg

d−1
kg

d−1
kg

d−1
kg

d−1
kg d−1

Escambia 3,593 5,981 589 26 88,493 152,686

Yellow 724 1,884 133 7 31,585 51,114

Escambia % 83% 76% 82% 79% 74% 75%

Escambia % is the percentage contribution of the Escambia River load to the combined

Escambia + Yellow river loads.

TABLE 2 | Pearson correlation between monthly time (T), river discharge(Q),

baseflow discharge (Qb), and concentrations of nitrate (NO−

3 ), total Kjeldahl

nitrogen (TKN), total phosphorus (TP), chlorophyll a, total organic carbon (TOC),

and total suspended sediment (TSS).

T Q Qb NO−

3
TKN TP Chla TOC TSS

T 1.00 −0.27 −0.50 0.43 0.12 −0.42 0.01 −0.08 0.42

Q −0.27 1.00 0.74 −0.76 0.71 0.59 −0.44 0.85 0.40

Qb −0.50 0.74 1.00 −0.65 0.40 0.73 −0.35 0.57 0.23

NO−

3 0.43 −0.76 −0.65 1.00 −0.72 −0.44 0.32 −0.84 −0.24

TKN 0.12 0.71 0.40 −0.72 1.00 0.40 −0.05 0.97 0.76

TP −0.42 0.59 0.73 −0.44 0.40 1.00 0.10 0.51 0.54

Chla 0.01 −0.44 −0.35 0.32 −0.05 0.10 1.00 −0.20 0.28

TOC −0.08 0.85 0.57 −0.84 0.97 0.51 −0.20 1.00 0.65

TSS 0.42 0.40 0.23 −0.24 0.76 0.54 0.28 0.65 1.00

Bold values are significant correlations (α = 0.05).
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RESULTS

Watershed Discharge, Baseflow,
Concentrations, and Loads
Watershed discharge was greatest in the winter and spring in both
the Escambia and Yellow rivers (Figure 2). Notable discharge
events occurred during April 2005 and December 2009. April
2005 was the wettest month on record at the time for the city
of Pensacola, going back to 1880, with 62 cm of rainfall, which
resulted in a mean monthly discharge of 768 m3 s−1 for the
Escambia River and 283m3 s−1 for the Yellow River. Escambia
River discharge in December 2009 exceeded April 2005 with a
monthly average discharge of 883m3 s−1, while Yellow River
discharge was 127m3 s−1 in December 2009. Overall, for the
study period the mean discharges from the Escambia and Yellow
rivers were 188 and 68m3 s−1, respectively. Discharge rates in the
two rivers were highly correlated (r = 0.85).

Baseflow discharge followed a similar pattern as total
discharge with highest baseflow discharge in the winter and

spring. For the study period, mean baseflow discharges of the
Escambia and Yellow rivers were 109 and 45m3 s−1, respectively,
which represented 75% of the total discharge in the Escambia
River and 72% in the Yellow River. During the summer and fall
low discharge periods, the baseflow discharge often accounted
for all of the observed river discharge (Figure 2). During high
discharge periods the baseflow contribution was considerably
less. For example, during April 2005 and December 2009,
baseflow contributed only 20% and 27%, respectively, of the total
discharge from the Escambia River.

Escambia and Yellow river time-series concentrations are
shown in Figure 3. On average, concentrations were higher in
the Escambia River (Table 1) where mean concentrations for
NO3

−, TKN, TP, Chla, TOC, and TSS were 15.8mmolm−3,
26.3mmolm−3, 1.17 mmolm−3, 1.62mgm−3, 454mmolm−3,
and 9.4 gm−3, respectively. NO3

− and Chla concentrations in
the rivers were negatively correlated with discharge (Table 2). All
the other constituent concentrations were positively correlated
with discharge. Temporal trends and seasonal patterns were

FIGURE 4 | Escambia River monthly mean discharge and loads. River loads of NO−

3 , TKN, TP, and TOC have units of mmol s−1. Loads of Chla have units of mg s−1

and loads of TSS have units of g s−1.
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also observed in the data. Significant temporal trends occurred
in discharge, NO3

−, TP, and TSS (Table 2). Seasonal patterns
were observed in Chla and TKN with generally higher values
in summer than in winter (Figure 3). These trends formed the
basis for our rating curve regression models. All models were
statistically significant (p < 0.05) and R2 ranged from 0.19 for
TSS to 0.76 for NO−

3 .
River loads to Pensacola Bay were mainly from the Escambia

River, which accounted for 74–83% of the total combined
constituent loads from Escambia and Yellow rivers (Table 1).
Mean Escambia River loads of NO3

−, TKN, TP, Chla, TOC,
and TSS were 3,593, 5,981, 589, 26, 88,493, and 152,686 kg d−1,
respectively. Temporal patterns in river loads generallymimicked
the patterns of river discharge (Figure 4).

Pensacola Bay Observed Data and MERIS
Algorithms and Time-Series
We briefly summarize the results from Pensacola Bay optical
observations and MERIS algorithm development as these results
have been presented previously (Le et al., 2016). Rrs was greatest
in East Bay and Escambia Bay and smallest in Lower Bay (Figure
S1A). For the wavelengths coincident with the MERIS bands
used to generate the algorithms in Equations (2–4), spectral
absorption was dominated by CDOM at 510 nm, and by aph and
ad at 665, 681, and 710 nm (Figures S1B–D).

The band ratio algorithms (Equations 2–4) explained 70%,
79%, and 71% of the variability in Chla, CDOM, and TSS,

respectively. Validation results (Figure S2) demonstrate a
reasonable accuracy for MERIS derived Chla, CDOM, and TSS
where error statistics for Chla were R2 = 0.64, MRE = 31.9%, n
= 46; for CDOM were R2 = 0.80, MRE = 18.5%, n = 53; and for
TSS were R2 = 0.54, MRE = 42.7%, n = 53. MRE (mean relative
error) was calculated by

MRE =
1

n

∑

abs

(

MERIS− Observed

Observed

)

· 100 (6)

Upon application of these algorithms to the retrieved MERIS
reflectance, synoptic monthly time-series of MERIS Chla,
CDOM, and TSS were derived. As an example, Figure 5 depicts
Chla in the summer and fall during a low discharge year in 2007
and a high discharge year in 2009 (Figure 2). The fall bloom in
2007 had greater Chla than in 2009 despite the lower discharge.
This points to other potential mechanisms, besides river forcing,
regulating Pensacola Bay Chla such as wind-driven resuspension
events (Le et al., 2016).

After averaging across the bay sub-regions (Figure 1),
seasonal patterns inMERIS Chla, CDOM, and TSSwere apparent
with elevated concentrations in late fall and early winter and
lower concentrations in the summer and early fall (Figure 6).
MERIS Chla, CDOM, and TSS were highly correlated at monthly
(Figure 6) and annual (Figure S3) time scales; monthly Chla and
CDOM (r= 0.91); monthlyChla andTSS (r= 0.85), andmonthly
CDOM and TSS (r = 0.82); annual Chla and CDOM (r = 0.85);

FIGURE 5 | Summer and fall MERIS Chla for the Pensacola Bay system. (A,B) Show the average Chla from August 2007 and August 2009. (C,D) Show the average

Chla from October 2007 and November 2009.

Frontiers in Marine Science | www.frontiersin.org 8 September 2017 | Volume 4 | Article 274

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Lehrter and Le Satellite Derived Estuarine Water Quality

annual Chla and TSS (r = 0.79), and annual CDOM and TSS
(r = 0.87).

Relating MERIS Time-Series to River
Discharge, Concentration, and Loading
Time-Series
Correlation Maps
We examined correlations by pixel betweenMERISChla, CDOM,
and TSS time-series and 0-, 1-, and 2-month lagged time-series
of Escambia River and Yellow River discharges, concentrations,
and loads of NO3

−, TKN, TP, Chla, TOC, and TSS. Correlations
were similar using either Escambia River or Yellow River data
owing to the strong correlation between river discharge for these
two rivers (r = 0.85). Thus, as the Escambia River was the largest
river input to Pensacola Bay, we present the correlations obtained
using the monthly time-series for Escambia River (Figure 4). For
correlations with 0-month lagged river forcing, MERIS Chla was
most highly correlated with discharge and baseflow discharge

(Figure 7). Correlations with river concentrations of NO3
−, TP,

and TKN were small and correlations with river concentrations
of ChlaRiver were mainly negative. Correlations with river TOC
and TSS concentrations (not shown) had similar patterns as for
TKN. For 1- and 2-month lagged discharge, baseflow discharge,
and river concentrations, MERIS Chla correlations were smaller
than for 0-month (not shown).

To examine spatial patterns of correlation between MERIS
water quality time-series and river loading time-series we focused
our analysis on 0-month river loads of NO3

−, TP, TOC, and
TSS. We included NO3

− and TP as we expected these nutrient
loads to be related to bay Chla. We included river TOC as it was
expected the load would scale with bay CDOM. Further, TOC
and TKN concentrations were highly correlated (r = 0.97). Thus,
TOC could act as a surrogate for organic nitrogen. River TSS load
was expected to scale with bay TSS.

MERIS Chla had greatest correlation with 0-month lagged
NO3

− loads and TOC baseflow loads (Figure 8). East Bay pixels
had higher correlation with loading rates than other regions. In

FIGURE 6 | Monthly time-series of MERIS derived Chla, CDOM, and TSS from January 2003 to December 2011.
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FIGURE 7 | Correlations between monthly Chla time-series (per pixel) with 0-month lagged Escambia River discharge and concentrations. Shown are Chla correlation

with (A) discharge, (B) baseflow discharge, and concentrations of (C) river NO−

3 , (D) river TKN, (E) river TP, and (F) river Chl.

contrast, Santa Rosa Sound and the nearshore Gulf of Mexico
pixels had higher correlation with 1-month lagged loads (Figure
S4). MERIS CDOM also correlated with concurrent NO3

− load
and TOC baseflow load (Figure 9). Correlations were apparent
throughout Escambia Bay, East Bay, and Lower Bay, although
the upper-most reaches of both Escambia and East bays had weak
correlation. CDOM correlations with 1-month lagged loads had
greater correlation in Santa Rosa Sound and nearshore Gulf of
Mexico (Figure S5). MERIS TSS had highest correlation with
NO3

− loads, both total and baseflow loads, and with baseflow
TOC load (Figure 10). Correlations exhibited similar spatial
patterns with highest correlations in East Bay for 0-month loads
and in Santa Rosa Sound and nearshore Gulf of Mexico for
1-month loads (Figure S6).

Partial Least Squares Regression Results
At monthly time-scales, the PLS regression models explained 23–
59% of the monthly variability in bay water quality (Figure 11).

At the annual scale, PLS models explained 20–62% of the
variability (Figure 12). By evaluating more parsimonious forms
of Equation (5), we determined that that the following reduced
equation could represent most of the variability in MERIS Chla,
CDOM, and TSS

MERIS WQij ∼ QNO3
−
+ QTKN + QTSS (7)

Our justification for this reduced equation was based on several
lines of reasoning: (1) the correlation between discharge and
baseflow (r = 0.74, Table 2) suggested we could eliminate
baseflow loads, (2), the weak correlations of MERIS water quality
with either river TP (Figures 8–10) or river Chl (Figure 7F)
indicated these loads made an insignificant contribution, and (3)
the strong correlation between TKN and TOC (r= 0.97, Table 2)
indicated that TKN could be substituted for TOC (discussed
further below in Methodological Considerations see Section
Methodological Considerations). This reduced form of themodel
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FIGURE 8 | Correlation between monthly Chla time-series per pixel with 0-month lagged Escambia River loads. (A,B) Correlation with NO−

3 load and baseflow NO−

3
load, respectively. (C,D) Correlation with TP load and baseflow TP load, respectively. (E,F) Correlation with TOC load and baseflow TOC load, respectively. (G,H)

Correlation with TSS load and baseflow TSS load, respectively.

explained 17–56% of the monthly variability in MERIS water
quality and 17–62% of the annual variability. Based on Table 3

of PLS component loadings, component 1, which included a
linear combination of QTKN and QTSS (equal weights) and
QNO−

3 (lower weight), was the strongest driver of variability
in the MERIS Chla, CDOM, and TSS in the three bay regions.
Component 2, which had the highest loading from QNO−

3 ,
also contributed significantly to the total variance explained
in East Bay (Table 3), and to a lesser extent in Escambia and
East Bay.

DISCUSSION

In many estuarine and coastal systems, observational data
are insufficient to link estuarine water quality responses
to anthropogenic changes in adjacent watersheds. As a
supplemental data source, and in some cases the only data

source, ocean color satellites are emerging as powerful tools
for monitoring and studying estuarine water quality properties
that can be measured optically. Previous work has further
demonstrated that satellite derived water quality is useful for
quantifying the effects of river forcing. Several studies have
assessed the responses of satellite-derived estuarine Chla,
CDOM, and TSS to variations in river discharge (Acker et al.,
2005; Green et al., 2008; Chen et al., 2013; Le et al., 2016) and
nutrient loads (Green and Gould, 2008; Chen et al., 2013; Le
et al., 2014). To our knowledge, no previous studies have used
the satellite data to investigate multivariate relationships between
riverine loads of nutrients, organic matter, and sediments and
satellite-derived Chla, CDOM, and TSS, nor have previous
studies been conducted in small to moderate sized estuaries
such as Pensacola Bay (SCOPUS search for keywords: satellite
ocean color, estuary, and multivariate water quality on Aug 8,
2017).
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FIGURE 9 | Correlation between monthly CDOM time-series per pixel with 0- month lagged Escambia River loads. (A,B) Correlation with NO−

3 load and baseflow

NO−

3 load, respectively. (C,D) Correlation with TP load and baseflow TP load, respectively. (E,F) Correlation with TOC load and baseflow TOC load, respectively. (G,H)

Correlation with TSS load and baseflow TSS load, respectively.

MERIS Chla, CDOM, and TSS

Relationships to River Forcing
Based on correlation and PLS analyses, the river variables that
explained the most variation in MERIS Chla, CDOM, and TSS
were Q, Qb, and NO−

3 , TKN, and TSS loads (Figures 7, 8,
Table 3). This held true for all regions of the Bay, but in East
Bay the influence of QNO−

3 was greater than in either Escambia
or Lower Bay (Table 3). In terms of baseflow river loads, MERIS
CDOM and TSS, exhibited correlations with baseflow river loads
(Figures 9, 10) but Chla had a muted response to baseflow
loads (Figure 8). This latter response is odd given that Chla was
modestly correlated to baseflow discharge, especially in East Bay
(Figure 7). Overall, though, MERIS Chla, CDOM, and TSS had
lower correlations with baseflow loads indicating that the total
loads weremore important throughout the Pensacola Bay system.
We had speculated that baseflow loads may be important because
the most elevated river NO−

3 and Chla concentrations occurred
under low discharge, baseflow conditions (Table 2).

Correlations with 1-month lagged loads and baseflow loads of
NO3

−, TP, TOC, and TSS suggested that East Bay and Santa Rosa
Sound had the greatest response to lagged river loads (Figures
S4–S6). Highest correlations occurred in nearshore areas around
the Gulf Breeze Peninsula and into Santa Rosa Sound. Pixels
in the nearshore Gulf of Mexico, outside of Pensacola Bay, also
exhibited higher correlations with 1-month lagged watershed
loads. The lagoonal region of Santa Rosa Sound and the areas in
the nearshore Gulf of Mexico may have longer water residence
times than other regions of Pensacola Bay owing to the lack
of direct river discharges. The nearshore Gulf region may be
responding to outflows from Pensacola Bay or to larger regional
scale (northern Gulf watersheds) loading to the coastal zone.

PLS regression models based on QNO−

3 , QTKN, and QTSS
were relatively good predictors of MERIS Chla, CDOM, and TSS
in the three bay regions at both monthly (Figure 11) and annual
(Figure 12) time scales. For Pensacola Bay, these empirical
models provide a means to evaluate how changes in nitrogen

Frontiers in Marine Science | www.frontiersin.org 12 September 2017 | Volume 4 | Article 274

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Lehrter and Le Satellite Derived Estuarine Water Quality

FIGURE 10 | Correlation between monthly TSS time-series by pixel with 0-month lagged Escambia River loads. (A,B) Correlation with NO−

3 load and baseflow NO−

3
load, respectively. (C,D) Correlation with TP load and baseflow TP load, respectively. (E,F) Correlation with TOC load and baseflow TOC load, respectively. (G,H)

Show correlation with TSS load and baseflow TSS load, respectively.

and suspended loads may impact Chla, CDOM, and TSS. Such an
analysis is beyond the scope of the present study, but may be of
interest for managers who need to determine loading reductions
required to achieve water quality targets in the bay. Furthermore,
the covariations exhibited among MERIS Chla, CDOM, and TSS
in the three bay regions (Figure 6) indicate that load reductions
aimed at reducing Chla, CDOM, and TSS are likely to be effective
across the entire Bay.

There are few previous studies relating river forcing to field-
based observations of water quality in Pensacola Bay. One study
found a similar pattern of increased Chla in the bay as a result
of increased river discharge (Murrell et al., 2007). Studies of
nutrient limitation have resulted in mixed results. In one study,
phosphorus limitation of primary production was observed
based on nutrient and phosphorus addition experiments at
two sites, one in an oligohaline and one in a mesohaline
region of the bay (Murrell et al., 2002). In another study,

nitrogen limitation of primary production was reported from
one polyhaline site in Santa Rosa Sound (Juhl and Murrell,
2008). In the present study, river nitrogen (NO−

3 and TKN) loads
explained most of the variability in MERIS Chla as well as in
CDOM and TSS, and, thus, supported nitrogen as being more
important as a limiting nutrient. Neither river concentrations
nor loads of TP were significantly correlated with Chla
(Figures 7D, 8D).

In the present study we did not examine the effects of wind
on water quality patterns. However, previously wind speed was
observed to be significantly correlated (positive) to the MERIS
water quality variables in Escambia Bay and East Bay, but not in
lower Bay, but correlations were weak (r < 0.29) at a monthly
scale (Le et al., 2016). Thus, the percentage of variation explained
by the PLS regressions for Escambia and East bays could be
improved by including wind as an independent variable for these
regions of the bay.
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FIGURE 11 | MERIS monthly water quality variables vs. partial least squares regression models (PLS Model). Monthly MERIS water quality time-series for Escambia

Bay (left column) and Lower Bay (right column) are compared to the PLS model that was based upon Escambia River monthly loads. Monthly MERIS water quality

time-series for East Bay (middle column) are compared to the PLS model that was based upon Yellow River monthly loads. The solid line is the 1:1 line. R2 values

provide the fraction of variability explained by the PLS models.

Methodological Considerations
There are several potential errors in our analysis. First of
these was the accuracy of the MERIS satellite-derived Chla,
CDOM, and TSS. While the algorithms used here appeared to
be robust (Section Pensacola Bay Observed Data and MERIS
Algorithms and Time-Series), the mean relative errors between
field observations and satellite-derived values were 18.5% for
CDOM, 31.9% for Chla, and 42.7% for TSS. In coastal waters,
further work is required to improve the algorithms that equate
remote sensing reflectance and other optical properties to water
quality variables.

A second source of potential error was from the strong
correlations between river discharges and concentrations
(Table 2). For example, TKN and TOC were highly correlated (r
= 0.97). These correlations dictated our use of PLS regression
when relating monthly and annual river time-series to MERIS
water quality. Though PLS is an alternative to typical least squares
regression when independent variables are highly correlated,
the interpretation of the PLS results is not straightforward. For
example, due to the correlation between TKN and TOC we

could have used TOC loads in Equation (7) instead of TKN
loads with little change in the percent variance explained in
the dependent water quality variables. Further, there was a
high degree of covariation between monthly time-series of
MERIS Chla, CDOM, and TSS as observed in Figure 6, which
limits our ability to tease apart the factors controlling these
variables. For example, high CDOM or TSS may limit light
availability for phytoplankton photosynthesis and in turn
limit Chla concentration, yet at the same time Chla, CDOM
and TSS were all correlated with nitrogen loading, thus light
limitation did not appear to have a significant impact on
Chla in surface waters in comparison to the effect of nitrogen
loads.

A third issue was the choice of averaging the river and satellite
data to a monthly time scale. We chose this averaging period for
the practical reason that there may be large gaps in the satellite
record at the daily time step due to cloud cover and/or other
quality control issues. Also, the river concentration data were
collected at monthly to seasonal scales. Averaging at the monthly
scale, however, may obscure estuarine patterns related to episodic
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FIGURE 12 | MERIS annual water quality variables vs. partial least squares regression models based upon Escambia River annual loads of NO−

3 , TKN, and TSS. The

solid line is the 1:1 line. R2 values provide the fraction of variability explained by the PLS models.

events such as a tropical storms (Hagy et al., 2006) or peak river
discharges (Murrell et al., 2007) that can rapidly flush Pensacola
Bay. In future studies, the issue of obtaining greater temporal
sampling from satellite may be overcome by including data
from other ocean color satellites such as MODIS. A challenge
to blending these products is the development of algorithms
for each satellite. Including MODIS data in our analysis of
Pensacola Bay may not have worked since the spatial resolution
and wavelengths of reflectance captured by MODIS are different
than MERIS. The greater spatial resolution of MERIS (300m vs.
1 km forMODIS) and the unique spectral band at 709 nmwas the
reason that MERIS was applied to Pensacola Bay (Le et al., 2016).

CONCLUSIONS AND FUTURE
DIRECTIONS

In this study, we demonstrated the utility of long-term and
spatially synoptic satellite data for examining the effects of river
forcing on estuarine water quality. This is the first study to apply
a multi-variate approach to examine this problem and first to
do so with MERIS in small to moderate size estuary, Pensacola
Bay. The approach to retrieve water quality from MERIS and to
analyze the factors driving water quality variability are readily
portable to other similar sized estuaries globally. Our primary
conclusion was that MERIS Chla, CDOM, and TSS dynamics
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TABLE 3 | Mean PLS loadings for components 1, 2, and 3 of multiple regression

model and the percentage of variance explained in the dependent variables.

Comp 1 Comp 2 Comp 3

QNO3 4.03 1.12 −0.66

QTKN 8.36 0.16 0.73

QTSS 8.31 −0.83 −0.41

% Explained

Chla_Esc 24% 7% 0%

Chla_East 22% 18% 6%

Chla_Low 11% 12% 1%

CDOM_Esc 48% 2% 0%

CDOM_East 33% 18% 5%

CDOM_Low 46% 3% 0%

TSS_Esc 22% 3% 0%

TSS_East 19% 12% 4%

TSS_Low 14% 4% 0%

observed in Pensacola Bay were significantly related to riverine
nitrogen loads. However, the analyses also indicated that some
of the sub-regions of the bay had different responses to the
magnitude and timing of river loads. Overall, the MERIS data
provided unprecedented spatial and temporal coverage beyond
that of past boat-based efforts in Pensacola Bay and revealed
previously unobserved spatial and temporal patterns of responses
to river forcing.

A similar approach to the one used in this study could also be
applied to water column light absorption and attenuation, which
are related measures of water clarity. Improving water clarity
is a common water quality goal in Florida estuaries for both
ecological and economic reasons. Water clarity is a key ecological
attribute in Pensacola Bay that controls primary production
(Murrell et al., 2009) and likely the spatial distribution of seagrass
habitats in the bay. The MERIS-derived water quality variables
used in this study could be applied to better understand controls
on water clarity. Chla and TSS scale to the inherent optical

properties aph and ad, respectively, in Pensacola Bay (Conmy
et al., 2017), and, thus, as CDOM (ag) is already measured in
units of absorption (m−1), it is possible to construct a total
absorption (at) budget by summing aph (obtained by converting
from Chla), ad (obtained by converting from TSS), and ag .
Also, as at is linearly related to light attenuation (m−1, Conmy
et al., 2017), it will be possible in future work to extrapolate the
MERIS derived Chla, CDOM, and TSS to water clarity targets
such as percent of surface solar radiation required to support
seagrass habitats.
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