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In the marine environment Species Distribution Models (SDMs) have been used in

hundreds of papers for predicting the present and future geographic range and

environmental niche of species. We have analyzed ways in which SDMs are being

applied to marine species in order to recommend best practice in future studies. This

systematic review was registered as a protocol on the Open Science Framework: https://

osf.io/tngs6/. The literature reviewed (236 papers) was published between 1992 and

July 2016. The number of papers significantly increased through time (R2
= 0.92,

p< 0.05). The studies were predominantly carried out in the Temperate Northern Atlantic

(45%) followed by studies of global scale (11%) and studies in Temperate Australasia

(10%). The majority of studies reviewed focused on theoretical ecology (37%) including

investigations of biological invasions by non-native organisms, conservation planning

(19%), and climate change predictions (17%). Most of the studies were published in

ecological, multidisciplinary, or biodiversity conservation journals. Most of the studies

(94%) failed to report the amount of uncertainty derived from data deficiencies and model

parameters. Best practice recommendations are proposed here to ensure that novice

and advanced SDM users can (a) understand the main elements of SDMs, (b) reproduce

standard methods and analysis, and (c) identify potential limitations with their data. We

suggest that in the future, studies of marine SDMs should report on key features of the

approaches employed, data deficiencies, the selection of the best explanatory model,

and the approach taken to validate the SDM results. In addition, based on the literature

reviewed, we suggest that future marine SDMs should account for uncertainty levels as

part of the modeling process.

Keywords: best practice, coastal, distributional patterns, marine, model validation, predictive models, SDMs

INTRODUCTION

Knowing the distributions of species is important for environmental management. However, it
is difficult to know where individuals of every species are at any one time, except perhaps for
some well-researched, and highly endangered megafauna or rare plants. Thus, Species Distribution
models (SDMs) are used to predict a species’ geographic and environmental range, typically
incorporating both seasonal and temporal variability.
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In the field of Species Distribution Modeling (SDM) the
concept of niche is a central element in the process of modeling
the distribution of a species. Since its early development in the
ecological literature (Grinnell, 1917; Elton, 1927; Hutchinson,
1957) the concept has been used as a surrogate to describe
the habitat and environment of a given species. However, some
authors argued that these concepts have different meaning in
the subject of SDMs. For instance, Chase and Leibold (2003)
have reviewed the historic context of the niche concept and
other studies (Kearney, 2006) have presented an integrated
way of using those terms in the context of SDMs. To avoid
confusion, in this systematic review we follow the niche concept
presented by Chase and Leibold (2003) in which the niche of
a species is defined as “the joint description of the zero net
growth isocline (ZNGI) of an organism along with the impact
vectors on that ZNGI in the multivariate space defined by the
set of environmental factors that are present.” In SDMs, the
correlative model correlates the presence or abundance of a
species with spatial habitat data. As such, these models map
the probability of occurrence of a species across a landscape.
For instance, Do Amaral et al. (2015) modeled the distribution
patterns of Stenella dolphins across the southwestern Atlantic
Ocean using averages of climatic variables such as salinity,
chlorophyll a, and sea surface temperature. A second approach,
known as the mechanistic model, determines the links between a
species’ environment and its fitness, and then maps the species’
fitness consequences onto a landscape. For instance, Melle et al.
(2014) estimated the distribution and abundance of a copepod
species (Calanus finmarchicus) across its North Atlantic habitat.
In this mechanistic model, the distribution of the species was
estimated based on the demography, dormancy, egg production,
and mortality data. The third approach, known as hybrid model,
consists of integration of both correlative and mechanistic
models. For instance, Fordham et al. (2013) modeled the spatial
explicit abundance patterns of commercially harvested blacklip
(Haliotis rubra) and greenlip abalone (Haliotis laevigata) using
an ecological niche-modeling approach based on environmental
predictors, and a niche-population model that accounted for
demographic processes and physiological responses to climate-
related factors.

In the marine environment, a variety of SDMs are now
being used to address a range of research goals. Most studies
have focused on designing conservation strategies, assessing the
impacts of climate change, the spread of invasive species, and
understanding the relationships between marine organisms and
their physico-chemical environment (Báez et al., 2010; Gormley
et al., 2015; Cheung et al., 2016). In addition, SDMs have
been coupled with other popular methods such as connectivity
analysis (Esselman and Allan, 2011) as a method for prioritizing
conservation areas.

A previous literature review of marine SDMs (Robinson et al.,
2011) considered the conceptual and practical issues related
to terrestrial and marine SDMs, and highlighted the relevant
challenges for improving marine applications. That literature
review focused on discussing the influence of environmental
predictors (i.e., dispersal, species interactions, ontogenetic shifts,
and aggregation) on model predictions. Other studies aimed to
improve performance of SDMs by incorporating a multi-model

ensemble approach. For instance, studies conducted recently
(Jones et al., 2012; Jones and Cheung, 2015; Anderson et al.,
2016; Scales et al., 2016) have demonstrated that assembling
multiple SDMs provides a framework to incorporate relevant
model features such as uncertainty and agreement levels between
model outputs. Some of the issues that are particularly relevant
for marine SDMs are a consequence of data deficiencies in spatial
or temporal sampling and biological data collection (Robinson
et al., 2011; Costello et al., 2015; Chaudhary et al., 2016).
For instance, spatio-temporal bias in global satellite-derived sea
surface temperature (SST) measurements may result from many
factors including variation in cloud density, water vapor and
aerosol concentrations, and the lack of in situ data used in tuning
the SST retrieval algorithms (Zhang et al., 2004). In other cases,
spatial sampling biases in occurrence data arise from higher
sampling effort in sites closer to the coast and in shallow waters
(Robinson et al., 2011). In the context of SDMs the estimation
of model error or uncertainty involves quantifying not only
model mistakes and faults, but also the statistical concept of
variation (Barry and Elith, 2006). Overall, detection of such
model errors is important for SDMs, in particular for studies
that aim to manage endangered species, assess the potential
risk of biological invasion, and estimate the impacts of climate
change. However, many studies fail to give sufficient estimations
of model error and uncertainty. Ideally, SDMs should be based
on standard sampling protocols and rigorous data quality control
checks. Instead, many, if not most SDMs use data collected
under methods which result in presence-only data (Pacifici et al.,
2017). While in many studies, this is a pragmatic solution,
buildingmodels using these data can violate assumptions of some
of the models (Yackulic et al., 2013). Therefore, best practice
recommendations for the construction of marine SDMs are
necessary. Here we review the ways in which SDMs are being
applied to marine species in order to recommend best practice
in future studies. Key features that were analyzed from each
publication are organized around twomain pillars: (1) the general
features of the paper, and (2) the parameters used in each SDM.
Recommended practices are proposed here to ensure that novice
and advanced SDM users can (a) understand the main elements
of SDMs, (b) reproduce standard methods and analysis, and (c)
identify potential limitations with their data.

METHODS

Literature Search
This systematic review followed the PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses)
statement as a guide (Moher et al., 2015); see Supplementary
Material S1. The bibliographic search was performed using the
SciVerse Scopus (https://www.scopus.com), ISI Web of Science
(https://webofknowledge.com), and Google Scholar (https://
scholar.google.com) databases. Papers published between 1950
and the cut-off date 26 July 2016 with the terms “Species
Distribution Models” and “marine” or “coastal” in the title,
keywords, or abstract were included. Gray literature, non-
english publications, and papers reporting terrestrial SDMs were
excluded from our search. This search strategy resulted in 375
papers. The process of selecting papers to include in our review
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started with a screening of abstracts (Figure 1). Articles were
excluded (18%, n = 67) if they: (i) mentioned the keyword SDM
for justification or discussion without implementing a SDM as
part of the study; and (ii) were purely conceptual and had not
included a real case study (i.e., review, perspective, and comment
papers). Thus, only the papers that reported applications of SDMs
in the marine environment including the intertidal, pelagic,
and deep ocean, or those whose content was unclear based on
reading the abstract alone were retained for the second step of
the analysis. A further 72 papers were excluded upon further
investigation as they were only addressing the distributions of
coastal terrestrial (n= 65) or freshwater (n= 7) species. In total,
236 publications were retained for the quantitative analysis. The
bibliographic details of all references retained for this study are
available in Supplementary Material S2.

Data Analysis
Features and parameters of each study were categorized (Table 1)
and compiled into a database of marine SDM publications.When

necessary, appendices and supplementary materials were also
inspected. In order to characterize the principal elements of
marine SDMs (Table 2) we integrated the collated information
into a step-by-step process for SDM construction. We identified
the details that were reported in the 236 reviewed publications
and provided a descriptive summary of the essential details that
need to be reported in published marine SDMs. We divided the
methodological framework into six steps, starting from clarifying
the taxa and goals of the research, through to data collection and
manipulation, model implementation and calibration, finishing
with model validation. Key decision points and feedback loops
were identified throughout.

RESULTS

Synthesized Findings
Annual Trend of Publications
The reviewed literature was published from 1992 to July 2016,
and included at least one paper per year except for the years 1993

FIGURE 1 | Flow diagram of the methodology and selection process used in this systematic review. It follows the rules and templates of PRISMA Preferred Reporting

Items for Systematic Reviews (Moher et al., 2015).
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TABLE 1 | Parameters used to categorize marine SDMs included within the

database.

Category Definition

(1) General features of the paper

Year of publication Year of publication as it appears in the final print

Reference Author-year citation style (e.g., Anderson et al.,

2016)

Scale of the study Spatial scale of the study: regional or global

Biogeographic region Relevant marine biogeographic location of the study

Species Scientific name of the species included in the

analysis

Taxonomic group Taxonomic group of the species included in the

analysis (e.g., fish, corals, macroalgae, etc.)

Research goal Aim of the study (e.g., conservation planning,

impact assessment)

Approach Type of methodological approach followed:

correlative, mechanistic, or hybrid

Journal Name of the journal were the study was published

Subject area Research area of the journal (e.g., Ecology,

Biodiversity, etc.)

(2) Key features of each SDMs

Statistical algorithm(s) Name of the algorithm(s) used in the study (e.g.,

GLMs, GAMs, Maxent, etc.)

Model selection Name of the model(s) selection procedures

implemented (e.g., cross-validation, stepwise

selection)

Model validation Name of the model(s) validation procedures

implemented (e.g., goodness-of-fit, regression)

Uncertainty measure(s) Name of the uncertainty measures estimated (e.g.,

model agreement, prediction similarity)

to 2002. The number of published papers significantly increased
through time after the year 2003 (GLM [family = “poisson”]:
R2 = 0.92, p< 0.05). The use of SDMs in themarine environment
has increased since their first implementation in 1992, reaching
an annual rate of 49 publications in 2015 (Figure 2). The
occurrence of only 11 papers before 2008 indicates that the
field of marine SDMs is relatively new. From 2008 to 2011
the average rate of publication was 13 papers per year. Thereafter
the publication rose to 34 papers per year on average. Correlative
models were the most common approach (83%) used by the
studies included in our sample, followed by hybrid (9%), and
mechanistic models (8%).

Geographic Distribution
The marine SDMs covered all 12 coastal realms (Figure 3).
A total of 111 publications (47%) focused on the temperate
Northern Atlantic, compared to temperate Australasia (9%),
temperate Northern Pacific (8%), and the Southern Ocean
(6%). Whilst 35% (n = 82 papers) of the studies investigated
marine global distributions, nationally focused studies were more
common in the United States of America, Australia, and the
United Kingdom (n = 29, 25, and 20 publications respectively).
In contrast, fewer studies were located in Spain, Italy, Canada,
Portugal, and New Zealand (n = between 4 and 9 papers

TABLE 2 | Principal elements of marine SDMs.

Category Definition

Selection of taxa and main

study goal

Taxonomic group and main purpose of the study

Data selection Selection of type of data for SDMs construction

(e.g., occurrence data, functional traits)

GIS database manipulation Downloading data and transforming data layers

Model selection Implementation of statistical procedures to select

the best set of functional predictor variables

Model implementation Implementation of numerical models (e.g., GAMs,

GLMs, BRT, etc.) to predict spatial patterns

Model validation Implementation of performance measures (e.g.,

AUC, specificity, etc.) to estimate the validity of

model outputs

Error and uncertainty

estimation

Quantification of error and uncertainty derived from

data deficiencies (e.g., biased samples) and model

misspecification (e.g., fitting the model with

inadequate response functions)

FIGURE 2 | Publication rate of peer-reviewed studies on marine SDMs from

1992 to 2016. The solid line depicts the relationship between the number of

papers and time. Number of publications for the year 2016 was estimated

based on a query in the Web of Science after the cut-off date July 26th. This

figure only includes studies that met all inclusion criteria of the present

systematic review.

each). The remaining studies were located in 25 other countries
(Supplementary Material S3).

Discipline
A strong representation of marine SDM publications was
observed in the fields of general biology and ecology (as
categorized in the ISI Web of Science). Most of the studies
were published in ecological, multidisciplinary, and biodiversity
conservation journals (n = 81, 39, 38 papers respectively;
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FIGURE 3 | Map illustrating the geographic focus of the marine SDMs studies. The color gradient represents the number of studies conducted per marine realms. The

realm classification follows the marine ecoregions of the world (Spalding et al., 2007).

Figure 4). Other disciplines such as paleontology, and
oceanography comprised less than 10% of our reviewed
literature.

Taxonomic Group
A quarter of the marine SDMs used marine fish distributions
as features for model prediction (Supplementary Material S4).
Other well-studied taxa were mammals, macroalgae, seabirds,
and corals (n = 27, 26, 22, and 16 publications respectively).
In contrast, marine taxa that have been the focus of a single
study were bryozoans, platyhelminthes, protozoans, turtles, and
sea urchins. Taxa not represented in any SDM study included
marine fungi, viruses, nematodes, and other echinoderms such
as asteroids.

Study Goals
In our sample 12 categories of research goals were distinguished
(Figure 5) Most studies were conducted to answer theoretical
questions (n = 89), design conservation planning strategies
(n= 46), estimate climate change impacts (n= 42), and evaluate
model implementations (n = 40). A single publication of each
of the following topics was also represented in the literature
analyzed: development of modeling approaches, niche evolution,
and spatial resolution caveats. In our systematic review, papers
that modeled invasive or introduced species were allocated to
one of the 12 research goals, and we did not include a specific
goal on invasive species. Although the number of publications
(n = 17 papers) indicates that SDMs are being underutilized for
invasive marine species, it is important to mention that biological
invasions warrant special attention in the context of SDMs. The
first application of SDMs to marine invaders was published in

2006 (Inglis et al., 2006). Since then, other publications presented
new tools for forecasting invasion patterns (Johnston and Purkis,
2012) and other research efforts have focused on improving the
transferability of SDMs for introduced species (Verbruggen et al.,
2013).

Selection Procedures
In our sample, a total of 43 parameter selection procedures were
implemented (Supplementary information S5). Cross-validation,
step-wise, and multi-model selection procedures were the
most popular (n = 61, 35, and 31 publications respectively).
In contrast, 12% of the model selection procedures were
implemented only once (e.g., average predictive comparisons,
boosting methods, cross-variograms, and Monte Carlo
simulations). We observed that 7% of the publications in
our sample had not explicitly implemented a parameter selection
procedure.

Model Validation Measures
Model validation involves providing a quantitative measure of
model “performance” and/or “accuracy,” precision, specificity,
and sensitivity. We found that 29 validation methods had
been used (Supplementary Material S6). Threshold independent
measurement were used in 43% of studies, and cross-validation
methods in 12%. Only 9% (n= 22) of the studies tested the results
of SDMs against independent datasets. Validation methods that
were used in only one publication were: probability distributions,
residual plots, Spearman rank correlations, and weight average
consensus. We found that 12% (n = 30) of the studies had not
explicitly implemented a validation method to provide a measure
of model performance.
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FIGURE 4 | Trends in various disciplines. Proportion of marine SDMs studies (N = 236) published within several disciplines using categories as in the Journal of

Citation Reports (https://jcr.incites.thomsonreuters.com/). Others category includes the following journal fields: behavioral sciences, biochemistry and molecular

biology, operations research, paleontology, parasitology, plant science, remote sensing, and zoology.

FIGURE 5 | Trends in various research goals. Proportion of marine SDMs

studies (N = 236) and their main research focus. Others category includes the

following study goals: Paleoenvironmental reconstruction, phylogeography,

software development, development of modeling approaches, future

applications, niche evolution, and spatial resolution.

TABLE 3 | Summary of uncertainty measures reported in marine SDMs.

Category Frequency

Not reported 224

Multi-model comparisons 6

Prediction similarity 2

Bounding box method 1

Predictive power 1

Multivariate similarity surfaces (MESS) and most dissimilar

variables (MoD)

1

Error and Uncertainty Estimation
Only 12 papers (Table 3) explicitly took into account some
error or uncertainty measures. However, 94% (n = 224 papers)
of the studies did not model error or uncertainty in modeled
distributions.

Association between Categories
The degree of statistical association between the categories was
assessed by checking the residuals of chi-squared test (Yates,
1934), whereby residuals >2 or < −2 indicate significant
positive or negative associations, respectively (Agresti, 2007).
The strongest association observed was between the categories
algorithm and invasive status (X2

= 90.88, p < 0.01, V = 0.67).
Ensemble models and Maxent were common algorithms for
invasive species. In addition, a significant though less strong
association was found between the categories taxa and study
goal (X2

= 846.78, p < 0.01, V = 0.47), with a significant over-
representation of theoretical ecology studies on fish. Although
strong association between some categories was observed, the
association between most of the categories was weak. For
instance, the association between categories realm and statistical
algorithm was X2

= 417.16, p = 0.68, V = 0.38 and realm vs.
study goal was X2

= 145.16, p = 0.19, V = 0.38. Representation
of each combination of study goals and year of publication
by marine realm can be seen in Figure 6. Trellis plot shows
overrepresentation of conservation planning, climate change,
and theoretical ecology studies in the Temperate Northern
Atlantic. In contrast, studies on niche evolution have only been
conducted at a global scale.

Framework to Guide Future Applications
We observed that the SDMs process can be divided into six
general steps. Commonly, published marine SDMs reported
information regarding the following steps. Step 1: SDMs users
selected some taxa to study and a main research goal. Step 2:
selection of data for model predictions and evaluation of data
quality (e.g., accuracy of georeferenced records and sampling
bias). Step 3: download and manipulation of environmental
layers inspecting important attributes such as layer resolution,
layer projection, prediction collinearity, etc. Step 4: selection
of a statistical algorithm, accordingly to the data available.
Commonly, SDMs relied on a single algorithm (e.g., Maxent,
Aquamaps, BIOCLIM, etc.). However, in some cases, results of
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model predictions were compared based on ensemble models.
Step 5: integration of data for model calibration, including
measurements that reflect model fitness (e.g., goodness-of-fit
and correlation scores). Step 6: validation of model results,
involving mapping the predictions in geographic space and
then providing measures that reflect prediction accuracy (e.g.,
precision, specificity, AUC, etc.). For a description of the terms
and acronyms used in this review see Supplementary Materials
S7, S8. Individual analysis of each publications included in the
review can be seen in Supplementary Material S9.

DISCUSSION

Summary of Main Findings
Previous reviews of SDM applications have (i) discussed
challenges including improvements of methods for modeling
presence only data (Elith and Leathwick, 2009), (ii) signaled
the areas of research that need to be improved in SDMs
(Guisan and Thuiller, 2005), and (iii) considered conceptual and
practical issues associated with terrestrial SDMs applied to a
range of marine organisms (Robinson et al., 2011). Although
the aim and extent of previous reviews differ from this study,
similar insights have been drawn after conducting the systematic
review. Several issues associated with the use of SDMs in the
marine environment were identified from this study. First,
recent research has documented the effectiveness of multi-model
ensemble approaches, e.g., Jones and Cheung (2015) on reducing
model uncertainty and providing alternative methods to study
geographical patterns at global scale, in contrast to earlier studies
using single models. Second, only 6% of the published marine
SDMs provided estimates of error or uncertainty measures,
as defined by Barry and Elith (2006). Predictions of species
distributions are fundamental for marine spatial data planning.
However, when resource and conservation strategies are designed
based on SDMs, including unacknowledged or unrecognized
errors and high levels of uncertainty, these strategies can produce
counterproductive effects in the marine environment. Therefore,
a critical step in the modeling process is understanding the
interplay between the ecological processes that drive the realized
species distribution, and the input data used to represent and
model it. Our quantitative analysis of the research conducted to
date using SDMs in marine contexts has allowed us to identify
commonalities across research disciplines and to identify the
components of the models that have been frequently overlooked
by previous studies. We have developed a framework to guide
future applications (Table 4, Figure 7). This framework also
helps to identify the elements of models that warrant more
attention in future research.

The methodological framework is divided into six
steps, starting from clarifying the taxa and goals of the
research, through to data collection and manipulation, model
implementation and calibration, finishing with model validation.
Key decision points and feedback loops are identified throughout.
The framework shows a range of options that are available at
the various stages of model construction and implementation,
so that the quality of data and environmental layers as well as
model fit and prediction accuracy are explicitly addressed.

TABLE 4 | A checklist of model features that need to be explicitly reported in

published marine SDMs.

(a) General features that should be explicitly reported in the

publication

Scientific name of the species under study validated and taxonomic

identification guide used cited

Main research goal of the study

Geographic location of the study

Type of methodological approach followed: correlative, mechanistic, or

hybrid

(b) Questions that should be answered regarding data deficiencies

What functional ecological predictors (GIS layers) are missing?

What is the kind and extent of errors in functionally relevant predictors?

Is the sample size adequate?

What is the geographical extent of sampling effort?

How can the lack of absence records be alleviated?

(c) Questions that should be answered regarding model parameters

What is the relationship between the estimated and fitted models?

How does probability of presence vary with the environmental variables?

How do interactions between data and model errors affect model

robustness?

How do the selection of the “best explanatory model” vary among different

model selection procedures?

(d) Questions that should be answered regarding model validation

What are the results of evaluating model performance with different

validation methods?

What are the results of extrapolating model outputs in space and time?

What are the results of testing the model predictions against independent

datasets?

Do model results from different algorithms agree or disagree across

geographical space?

The selection of taxa in Step 1 will be driven by the
study goal. SDMs have been applied on taxa ranging from
bacteria through to vertebrates, and from single taxa to multiple
taxa. In Step 2 decisions have to be made about what types
of data are to be used—what data are available and most
directly related to the questions you are asking, are there
sufficient data to provide for a robust analysis? At this stage,
it is important to evaluate the quality of input data. Previous
reviews on SDMs indicate that progress in the field of SDM
has been hindered by the lack of linkages between SDMs
practice and ecological theory (Elith and Leathwick, 2009). In
addition to that, we observed that is not a common practice
for SDM studies to report data deficiencies such as inaccuracy
of georeferenced records, sampling bias, lack of latitude and
longitude data in occurrence records, and mismatch of biological
vs. environmental data. Here we recommend that future studies
need to acknowledge and report the data deficiencies mentioned
above. After selecting the input data for modeling, Step 3
addresses the manipulation of the environmental layers. While
there is no general guide for data manipulation, minimum
control checks need to be carried out including inspecting the
relevance of environmental predictors, layer resolution, layer
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FIGURE 6 | Trellis plot of studies classified by marine realm and each combination of study goal and year of publication. Black dots indicate the occurrence of

publication per each combination. Abbreviation codes are as follow. WestIndP, West Indo-Pacific; TropEastP, Tropical Eastern Pacific; TropAtl, Tropical Atlantic;

TempSouthAf, Temperate Southern Africa; TempSouthAm, Temperate South America; TempNorthP, Temperate Northern Pacific; TempNorthAt, Temperate Northern

Atlantic; TempAust, Temperate Australasia; SouthOcn, Southern Ocean; EastIndoP, Eastern Indo-Pacific; CntrIndoP, Central Indo-Pacific.
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FIGURE 7 | Flow diagram of the marine SDMs construction process. (A) Steps in the process involving data collection and manipulation. (B) Steps in the process

involving model calibration, implementation and validation. Warning signs indicate that the step in the process requires data quality control checks and dashed

rectangles give suggestion for assessing model uncertainties and evaluating model performance.
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projection, predictor collinearity, and temporal distribution of
layers vs. occurrence data. Inspecting and reporting possible
data caveats is relevant for avoiding possible bias when building
SDMs. In addition, if a relevant environmental proxy is not
available (e.g., bottom sea temperature for intertidal species)
the lack of data should be acknowledged within the published
paper. The selection of the statistical algorithm(s) to be used in
the modeling, represented in Step 4, commonly is one of the
most difficult decisions in the process of constructing SDMs.
Guidance on the most appropriate approach can be drawn from
previously published studies on similar datasets, and is likely to
require intensive exploration of algorithms that suit the available
environmental data. While earlier research tended to focus on
single approaches (Swartzman et al., 1992; Wiley et al., 2003),
and some studies (Valle et al., 2013; Meißner et al., 2014) suggest
that one model performs better than others, we recommend
the implementation of multi-model ensemble techniques that
account for the degree of similarity and/or variance between
model outputs. By employing multiple approaches, it is possible
to compare the outputs using different algorithms (Jones and
Cheung, 2015).

Step 5 focuses on the calibration of models. In order to find the
best explanatory model, published marine SDMs have evaluated
the input data using measurements that reflect model fitness
(e.g., goodness-of-fit, residual plots, variable importance, and
covariate response curves). While these measurements give an
estimation of model fitness, evaluating the fit of data with single
models can result in selecting a model that poorly represents
the real environment. Therefore, we recommend adopting a
multi-model selection process that accounts for the degree of
uncertainty betweenmodel selection results e.g., Pérez-Jorge et al.
(2015).

In the framework presented here, at Step 6 the results of
the models are validated, that is, outputs examined to see how
well the model performs. While many studies validate models
using a single or few validation scores (e.g., AUC/ROC curve, p-
value, %Dev. Expl., etc.), we recommend the assessment of model
accuracy based on multiple validation scores (e.g., Zucchetta
et al., 2016). We also recommend extrapolation of model outputs
in space or time and testing model results against independent
datasets not used as input for the models.

Conducting a systematic review allowed us to identify the
model features that need to be explicitly reported in published
marine SDMs (Table 4) and the elements of models that warrant
more attention in future research. The checklist presented in
this review provides a series of general features and questions
that should be answered regarding aspects of the modeling
process. The general features of the papers reviewed here,
include information of the study such as the aim, taxonomic
group, geographic location, and type of methodological approach
implemented (correlative, mechanistic, or hybrid). Whereas,
questions about the steps in the modeling process include

questions that should be answered about data deficiencies, ways
to select the best explanatory model and ways to validate the
results from SDMs. In addition, the flow diagram (Figure 7)
provided in this review, (i) characterize the steps in the modeling
process (Step 1–6), (ii) indicate steps in the process that require

data quality control checks, and (iii) provide feedback loops that
give suggestions for assessing model uncertainties and evaluating
model performances.

CONCLUSIONS

There is worldwide interest in identifying tools for effective
marine biodiversity management. SDMs show great potential for
application in a wide range of situations. However, the output
of the models will be most valuable when estimates of the
model performance are provided, enabling increased confidence
in the predictions they provide. In order for model results to
be compared, e.g., between regions, over time, organism groups,
and for replication, the adoption of a consistent framework that
includes multi-model approaches and clear expression of errors
and uncertainties is critical. The framework we present here is
designed to assist future practitioners in the effective application
of marine SDMs.
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