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Benthic cyanobacteria have commonly been a small but integral component of coral

reef ecosystems, fulfilling the critical function of introducing bioavailable nitrogen to an

inherently oligotrophic environment. Though surveys may have previously neglected

benthic cyanobacteria, or grouped them with more conspicuous benthic groups,

emerging evidence strongly indicates that they are becoming increasingly prevalent

on reefs worldwide. Some species can form mats comprised by a diverse microbial

consortium which allows them to exist across a wide range of environmental conditions.

This review evaluates the putative driving factors of increasing benthic cyanobacterial

mats, including climate change, declining coastal water quality, iron input, and

overexploitation of key consumer and ecosystem engineer species. Ongoing global

environmental change can increase growth rates and toxin production of physiologically

plastic benthic cyanobacterial mats, placing them at a considerable competitive

advantage against reef-building corals. Once established, strong ecological feedbacks

[e.g., inhibition of coral recruitment, release of dissolved organic carbon (DOC)] reinforce

reef degradation. The review also highlights previously overlooked implications of mat

proliferation, which can extend beyond reef health and affect human health and welfare.

Though identifying (opportunistic) consumers of mats remains a priority, their perceived

low palatability implies that herbivore management alone may be insufficient to control

their proliferation and must be accompanied by local measures to improve water quality

and watershed management.

Keywords: coral reefs, ecosystem degradation, alternative states, ecological feedbacks, global environmental

change, social-ecological traps, local management

INTRODUCTION

Without the earliest cyanobacteria that evolved around three billion years ago introducing oxygen
to the atmosphere (Brocks et al., 1999), life as we know it would not exist. Today marine
cyanobacteria remain an integral component of healthy ecosystems, offering critical functions such
as nitrogen fixation and primary production (Charpy et al., 2007). Such roles are particularly
important within oligotrophic systems such as coral reefs, where cyanobacteria are profusely
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embedded in algal turfs and microbial biofilms (Barott et al.,
2011; Fricke et al., 2011; Charpy et al., 2012a; Cardini et al.,
2014). Under certain environmental conditions, some benthic
marine cyanobacteria, which may have previously been a benign
component of the benthos, can form dense mats (hereon referred
to as benthic cyanobacterial mats) comprising species from a
single genus (Paul et al., 2005) or diverse microbial consortia
(Echenique-Subiabre et al., 2015). While receiving relatively
little attention in benthic reef ecology studies to date, these
mats should be considered as major players on degraded or
degrading reefs where they are increasingly reported to cover
extensive areas (Figure 1; Table 1). Rectifying this oversight is
critical because reefs dominated by benthic cyanobacterial mats
are likely to produce significantly less of the ecosystem services
associated with healthy, coral-dominated reefs. For example,
coastal protection and fisheries decline as structural complexity
is reduced on degraded reefs (Sheppard et al., 2005; Pratchett
et al., 2014). Considering rapid reef degradation worldwide, it is
thus important to better understand the biology and ecology of
tropical benthic cyanobacterial mats.

Modern (phylo)genetic approaches have revealed that species
richness in tropical cyanobacterial mats is very high and
includes many unknown species otherwise overlooked by
traditional morphology-based taxonomic approaches (Engene
et al., 2013a; Echenique-Subiabre et al., 2015). For example,
though filamentous mat-forming cyanobacteria have regularly
been grouped within the genus Lyngbya (C. Aghard ex Gomont
1892), recent analyses have separated many species from this
group into newly-described genera such as Moorea (Engene
et al., 2012) and Okeania (Engene et al., 2013b). Within mats,
tropical cyanobacteria probably also associate with a consortium
of heterotrophic bacteria, as shown for mats in other regions
(Stal, 2012).Microbial consortia are likely to enhance production,
growth rates, and nutrient cycling over what a single population
alone can achieve under similar environmental settings (Paerl
et al., 2000). Indeed, mats can exhibit high plasticity in
their ability to modify the diversity and composition of their
constituting microbial assemblages in response to their local
environment (Echenique-Subiabre et al., 2015).

Benthic cyanobacterial mats usually inhabit a very small
proportion of reef space (e.g., <1%; Bednarz et al., 2015), but
can exhibit higher nitrogen fixation rates (8–110mg nitrogen
m−2 day−1) compared to (cyano)bacteria associated with other
benthic groups such as algal turfs and fleshy algae (0.44–
22.69mg nitrogen m−2 day−1) or scleractinian corals (0–9.75mg
nitrogen m−2 day−1, Cardini et al., 2014). Furthermore, nitrogen
fixation of (seasonal) mats is up to one order of magnitude
higher than surrounding sediments and/or rubble (Casareto
et al., 2008; Bednarz et al., 2015), and even when they are
uncommon (<2% benthic coverage) they have been found to
contribute up to 27–64% of benthic nitrogen fixation (Cardini
et al., 2016). Heterocystous species that can simultaneously
fix nitrogen and photosynthesise are not advantageous in
oligotrophic tropical waters, and indeed non-heterocystous
planktonic Trichodesmium are the dominant nitrogen fixers
in tropical oceans (Staal et al., 2003; Stal, 2012). Mats have
been shown to comprise heterocystous and/or non-heterocystous

cyanobacteria, with both strategists in some instances fixing
nitrogen at similar rates (Charpy et al., 2010, 2012b). There
is however a high variation in the ability to fix nitrogen
within benthic cyanobacteria (Zehr, 2011), with some common
mat-forming types including Moorea in fact lacking the genes
involved in nitrogen fixation (Engene et al., 2012). Depending
on local environmental conditions, cyanobacterial mats are able
to modulate their nitrogen fixation activity (increasing when
nitrogen is limiting, decreasing when nitrogen is high) via
changes in overall taxonomic composition or the activity of
individual nitrogen-fixing species (Paerl, 2008; Charpy et al.,
2012b).

A recent surge of reports of benthic cyanobacterial mats
occurring or proliferating on coral reefs (Table 1), as well as
concern for the detrimental effects of these mats on ecosystem
processes, stimulated this scientific review. Surveys conducted
over decadal scales (40 years) provide robust evidence that
cyanobacterial mats are increasing on some southern Caribbean
reefs alongside a decline in organisms such as scleractinian
corals (de Bakker et al., 2017). Also in subtropical areas, blooms
of benthic cyanobacterial mats which were first restricted to
the summer months have become significantly more persistent
(Albert et al., 2005; Paul et al., 2005). Increased awareness of
the presence of cyanobacteria may account at least partially for
the rise of reports (e.g., Duarte et al., 2015). Nonetheless it is
clear that mats have received much less attention than other
reef organisms (Figure 2A), with the first reef-focused scientific
article mentioning cyanobacterial mats only published in 1991
compared to 1930 and 1959 for algae and sponges, respectively
according to Web of Science R© (Figure 2B). Underreporting
may be due to cyanobacteria remaining undistinguished from
(i) more conspicuous reef benthic groups such as algal turfs
(Kuffner and Paul, 2001; Fong and Paul, 2011) within which
they are often dominant (Fricke et al., 2011), (ii) the organisms
that they grow over (e.g., fleshy algae—Puyana and Prato,
2013), or (iii) abiotic substrate such as dead coral pavement,
sand or rubble which is realistically never bare (Harris, 2015).
Arguably, temporary blooms of cyanobacterial mats might have
historically been a natural phenomenon on reefs, exhibiting a
pulsing nature (Puyana et al., 2015) that may not be prolonged or
stable enough to be considered regime shifts themselves. These
blooms may however catalyse long-lasting shifts from coral-
dominated reefs to other alternative states (Kelly et al., 2012).
Even such conspicuous phenomena as mass spawning of corals
have only been reported relatively recently (Harrison et al., 1984),
underlining the dearth of scientific knowledge on basic ecological
phenomena in reefs.

In light of the indications that the geographic extent and
prevalence of benthic cyanobacterial mats are progressively
increasing, this review first summarises the factors that may
be facilitating this phenomenon. We subsequently evaluate
the associated ecological and social implications, and finally
identify potential management strategies and future research
priorities. An improved understanding of the dynamics behind
the proliferation of benthic cyanobacterial mats is critical to
shed some light on the factors influencing the probability
of recovery toward coral dominance vs. degradation toward
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FIGURE 1 | Photographs of benthic cyanobacterial mats on coral reefs. From top-left clockwise: cyanobacterial mat at Coral Coast, Fiji (credits: Victor Bonito);

cyanobacterial mat overgrowing coral at Menjangan Island, Bali (credits: Tom Vierus); Oscillatoria-dominated mat at Curaçao (credits: Benjamin Mueller);

Oscillatoria-dominated mat at Curaçao (credits: Maggy Nugues); cyanobacterial mat overgrowing Halimeda algae at Ahus Island, Papua New Guinea (credits:

Amanda Ford); cyanobacteria mat overgrowing coral at Marovo Lagoon, Solomon Islands (credits: Simon Albert).

alternative states. Though important research gaps remain,
this review provides tangible evidence that this emerging
benthic phenomenon requires more attention from researchers,
managers, and policy-makers.

FACTORS PROMOTING
CYANOBACTERIAL MAT PROLIFERATION
ON REEFS

Microorganisms are becoming increasingly abundant on reefs,
with a global analysis showing a positive correlation of cell
abundances with algal cover (i.e., with reef degradation),
stimulated by increased labile dissolved organic carbon (DOC)
production (Haas et al., 2016). Mat-forming cyanobacteria
likely benefit from a variety of additional inherent properties.
Whilst growth rates of most organisms are constrained within

a given and often narrow range of conditions, cyanobacterial
mats display characteristics that allow them to thrive under a
multitude of environmental settings. For example, cyanobacteria
species themselves have versatile metabolic capabilities, switching
between auto-, hetero-, and mixotrophy (Rippka, 1972). Not
only does the physiological and trophic plasticity of mats
(Echenique-Subiabre et al., 2015) provide them with a distinct
advantage over most benthic organisms, but environmental
changes associated with anthropogenic impacts often further
favour their proliferation.

Cyanobacteria can dominate algal turf assemblages (Fricke
et al., 2011), and are commonly found as epiphytes seeking
refuge among complex fleshy algae such as Halimeda which are
robust to, and may in fact benefit from, their presence (Barott
et al., 2011; Hensley et al., 2013). Consequently, as the integrity
of reefs worldwide is compromised by global environmental
change, increasing prevalence of algal turfs and other hosts of
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TABLE 1 | Reports of benthic cyanobacterial mats from tropical coasts worldwide, with genus/species identification and implicated drivers given where possible.

Region Location Cyanobacterial mat

extent

Species/genera

encountered

Implicated drivers References

Atlantic Broward County,

Florida (2002-2004)

Lyngbya Paul et al., 2005

Caribbean Sea Barbados Unknown Domestic sewage DeGeorges et al., 2010

Caribbean Sea Curaçao and Bonaire,

Netherland Antilles

Mean cover 22.2% in

2013 (only 0.1% in

1973)

Hydrocoleum,

Lyngbya,

Phormidium,

Symploca,

Oscillatoria,

Tychonema,

Schizothrix,

Pseudanabaena,

Dichothrix

Degraded reef with low

coral

cover—eutrophied,

high OM input (e.g.,

sewage)

Brocke, 2013; Brocke

et al., 2015a; de

Bakker et al., 2017

Caribbean Sea Old Providence Island,

Colombian Caribbean

(2009-2010)

18–72% Okeania, Lyngbya,

Symploca,

Phormidium,

Oscillatoria,

Spirulina

Warm waters,

anthropogenic input

(e.g., sewage)

Puyana et al., 2015

Indian Ocean Nosy Hara,

Madagascar

Extensive mats from

3m and deeper

Lyngbya Terrestrial freshwater

and nutrient input

Obura, 2009

Pacific Moreton Bay, Australia Periodic dominance of

shallow habitats since

1996

Lyngbya

majuscula

High organic matter

input (flooding),

bioavailable

phosphorous and iron,

warm water, high light

Albert et al., 2005;

Watkinson et al., 2005

Pacific Guam (1994) Periodically dominate

hundreds of meters of

reef flat

Schizothrix,

Lyngbya,

Hormothamnion

Pennings et al., 1997;

Nagle and Paul, 1998

Pacific Manus Province, Papua

New Guinea (2014)

Up to 66% at 3m

depth

Untreated sewage in

overfished system

Ford et al., 2017

Pacific Marovo Lagoon,

Solomon Islands (2011)

Up to 100% at 6m Eutrophication

following toxic diatom

and dinoflagellate

bloom

Albert et al., 2012

Pacific Millennium atoll, Line

Islands

Up to 71%

(turf-cyanobacteria

mixed assemblage)

Iron enrichment from

shipwrecks

Kelly et al., 2012

Pacific Okinawa, Japan 26% Annella reticulate

colonies affected at

20m depth

Moorea bouillonii Yamashiro et al., 2014

Pacific Oundjo, New

Caledonia (2004)

24% cover within

lagoon

SPC unpublished data

Pacific Rose Atoll, American

Samoa

Initially up to 90%

cover, then remained at

∼40%

(Jania—cyanobacteria

mixed assemblage)

Lyngbya and

Oscillatoria

Ship grounding in 1995

and associated

contaminant spill

Green et al., 1997;

Schroeder et al., 2008

Pacific Sideia, Papua New

Guinea (2006)

15% cover on back reef SPC unpublished data

Pacific Tsoilaunung, Papua

New Guinea (2006)

15% on outer reef SPC unpublished data

Sections are left blank when no information is available. Species/genera identified as Lyngbya may have been reclassified since the study took place (morphologically similar but genetically

different, see Introduction section).

cyanobacterial epiphytes may provide an important source of,
and substrate for, cyanobacteria from which mats can develop.
Reef degradation also generates newly available substrate that
is easily colonisable by fast-growing cyanobacterial mats (e.g.,
mats can cover up to 30 km2 within 2–3 months; Albert et al.,

2005). Even on a reef where space is highly limited, cyanobacterial
mats can overcome this constraint by growing directly over living
organisms such as scleractinian corals and fleshy algae (Ritson-
Williams et al., 2005; Puyana and Prato, 2013; de Bakker et al.,
2016, 2017). Besides benefitting from newly available space and
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FIGURE 2 | (A) Results from a Web of Science® search depicting the number of articles published since 1997 (displayed in five-yearly intervals) according to various

coral reef associated search terms, and (B) the year of the first publication including the search terms (each term searched with ‘reef’).

reduced health of other benthic organisms with ongoing reef
degradation, benthic cyanobacterial mats can profit directly from
increased temperatures and unusual rainfall patterns (Paul, 2008;
O’Neil et al., 2012). Additionally, increasingly acidic oceans may
stimulate marine cyanobacteria which have high photosynthetic
demands (Levitan et al., 2007). Some cyanobacteria exhibit high
genetic adaptability to changes in carbon availability, and are
able to utilise bicarbonate ions (which increase with ocean
acidification) as a carbon source (Badger and Price, 2003; Paerl
and Paul, 2012; Sandrini et al., 2016; Visser et al., 2016). Recent
experimental evidence found ocean warming in isolation, and
when combined with low pH, facilitates proliferation of benthic
cyanobacteria relative to algal turfs (Ullah et al., 2018). Similarly,
a relative increase of mat-forming cyanobacteria within algal
turfs under a low pH and high temperature treatment provides
further experimental evidence that future ocean conditions may
favour benthic cyanobacterial mat expansion (Bender et al., 2014,
but see Hassenrück et al., 2016). On the other hand storms, which
will also increase in intensity in the coming decades, may dislodge
and remove benthic cyanobacterial mats (Becerro et al., 2006).

Rapidly growing human populations on tropical coastlines are
also having a profound effect on coastal marine environments
locally through increased sewage input and nutrient runoff
driven by land-use change and agricultural development (Burke
et al., 2012). Benthic cyanobacterial mats are able to compete for
nitrogen when it is available but can also circumvent nitrogen
limitation in nitrogen-deficient waters (Paerl, 2008). Although
the ability of marine cyanobacteria to fix nitrogen can indeed
vary across species (Zehr, 2011), growth of commonmat-forming
types is not promoted by nitrogen input to the same extent as by
iron or phosphorous (Ahern et al., 2007). This implies that the
concentrations of other nutrients are relatively more important
in controlling cyanobacterial growth.

Because of the ability of many mat-forming cyanobacteria
to fix nitrogen when it is limiting, phosphorous enrichment
that shifts a system from phosphorous to nitrogen limitation
(i.e., transitions from high to low N:P ratio) likely favours
growth of cyanobacteria over other primary producers (Figure 3;
Schindler, 1977; Kuffner and Paul, 2001). Whilst reefs are
often phosphorous limited (Lapointe, 1997; Rosset et al., 2017),
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FIGURE 3 | Schematic diagram representing how sedimentary changes support the growth of benthic cyanobacterial mats, focusing on the roles of low dissolved

oxygen (O2) at the sediment-water interface leading to sediment anoxia and subsequent release of sedimentary iron (Fe) and phosphate (P). Some main external

sources of Fe and P are included, with long-term accumulation within sediments and short-term accumulation in the water column differentiated.

this nutrient can enter tropical reef systems via wastewater
discharge, aquaculture, and terrestrial runoff from urbanised
and agricultural land (Figure 3). Sewage input for instance can
strongly shift the canonical Redfield ratio from 16:1 (N:P) to
<10 (Lapointe et al., 2005), and has been linked to proliferation
of benthic cyanobacterial mats (Ford et al., 2017). Furthermore,
occurrence of mats during the rainy season at a site in Curaçao
coincided with N:P ratios dropping from 50 to 16 (Brocke
et al., 2015a; den Haan et al., 2016). Alongside direct input
from terrestrial sources, one pathway recognised to increase
levels of phosphorous is release from surface sediments of the
marine benthos, where phosphorous is usually bound with stable
insoluble iron oxyhydroxides within the oxidised layer (Sundby
et al., 1992; Rose andWaite, 2005). Following high organicmatter
(OM) input (e.g., from sewage) and/or low dissolved oxygen
levels at the water-sediment interface, surface sediments become
anoxic, leading to iron (III) reduction to bioavailable iron (II),
and in turn releasing reactive phosphate and iron (Figure 3;
Jensen et al., 1995; Brocke et al., 2015a; Hanington et al., 2016).
A similar mechanism likely applies following phytoplankton
blooms (caused by eutrophication) which decay and produce
particulate OM which settles onto the reef floor. This potentially
explains a prolonged shift toward cyanobacterial mats alongside
mortality of reef-associated organisms following an extensive
phytoplankton bloom (>20 km2) observed within a Solomon
Islands lagoon (Albert et al., 2012).

In addition to reactive phosphate, the associated sedimentary
release of bioavailable iron (Figure 3) is likely important for
mat development. Iron concentrations differ regionally with the
degree of exposure to Aeolian dust, ash from volcanic eruptions,

emergent basaltic rock associated with past volcanic activity,
shipwrecks, dust from wildfires and terrestrial run-off (Abram
et al., 2003; Kelly et al., 2012; Roff and Mumby, 2012; Schils,
2012). At areas not naturally exposed to iron from Aeolian
dust such as the Pacific, benthic cyanobacterial mats establish
quickly following supply of iron to the water column, for
instance, through volcanic ash (Schils, 2012). Furthermore, ship
groundings on strongly iron-limited reefs in the central Pacific
have facilitated long-lasting shifts toward “black reefs” dominated
by mixed benthic assemblages of cyanobacteria, turf and fleshy
algae, and corallimorphs (Schroeder et al., 2008; Kelly et al.,
2012). Where sediments contain iron, growth of cyanobacterial
mats can be stimulated following the reduction and release of
iron when sediments become anoxic following flooding and/or
phytoplankton blooms, as observed at Moreton Bay, Australia
(Ahern et al., 2006, 2007, 2008; Hanington et al., 2016). As
well as controlling cyanobacterial growth, iron is critical for the
nitrogenase enzyme which controls nitrogen fixation (Berman-
Frank et al., 2001; Mills et al., 2004; Ahern et al., 2008). Given that
cyanobacterial mats grow rapidly following the addition of iron
in areas that are naturally iron-limited, and that iron binds readily
to phosphate in sediments (thus linked to another key nutrient),
iron availability is likely a key factor determining the proliferation
of cyanobacterial mats.

Top-down control of benthic cyanobacterial mats is
often restricted due to their chemical defences which reduce
palatability and deter grazing even where herbivorous fish
are abundant (Thacker et al., 1997; Capper et al., 2006a,b,
2016), though it must be noted that data are limited to well-
studied species in few locations. Lyngbyatoxin-A is the most
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extensively researched secondary metabolite in marine benthic
cyanobacteria, and although its production varies across different
locations, it can have community-wide consequences (Paul et al.,
2007). The cover of cyanobacterial mats does not increase,
and can even decrease, in the absence of herbivorous fish (i.e.,
inside herbivore exclusion cages—Wanders, 1977; Thacker et al.,
2001). A 3-year experiment in Florida observed distinct summer
blooms of benthic cyanobacteria under nutrient enrichment
in the presence of herbivores, weaker blooms when nutrient
enrichment was combined with herbivore exclusion, and no
blooms under herbivore exclusion alone where fleshy algae such
as Turbinaria, Sargassum, and Hypnea were relatively more
dominant (Zaneveld et al., 2016). These findings suggest that
nominally herbivorous fish cannot control the development
of cyanobacterial mats, or that high levels of herbivory are in
fact necessary for cyanobacteria to maintain dominance over
fleshy algae. Some mesograzers and a few reef fish species
have been documented to graze on mats directly or on foods
experimentally coated in their secondary metabolite extracts
(Table 2). In contrast to most studies, a recent review by
Clements et al. (2016) proposed that parrotfishes actually target
endo- and epilithic cyanobacteria, and provides evidence of
direct consumption of mats by Bolbometopon muricatum. The
degree to which fishes feed selectively on cyanobacteria may
depend on their life stage (Paul et al., 1990), exposure time, and
access to alternative food (Thacker et al., 1997). Interestingly,
growth rates of benthic cyanobacterial mats on soft sediments are
significantly reduced in the presence of sea cucumbers both in
aquaria (Uthicke, 1999; Michio et al., 2003) and in situ (Moriarty
et al., 1985). Within enclosures containing sea cucumbers
in Madagascar, abundance of bacteria and concentration of
photosynthetic microorganisms within surface sediments were
50 and 22% lower compared with controls (Plotieau et al.,
2013). The expansion of cyanobacterial mats may be limited in
the presence of sea cucumbers because of direct consumption
(e.g., Sournia, 1976), and bioturbation of benthic sediments.
Bioturbation of sediments by sea cucumbers can increase
the thickness of the oxic sediment layers under increased
temperatures, nutrients, and OM loads (Mactavish et al., 2012;
Lee et al., 2017), thus contributing to the continued persistence
of healthy sediment-associated microbial communities and
sediment integrity. Overexploitation of sea cucumbers across
the Indo-Pacific (Anderson et al., 2011) and associated changes
in the sediment might thus contribute at least partially to the
increasing prevalence of cyanobacterial mats in coastal (sandy)
habitats.

LINKING CYANOBACTERIAL MATS TO
REEF DEGRADATION

Recent research on coral reef ecosystem dynamics has primarily
focused on the factors driving benthic community shifts whereby
reef-building corals are replaced by alternative organisms. Most
commonly, coral-dominated reefs shift to systems where fleshy
algae establish and become dominant (e.g., Hughes, 1994), but
shifts to soft corals, sponges, and algal turfs may also occur

(Norström et al., 2009; Jouffray et al., 2015; Smith et al.,
2016). As mentioned previously, under scenarios where reefs
become dominated by algae, increased labile DOC production
stimulates growth of microorganisms (Haas et al., 2016).
However, instances in which coral- or algal-dominated reefs
shift to systems dominated by benthic cyanobacterial mats have
received comparatively little attention. Mats can be ephemeral
symptoms of recent reef degradation events resulting in freed
space (Schroeder et al., 2008), but can also push stressed systems
toward alternative stable states (Albert et al., 2012). For example,
elevated nitrogen fixation rates on recently bleached corals or
dead coral skeletons imply that cyanobacteria are important
colonisers of available substrate and that their nitrogen fixation
activity may be sufficient to direct a stressed system toward
algal dominance (Davey et al., 2008; Holmes and Johnstone,
2010). The proliferation of benthic cyanobacterial mats on
coral reefs has serious direct and indirect effects on numerous
reef organisms and ecological processes. Some mats overgrow
and smother benthic organisms, including scleractinian corals
and fleshy algae (Ritson-Williams et al., 2005; Puyana and
Prato, 2013; de Bakker et al., 2016, 2017). Subsequent tissue
necrosis of overgrown organisms can occur as a result of oxygen
deficiency, contact with allelopathic chemicals, tissue abrasion,
or light reduction (Puyana and Prato, 2013). The impact of
cyanobacterial mats on localised bleaching and mortality of coral
colonies can indeed exceed that of other competitors such as
fleshy algae (Titlyanov et al., 2007).

The presence of cyanobacterial mats also directly impairs
coral recruitment which is an essential ecological process for
reef recovery following disturbances (McClanahan et al., 2012).
Recruitment success may be reduced by (i) coral larvae avoiding
settling near to cyanobacteria due to negative settlement cues,
or (ii) cyanobacteria killing newly settled corals (Kuffner and
Paul, 2004; Ritson-Williams et al., 2016). Benthic cyanobacterial
mats have been implicated in reducing the recruitment success
of both broadcast spawning and brooding corals (Kuffner and
Paul, 2004; Kuffner et al., 2006). Importantly, mats can bloom
at the same time of year when corals spawn. For instance, in
Fiji, both broadcast spawning and cyanobacterial mats occur
simultaneously during the warmest mid-summermonths (Quinn
and Kojis, 2008; Victor Bonito, pers. comm., 2016). Similarly,
in Curaçao, spawning takes place in September/October
(Van Veghel, 1994), and mats are particularly prevalent in
October/November (Brocke et al., 2015a) when the coral spat
would be settling on the substrate. At this critical time, the effects
of cyanotoxins on coral recruits are also strongly exacerbated
by warmer temperatures (Ritson-Williams et al., 2016). Further
studies into the temporal prevalence of mats together with
information on coral spawning times are needed to assess
the extent of this potential threat, as large-scale inhibition of
coral recruitment by cyanobacterial mats could have severe
implications for the replenishment of coral populations.

The health of adult coral colonies can also be indirectly
affected by the development of benthic cyanobacterial mats,
for example from increasing levels of bioavailable nitrogen
(see introduction—Cardini et al., 2014). Stress may also result
from increasing DOC, as mats not only profit from DOC
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TABLE 2 | Documented reports of cyanobacterial mat consumption by coral reef-associated fauna.

Group Species Feeding material Type of study References

Bivalve Tridacna maxima Hydrocoleum kützing Tissue analysis French Polynesia, New

Caledonia, Vanuatu—Laurent

et al., 2008, 2012

Crustaceans Cymadusa imbroglio,

Menaethius monoceros,

Parhyale hawaiensis

Lyngbya, Tolypothrix Laboratory Cruz-Rivera and Paul, 2006

Damselfish Pomacentrus amboinensis Lyngbya Gut investigations Marnane and Bellwood, 1997

Damselfish Stegastes apicalis Lyngbya Field observations Klumpp and Polunin, 1989

Emperorfish Lethrinus Mixed blooms—e.g., Oscillatoria,

Hydrocoleum, Anabaena

Tissue analysis New Caledonia—Laurent et al.,

2012

Gastropods Haminoea cymbalum Tolypothrix Laboratory Cruz-Rivera and Paul, 2006

Gastropods Stylocheilus striatus Lyngbya Laboratory Cruz-Rivera and Paul, 2002,

2006

Gastropods Haminoea ovalis Lyngbya, Tolypothrix Laboratory Cruz-Rivera and Paul, 2006

Gastropods Trochus Mixed blooms—e.g., Oscillatoria,

Hydrocoleum, Anabaena

Tissue analysis French Polynesia, New

Caledonia, Vanuatu—Laurent

et al., 2012

Holothurians Holothuria (Halodeima) atra Oscillatoria limosa Field observations Moorea—Sournia, 1976

Holothurians H. atra, Stichopus

chloronotus

Unidentified mat Laboratory Uthicke, 1994

Parrotfish Scarus schlegeli, Scarus

rivulatus

Mixed blooms—e.g., Oscillatoria,

Hydrocoleum, Anabaena

Tissue analysis New Caledonia—Laurent et al.,

2012

Parrotfish Chlororus sordidus, Scarus

altipinnis

Mixed blooms—e.g., Oscillatoria,

Hydrocoleum, Anabaena

Tissue analysis French Polynesia,

Vanuatu—Laurent et al., 2012

Parrotfish Bolbometopon muricatum Unknown Field observations Great Barrier Reef—Clements

et al., 2016

Rabbitfish Siganus fuscescens Lyngbya (only in absence of

lyngbyatoxin-A)

Laboratory Moreton Bay—Capper et al.,

2006b

Rabbitfish Siganus argenteus

juveniles—medium

preference (21–60% eaten)

Microcoleus lyngbyaceus Laboratory Guam—Paul et al., 1990

Surgeonfish Ctenochaetus striatus Mixed blooms—e.g., Oscillatoria,

Hydrocoleum, Anabaena

Tissue analysis Vanuatu—Laurent et al., 2012

Unicornfish Naso unicornis Mixed blooms—e.g., Oscillatoria,

Hydrocoleum, Anabaena

Tissue analysis French Polynesia, New

Caledonia—Laurent et al., 2012

Species/genera identified as Lyngbya may have been reclassified since the study took place (morphologically similar but genetically different, see Introduction section).

input, but are themselves responsible for releasing high amounts
of DOC. For example mats, fleshy algae and algal turfs in
Curaçao released 0.59, 0.04, and 0.11 mmol C m−2 h−1,
respectively, while corals and bare sediments did not exhibit
net DOC production over 24 h (Brocke et al., 2015b). Such
amounts may be regarded insignificant when considering the
coverage of benthic cyanobacterial mats on healthy reefs (e.g.,
around 1% of the benthos—Charpy et al., 2010; Bednarz
et al., 2015), but are substantial when mats become dominant
(e.g., over 50% of the benthos - Thacker and Paul, 2001).
Both DOC and bioavailable nitrogen can shift the balance
of the benthic community by favouring fast-growing primary
producers (e.g., fleshy algae) over scleractinian corals. Island-
wide benthic surveys in Curaçao indicated that the abundance
of benthic cyanobacterial mats was indeed positively correlated
with fleshy algae and negatively correlated with scleractinian
corals (Brocke et al., 2015a). At the organism-scale, increased
DOC stimulates the activity of coral-associated microbes
within the coral mucus, potentially leading to coral tissue

hypoxia and subsequent mortality (Kline et al., 2006; Smith
et al., 2006). Bacteria within the coral mucus exhibiting the
strongest growth responses to DOC are often pathogenic
(Morrow et al., 2011).Moreover, during night-time fermentation,
certain cyanobacteria (e.g., Oscillatoria, Heyer and Krumbein,
1991) release easily degradable compounds including lactate,
ethanol and acetate, which could further enhance heterotrophic
metabolism and pathogenic microbes (Haas et al., 2013). Coral
(massive Porites) margins in contact with benthic cyanobacteria
are characterised by a thick diffusive boundary layer and
hypoxia at night, which may in turn facilitate cyanobacterial
overgrowth of live corals (Jorissen et al., 2016). Lastly, increased
levels of bioavailable nitrogen on reefs may lead to increased
bleaching (susceptibility) in corals (Wiedenmann et al., 2013;
Rädecker et al., 2015; Pogoreutz et al., 2017), resulting in
reinforcing feedbacks that continue to favour reef degradation
(Figure 4).

Recent evidence from the Caribbean suggests that benthic
cyanobacterial mats may not be limited to shallow reef
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FIGURE 4 | Schematic diagram showing the putative local and global drivers of benthic cyanobacterial mat growth on coral reefs, as well as the associated ecological

consequences. Direct positive feedbacks that reinforce reef degradation and benthic mat growth are represented by thick curved arrows. Reef degradation will in turn

drive coastal communities increasingly toward land-use changes such as agricultural development, further facilitating nutrient release and reinforcing the cycle.

Abbreviations within the figure: N, nitrogen; DOC, dissolved organic carbon; Fe, iron; OM, organic matter; P, phosphate.

environments and can occur at depths of up to 40m (de
Bakker et al., 2017). Though the ability of marine benthic
cyanobacteria to grow under reduced light remains relatively
unknown, cyanobacteria (e.g., Planktothrix) have been identified
as the group within phytoplankton communities which can
grow best under low light conditions (Mur et al., 1999). Such
findings could challenge the potential for the “deep reef refugia
hypothesis” (Bongaerts et al., 2010), which proposes that deeper
corals that are less affected by heat and light stress could restock
degraded shallow areas in the future through vertical genetic
connectivity, underlining the importance of further information
on the ecology of mesophotic benthic cyanobacteria.

Cyanobacterial mats can also affect reef fish communities.
Recent experimental data indicated that climate change-driven
shifts toward benthic cyanobacteria could ultimately lead to
food web collapse due to reduced energy flow to higher trophic
levels (Ullah et al., 2018). A major die-off of juvenile rabbitfish
Siganus argenteus and Siganus spinus occurred as mats became
dominant on coral reefs around Guam, which was attributed
to starvation (Nagle and Paul, 1998). Furthermore, aquaria
experiments revealed that the rabbitfish Siganus fuscescens
chose to starve rather than to consume Moorea producens
containing lyngbyatoxin-A (Capper et al., 2006b). Contrastingly,
proliferation of benthic cyanobacterial mats following a ship
grounding at Rose Atoll, American Samoa, led to long-term
increases in the local abundance and biomass of herbivorous fish
(Green et al., 1997; Schroeder et al., 2008). These observations
may be due to the cyanobacteria being mixed with algal turfs
and/or the additional shelter offered by the wreckage.

“SOCIAL-ECOLOGICAL TRAPS”
ASSOCIATED WITH CYANOBACTERIAL
MATS

Benthic marine cyanobacteria may pose direct threats to human
health, similar to their freshwater counterparts (e.g., Bell and
Codd, 1994). Summertime blooms of benthic cyanobacterial
mats on some New Caledonian inshore reefs have been
identified as the causative agents of ciguatera-like disease
outbreaks in coastal human populations (Laurent et al.,
2008). Symptoms included (clinically similar to ciguatera)
gastrointestinal disorders, fatigue, limb and joint pain, reversal of
hot and cold sensations, and some cardiovascular symptoms. In
fact the sickness seemed to manifest in more severe symptoms
than ciguatera, with one third of sufferers being hospitalised
which was far higher than usual in the area. Instead of containing
the common ciguatera causative agent (i.e., the dinoflagellate
Gambierdiscus), these mats were dominated by Hydrocoleum, a
common cyanobacterium within tropical mats (Abed et al., 2006;
Echenique-Subiabre et al., 2015). Hydrocoleum was subsequently
found to produce cyanotoxins with very similar characteristics to
cigua- and paralysing-toxins (Laurent et al., 2008). Several fish
species, some of which are prime targets of fisheries, carried the
cyanotoxins, and giant clams were also intoxicated (see Méjean
et al., 2010, Table 2). A subsequent study encompassing New
Caledonia, French Polynesia and Vanuatu confirmed that the link
between benthic cyanobacterial mats and ciguatera-like sickness
is rather widespread in the Pacific (Laurent et al., 2012). An
estimated 500,000 Pacific islanders have suffered from ciguatera
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symptoms between 1973 and 2008, with a 60% increase in
documented cases between 1973-1983 and 1998-2008 (Skinner
et al., 2011), underlining the urgency of identifying management
practices that can control the causal organisms. Bathers and
fishers exposed to coastal waters where benthic cyanobacterial
mats are common have also often reported severe dermatitis and
asthma-like symptoms (Osborne et al., 2001).

Rapidly growing coastal populations will continue to drive
increased nutrient and OM input into coastal waters over the
coming decades. In the absence of wastewater treatment and
land-use management, poor water quality could facilitate benthic
cyanobacterial mat growth which will likely be magnified under
future climate change. Combined, the stressful environmental
conditions and development of benthic cyanobacterial mats
can negatively impact the health of coral-dominated systems.
Together with the inhibition of coral recruitment, ecological
feedbacks favouring cyanobacterial growth and reef degradation
could be further strengthened by increasing bioavailable nitrogen
and DOC (Figure 4). Degraded reefs have reduced structural
complexity, impairing their capacity to protect shorelines from
wave energy (Sheppard et al., 2005) and to sustain productive
fisheries (Graham and Nash, 2013; Pratchett et al., 2014). The
accumulation of ciguatera-like toxins in fishes in connection
with cyanobacterial mats may also pose limits to the utilisation
of fishery resources. As human communities are faced with
progressively degraded coastal resources, they may increasingly
resort to terrestrial resources such as agriculture, facilitating
further reductions in coastal water quality from increased
nutrient run-off. These practices can promote a social-ecological
trap with self-reinforcing feedbacks as has been similarly
described for reefs that become dominated by fleshy algae
(Cinner, 2011). Escape routes to shift algal-dominated systems
back toward a more desirable state include adaptive fisheries
management (Mumby et al., 2006; Hughes et al., 2007; Cinner,
2011), and where positive feedbacks are particularly strong
additional “shock” events (e.g., storms) can be necessary to
reset the system by clearing space for coral recruits to settle
(Edmunds and Carpenter, 2001; Graham et al., 2013). However,
where mechanisms that facilitate mat proliferation are in place,
fast-growing cyanobacteria could rapidly pre-empt space even
where herbivorous fishes are abundant, thus truncating coral
recruitment. As local fishing regulations alonemay be insufficient
to counteract cyanobacterial proliferation, escaping a social-
ecological trap whereby cyanobacterial mats have developed
extensively may be very challenging. These feedbacks may call
for integrated efforts to regulate appropriate fisheries andmanage
watersheds.

AVOIDING REEFS SLIPPING TO SLIME

Coral reefs and their associated ecosystem services would
be better conserved if environmental conditions facilitating
development and prevalence of benthic cyanobacterial mats can
be prevented. In concert with global actions, an assortment
of relatively cost-effective local management practices (e.g.,
Richmond et al., 2007; Klein et al., 2010) may reduce the

likelihood and temporal duration of mats. In particular, mat
development seems to be facilitated when systems enter a low
N:P ratio and when iron concentrations increase, implying
that managers should reduce the level of phosphate and iron
of terrestrial origin entering reefs. This could be achieved by
limiting the use of certain fertilisers, reducing soil erosion,
and protecting mangroves. Furthermore, studies have shown
that nutrient and OM input can trigger the release of iron
and phosphate following oxygen depletion within sediments
(Brocke et al., 2015a; Hanington et al., 2016). Where iron
is already present in sediments (e.g., in volcanic areas, reefs
exposed to Aeolian dust), targeted management of nutrient
and OM input may thus be particularly important. Sewage
is a major source of both nutrients and OM, and just as
benthic cyanobacterial mats can increase significantly close
to a point of sewage input, improved sewage treatment can
reverse mats to grazable algal turfs, as shown in Barbados
(DeGeorges et al., 2010). In addition to limiting growth of
cyanobacterial mats (and unfavourable algae), improvements in
water quality could reduce the otherwise stimulating effects of
increasing carbon dioxide and temperature on cyanobacterial
growth (Visser et al., 2016), thus indirectly reducing the effects
of climate change which cannot be tackled at the local level.
Furthermore, managing reefs with an integrated approach to
build resilience to climate change impacts (e.g., McClanahan
et al., 2012) may be beneficial in promoting resilience against
the initiation and establishment of cyanobacterial mats after
disturbances.

Current knowledge implies that management of reef fish
communities alone could be futile in counteracting benthic
cyanobacterial mats. However, following a shift toward a
cyanobacteria–algal turf mixed assemblage following a ship
grounding at Rose Atoll, biomass of some surgeonfish and
parrotfish species showed a counterintuitive increase (Green
et al., 1997; Schroeder et al., 2008). In situ video observations
aimed at quantifying herbivory on mats may identify novel
opportunistic species, similar to the unexpected finding that
batfish act as key herbivores following blooms of fleshy
Sargassum algae (Bellwood et al., 2006). Such knowledge could
support protective measures aimed at regulating the fishery
of important consumers of cyanobacteria where mats are
becoming increasingly prevalent. For example, B. muricatum
has been observed directly feeding on mats (Clements et al.,
2016), adding to the body of evidence that this heavily targeted
species warrants special protection where it is threatened (e.g.,
Bellwood et al., 2003). Herbivorous fish species may vary
greatly in their sensitivity to cyanotoxins, and prior or repeated
exposure may even allow for some adaptation (Thacker et al.,
1997; Capper et al., 2006a). Trade-offs between growth and
defence drive differential anti-herbivore toxin production in
fleshy algae across areas with different water qualities (Van
Alstyne and Pelletreau, 2000). Although specific studies are
currently scarce, cyanotoxin production usually increases with
conditions that favour cyanobacterial growth, such as increased
temperatures (Kaebernick and Neilan, 2001). A combined
approach incorporating toxin production and functional
genes could investigate how toxin production varies across

Frontiers in Marine Science | www.frontiersin.org 10 February 2018 | Volume 5 | Article 18

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Ford et al. Benthic Cyanobacterial Mats on Coral Reefs

environmental gradients and whether this results from changes
in mat composition or functional gene expression (Golubic et al.,
2010; Echenique-Subiabre et al., 2015). Such patterns would
suggest predictable differences in cyanobacteria palatability
with water quality management or over environmental
gradients.

Considering the potentially limited control of benthic
cyanobacterial mats by reef fishes, management policiesmay have
to pertain to more than herbivorous fishes and explicitly address
other organisms capable of hindering mat proliferation. One
example of such an organism in sandy environments (e.g., reef
flats, lagoons, patch reefs) is sea cucumbers. Their bioturbation
activity may moderate the development of anoxic sediment
conditions (particularly under additional heat stress—Lee et al.,
2017) that could otherwise facilitate the release of iron and
phosphate (Brocke et al., 2015a). Experimental manipulations
should quantify densities of sea cucumbers that are necessary to
maintain sediment integrity under declining water quality and
ocean warming scenarios. Whilst many mesograzers (e.g., sea
hares) recognised to directly consume cyanobacteria likely have
a relatively small impact on large-spread mats, their potential
to regulate mat growth should be further explored alongside
other larger grazing species. For example, the generalist sea
urchin Diadema seems undeterred by cyanobacterial secondary
metabolites (Capper et al., 2016), and perhaps the loss of
this species throughout the Caribbean has helped facilitate the
proliferation of mats across the region.

Research attention should be directed to clarifying the role
of benthic cyanobacterial mats as symptoms vs. drivers of reef
degradation. Benthic monitoring surveys need to improve their
capacity to distinguish benthic cyanobacterial mats from other
benthic groups, and whenever possible different cyanobacterial
morphotypes should be recorded separately. Samples should be
collected for subsequent genetic analyses to better clarify the
taxonomic diversity within mats. This increased level of detail
in benthic surveys will allow for the detection of changes in
benthic cyanobacterial communities, in turn providing critical
information on their potential as a bioindicator of coral reef
degradation. A study on Southern Caribbean reefs in Colombia,
for instance, suggested that>15% benthic cover of cyanobacteria
indicates degradation (Puyana et al., 2015). As overgrowth
does not always lead to the death of the underlying organism,
studies should identify the characteristics of coral-cyanobacteria
contacts. Detailed chemical characterisation of cyanobacterial
mats is also important to predict future outbreaks of ciguatera-
like sickness (Laurent et al., 2008, 2012). Concurrently, to
improve the understanding of the link between human health
and cyanobacterial mats, samples of mats and seafood should be
collected for identification to assess human pathogenicity where
significant cyanobacteria cover is observed.

FUTURE RESEARCH

We identify four key research areas that present tangible
opportunities for novel future research. First, to prioritise
local actions that minimise development and persistence of

cyanobacterial mats, the relative contributions of different
components of global environmental change on cyanobacterial
mat prevalence and toxicity require further experimental testing,
as well as improved information on the occurrence and
extent of marine benthic cyanobacteria. Secondly, opportunistic
consumption of cyanobacterial mats by key functional groups
of herbivores such as reef fishes and echinoderms needs
to be explored, and species warranting special conservation
policies should be identified where mats are prevalent. Thirdly,
experiments can determine which densities of sea cucumbers
can effectively decrease the formation of cyanobacterial mats to
inform managers of minimum stock sizes and harvest quotas.
Lastly, the relative importance of benthic cyanobacterial mats
as a driver or symptom of coral reef degradation needs to be
better understood. To achieve these four goals, mats need to be
reliably and consistently identified by monitoring programmes
and researchers, and no longer grouped together with algal types
or abiotic substrate. New developments in the use of molecular
tools, such as DNA barcoding, may provide important tools
in this regard. Once this is achieved, the temporal and spatial
scale of such surveys can be expanded to better understand the
ephemeral or stable nature of mats at different areas, to verify
putative drivers and controls, and to better link the occurrence of
benthic cyanobacterial mats to the biology and ecology of other
reef organisms, such as stony corals.

CONCLUDING REMARKS

While an increase in awareness of the presence of benthic
cyanobacterial mats may account partially for the recent
increase of reports, they appear to be important players in
coral reef degradation. The proliferation and establishment of
these mats carries important implications for both ecosystem
and human health. A wealth of factors are facilitating mat
development and persistence, including increasing availability
of space on degrading reefs and declining water quality.
Projected climate change conditions will likely favour growth
of cyanobacterial mats while being detrimental to other benthic
reef organisms. Systems where human populations and reefs
are closely linked and that experience cyanobacterial blooms
may be particularly prone to enter social-ecological traps with
strong positive feedbacks. Not only can these traps threaten
ecosystem services and human wellbeing, but they can be very
challenging to escape from. Considering the serious risk that
benthic cyanobacterial blooms pose directly to the future of
reefs and their associated ecosystem services as well as human
health, further focused research and resources for this topic are
important.
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