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The rise of the internet coupled with technological innovations such as smartphones

have generated massive volumes of geo-referenced data (big data) on human mobility.

This has allowed the number of studies of human mobility to rapidly overtake those of

animal movement. Today, telemetry studies of animals are also approaching big data

status. Here, we review recent advances in studies of human mobility and identify the

opportunities they present for advancing our understanding of animal movement. We

describe key analytical techniques, potential bottlenecks and a roadmap for progress

toward a synthesis of movement patterns of wild animals.
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INTRODUCTION

The movements of wild animals have always fascinated humans. Animal migrations have been
important milestones for human society, from the arrival or departure of migratory birds signaling
changes in seasons, to hunter-gatherers following the movement of herds across steppes and
savannahs and fishermen following salmon runs and the progress of fish stocks between feeding and
breeding grounds. Animal migrations have also been an integral part of the development of human
culture, as evidenced by pictures drawn thousands of years ago on cave walls. Today, the study of the
ecology of non-human animal (hereafter, animal) movement is a well-established field of science
(Nathan, 2008) encompassing a coherent research community with dedicated publication outlets
(e.g., Movement Ecology, http://link.springer.com/journal/40462 and Animal Biotelemetry https://
link.springer.com/journal/40317) and symposia largely dedicated to animal movement (https://
www.bio-logging.net/Symposium/).

Despite our long-standing interest, description of the movement patterns of some animals,
particularly birds, and aquatic species such as marine mammals and fishes have presented many
challenges, largely because these animals live in environments where humans cannot easily follow
their path. Today, these issues are being overcome through the development of sophisticated
telemetry technologies that allow researchers to remotely locate and track animals. Over the last
30 years, such telemetry studies have generated insights into the otherwise invisible lives of the
animals that occupy the skies, the forests and the open oceans well-beyond our sight.

Given the effort that has been expended on describing the movement patterns of animals for
nearly two centuries (Figure 1), it is somewhat ironic that humans have become the subject of
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FIGURE 1 | Timeline of Technological Advances in Animal Movement and Human Mobility. The timeline shows the technological advances from animal movement and

human mobility research since 1900 to present. Pop-up satellite archival tags (PSATs) are data loggers with a means to transmit the collected data via satellite

developed for gill-breathing animals that spend little time at the surface. The International Cooperation for Animal Research Using Space Initiative (ICARUS) is a new

animal tracking antenna on the International Space Station that would allow smaller tags to send data back through the low-orbit satellite. The dollar bill represents the

first published paper on human mobility, which tracked records of dollar bills across the United States as a proxy for human movement (Brockmann et al., 2006).

GPS = global positioning system. Reprinted from Trends in Ecology and Evolution (see Meekan et al., 2017), with permission from Elsevier.

tracking studies only very recently (Brockmann et al., 2006; Eagle
and Pentland, 2006; Gonzalez et al., 2008) (Figure 1). Human
tracking studies have been enabled by the growth of the internet
coupled with technological innovations such as smartphones and
wearables (e.g., smart watches and fitness trackers) that have
generated immense and readily accessible geo-referenced data
on human mobility and data on human activities such as heart
rate monitoring, sports, and sleep tracking (de Arriba-Pérez
et al., 2016). These large datasets, amounting in volume to “big
data,” are now being analyzed to describe patterns of human
movement (Simini et al., 2012, 2013), features (e.g., sleep, stress,
and activities) (de Arriba-Pérez et al., 2016) and interactions
(Simini et al., 2012, 2013; Meekan et al., 2017) with a degree of
detail, immediacy and precision that was never before possible for
any animal species (Meekan et al., 2017). Moreover, such studies

have characterized the movement patterns of humans at global
scales for the first time (e.g., Brockmann et al., 2006; Gonzalez
et al., 2008).

The rapid uptake of telemetry for the study of wild animals
means that big data approaches to understand movement can
now be extended beyond human subjects. Collaborative research
initiatives such as the Tagging of Pacific Pelagics (TOPP) program
(http://www.gtopp.org/), and online repositories such as the
Ocean Tracking Network (OTN) (http://oceantrackingnetwork.
org/), Movebank (Wikelski and Kays, 2010), ZoaTrack (Dwyer
et al., 2015) and Birdlife International (http://www.birdlife.org/)
(see Campbell et al., 2016 for a full list of repositories), collectively
document the movements of tens to hundreds of thousands of
wild animals across diverse taxa spanning all continents and
biomes (Hussey et al., 2015; Kays et al., 2015). Such datasets now
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offer the opportunity to transfer big data analytical approaches
developed in the field of human mobility to animal movement
ecology. As has been pointed out for the field of ecology in
general (Hampton et al., 2013), big data analyses have the ability
to promote significant advances in our understanding of animal
movement ecology, including insights challenging the limits of
current theoretical frameworks, by searching for and describing
universal patterns, collective behaviors and emergent properties
in both terrestrial and marine ecosystems.

Here, we show how developments in humanmobility research
underpinned by big data analysis (Blondel et al., 2015) can
be used to catalyze progress and derive new insights into the
global movement patterns of animals. A key requirement for
this task will be the creation of global, open access databases of
animal tracking. These will not only improve our understanding
of the movement ecology of animals, but also provide the
opportunity to engage researchers from the broader scientific
community, including physicists, mathematicians, computer,
and visualization scientists and those interested in complex
systems.

TECHNOLOGY AS A DRIVER FOR THE
DEVELOPMENT OF TRACKING ANIMALS
AND HUMANS

The emergence of the modern study of animal movement can
be traced to the development of ring banding in the 1900’s
(Bairlein, 2001) and radio-transmitter telemetry in the 1950’s
(LeMunyan et al., 1959) (Figure 1). At the first iteration of the
latter technique, radio signals emitted by transmitters deployed
on animals were detected by receivers carried by researchers or
mounted on platforms so that tagged animals could be located
by triangulation of the signals from multiple receivers. Tracking
programs were thus limited by the range of the receivers (25–
35 km; line of sight). The launch of the ARGOS (Advanced
Research and Global observation satellite) satellite network in
the late 1970s overcame this problem, as receivers were placed in
earth-orbiting satellites and by the 1980’s, animals were tracked
with satellite transmitters for the first time (Schweinsburg and
Lee, 1982) (Figure 1). In subsequent years, satellite telemetry has
progressed rapidly with miniaturization of electronics, improved
battery capacity and the integration of the Global Positioning
System (GPS), allowing position estimates with much lower error
(Dujon et al., 2014) and faster acquisition of satellite data. Today
these satellite tags have been attached to a range of terrestrial
and marine animals and have catalyzed discovery (Hussey et al.,
2015; Kays et al., 2015). Although understanding where animals
go has been the main focus of telemetry studies, advanced tags
now incorporate sensors that report information on behavior,
physiological status (See Brown et al., 2013) and environmental
conditions experienced by an animal during its movements (See
Biuw et al., 2007). At the same time, telemetry techniques have
also been developed to track aquatic organisms such as fish that
do not return to the surface to breathe. Because radio signals
are rapidly attenuated by water, part of this technology has
focused on the use of sonar-emitting tags that are deployed either

externally or internally on animals. Signals from the tags are
detected and recorded at receiver stations that are now spread
in networks through parts of the world’s oceans (see http://
oceantrackingnetwork.org/; Cooke et al., 2011; Hoenner et al.,
2018).

Telemetry was first used in the marine environment, due to
the fact that the ocean is a boundary to human observation of
marine animals (Boyd et al., 2004). For example the first time-
depth recorders were attached toWeddell seals (Kooyman, 1965)
and innovations continue to come from the marine biology field
such as the multi-sensor “daily diary” tag (Wilson et al., 2008),
and other technological developments such as the CTD-SRDL
tag which samples oceanographic variables experienced by tagged
animals at the same time as monitoring their movements (Fedak,
2004).

In contrast to the long history of animal movement, one of
the first studies of individual human mobility occurred as late as
2006, and tracked the movement patterns of 100 MIT students
based on the locations of the cell towers from which their mobile
phone calls were made (Eagle and Pentland, 2006). The first
continent-wide study of human mobility was published in the
same year (Brockmann et al., 2006) and used a crowd-sourcing
approach, with individuals voluntarily reporting the location of
marked $1 bills across the United States (see wheresgeorge.com).
However, the appearance of smartphones (portable technologies
with geolocation capability) is the milestone that allowed
researchers to study human mobility at truly global scales and
in unprecedented detail. Integrated GPS tracking in smartphones
together with data provided by geolocated internet posts via text
or photographs via twitter and the Flickr photo sharing platform,
public transportation cards and credit cards are now providing
direct and high-resolution data on human locations, trajectories,
opinions, and interactions, allowing researchers to develop and
validate models of human mobility across different spatial scales
(e.g., city to country, Simini et al., 2012). The importance
of social interactions to human individuals has created our
willingness to carry our own tags (e.g., smartphones), pay for
the associated costs, and document our activity through social
networks, underpinning the rapid data expansion on human
mobility. The numbers of internet-connected electronic devices
currently in use, such as smartphones and tablets, are estimated
to be in the range of 8–10 billion, i.e., more than the entire
human population of the planet (Cisco, 2015). Thus, despite the
relatively short history of research on human mobility compared
to animal movement, studies of human mobility have recently
begun tomatch or outstrip the number of publications in the field
of animal movement today (Figure 2). They also allow, for the
first time, tracking the majority of the individuals of a single very
abundant species—humans.

Since human dispersal was able to be tracked at the level of
individuals (Brockmann et al., 2006; Eagle and Pentland, 2006)
it has been found that our trajectories are similar to those of
animals such as albatrosses (Viswanathan et al., 1996), monkeys
(Ramos-Fernández et al., 2004), and a range of marine predators
(Sims et al., 2008). All of these studies showed that trajectories
are approximated by a Levy flight—a random walk for which
step size follows a power-law distribution (y = x−k) with the
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FIGURE 2 | Comparison of output from animal movement and human mobility

research. Annual publication output in wild animal movement studies (black),

and human mobility research (white). Data from ISI Web of Knowledge

accessed June 1, 2015 using—“animal tracking” OR “animal movement” OR

“animal telemetry,” and—“human tracking” OR “human mobility,” as search

terms from 1945 to 2014. Search results from human mobility research were

vetted for studies related to the biomechanics of human mobility and these

were deleted.

exponent k < 2. While the existence of Levy flights in animal and
human movement data remains controversial (Reynolds, 2008;
Edwards, 2011; Petrovskii et al., 2011; Gautestad and Mysterud,
2013; Pyke, 2015) our main point is simply that, as dispersing
agents, both humans or animals, travel only short distances
most of the time, but occasionally travel very long distances.
Other similarities include the collective movement of pedestrians
showing synchronization (Helbing and Molnár, 1995; Vicsek
et al., 1995) similar to flocks of birds (Cavagna et al., 2015), herds
of ungulates and schools of fish (Toner and Tu, 1998; Vicsek and
Zafeiris, 2012). Given that we are now attaining situations where
descriptions of both human and animal movements are data-rich
and we have recognized the potential similarities between their
form and underlying motivations (Meekan et al., 2017), it is an
appropriate time to examine, test and apply techniques used to
analyse large-scale (e.g., regional to global scale) data on human
mobility to animal movement.

In the last decade alone, more than 700,000 ARGOS-linked
satellite transmitters have been deployed on animals (Figure 3).
These devices are the main platform currently in use by animal
movement ecologists (at least in marine systems for mammals,
birds, and reptiles; Hussey et al., 2015) and also transmits the
data to calculate GPS fixes for tags that are equipped with GPS
technology. Although this represents only a tiny fraction of the
number of internet-connected electronic devices that are used to
track humans (i.e., currently greater than the number of humans
on the planet), the outputs of satellite tag deployments on animals

FIGURE 3 | Number of ARGOS satellite transmitters deployed. Time series of

the number of ARGOS satellite transmitters deployed from 2004 to 2014 (data

provided by CLS ARGOS).

are now also approaching big data status (Figure 3). Given that
routine satellite tracking has a 30-year history and that these
totals do not include non-Argos linked devices [e.g., radio and
acoustic telemetry (the main technology for teleost fishes), and
biologging devices], we conservatively estimate that there have
been more than one million deployments of satellite-linked tags
on animals since the beginning of this field of research and these
deployments have global coverage (Kays et al., 2015). However,
only a small fraction of these data reside in online databases
and even less reside in databases that are publically accessible.
For example in a review of the literature from 2000 to 2012 in
Australasia alone, animal telemetry devices (including all types)
were deployed on 12,656 animals and only 9% of these had their
data stored in a discoverable and accessible manner (Campbell
et al., 2007).

HOW CAN MOVEMENT ECOLOGY
BENEFIT FROM BIG DATA?

A major challenge for animal movement ecology is the cost of
tracking devices. Depending on the number of sensors fitted
to the satellite-linked tag, most cost somewhere in the range
of USD $1,000–$10,000, with satellite communication time an
additional impost. High instrument costs generally result in low
numbers of tagged animals, with sample sizes further reduced
by tag loss and the failure of some tags to report position data
(Hays et al., 2007). Combined with the logistics involved in
capturing target organisms, it is perhaps not surprising that
many researchers are reluctant to share data. However, one of
the consequences of low sample sizes is that tracking datasets
generally feature a large amount of variation in movements
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among species, individuals, sexes, sites, and seasons, which
further complicates the identification of general patterns. Pooling
of datasets among studies through the formation of synthesis
groups and open access repositories could provide a means
for researchers to escape the constraint of small sample sizes
and move analyses from local to larger spatial and temporal
scales and from the specific to the generic in their application
to the field. Progress in the study of human mobility shows
that this would generate four key opportunities for utilizing
big data approaches which we outline below; (1) identification
of emergent properties in animal movement, (2) analysis of
networks of animal movement and behavior, (3) development
of machine learning algorithms to understand and characterize
patterns from “big” animal movement data and (4) advanced
visualization techniques for complex datasets of movement. We
do not attempt to review all the methodological developments
in each of the human mobility and animal movement fields, but
instead focus on these four specific areas that we believe can
provide valuable new insight into animal movement.

Identification of Emergent Patterns in
Animal Movement
The simultaneous analysis of multiple human trajectories
has revealed emergent patterns of human organization at
multiple scales, ranging from communities to societies in
both decentralized and centralized (complex, stratified) forms.
Initially, patterns of human mobility were explained using a
gravity model (Stouffer, 1940; Zipf, 1946) where the flux of
people between two locations was considered proportional to
the importance of the source (starting point) and destination
in terms of population size, gross domestic product, etc., and
decayed with the distance between locations. This concept has
since been superseded bymore elaborate radiationmodels, which
describe the flows of people between different locations, but
in addition to the importance of source and destination, also
consider the importance of the pathway used to travel between
the locations. One of the advantages of this latter approach
is that it contains no adjustable parameters. Instead, it does
make the basic assumption that people move in order to access
resources. In the case of humans, the most obvious “resource” is
employment (Simini et al., 2012, 2013). Population size has been
used as a measure of the “quality” of resources since areas with
larger populations (e.g., cities) tend to offer greater opportunities
for employment. A benefit of such models is that they can predict
commuting and transport patterns, even in areas where such
data are not routinely collected, as they rely only on population
densities (Simini et al., 2012).

Animals, like humans move at both small and large scales (i.e.,
they have daily and seasonal movements). For example, many
animals have large separation between their breeding grounds
and foraging grounds and the migration between the two is
commonly conducted on an annual basis. Movement within the
breeding and foraging ground contains smaller daily movements
akin to human commuting patterns, such as movement over one
to a few days of parents tending young; so called central place
foraging, where the young are left at the breeding ground while

the parent obtains resources to nourish them. However, we lack
similar predictive models for animals, potentially for two main
reasons: firstly, most studies have yet to shift from a focus on
single trajectories or those of a small set of animals (with some
notable exceptions such as Block et al., 2011; Raymond et al.,
2015; Sequeira et al., in press) to research that examines the
collective movement patterns of a species or entire populations.
Secondly, the key resource(s) that drives animal movement
patterns are largely hidden from the human observer (Getz
and Saltz, 2008). Food is often considered the main driver, but
resources can also include refuges or mates for reproduction,
issues that are also relevant to human movement. Assuming
that food is indeed the main resource driving animal movement,
large data sets could allow formulation of a radiation model. As
mentioned above, the human population density of a location
is taken as a proxy of the quality of resources, so for animals
this could be existing proxies of prey density like Chlorophyll-a
for example. Step selection functions (Fortin et al., 2005) and
resource selection functions (Manly et al., 2007) may also be of
relevance here for identifying key resources. These functions have
previously been used with telemetry data as the input (Schick
et al., 2008) and are useful in animal ecology because they
provide insight into the mechanisms behind animal distribution
(Cagnacci et al., 2010) by contrasting resources/habitat used
against those available. Then as for humans, the radiation model
approach with “big” animal data will be capable of predicting
fluxes of animals in places where there are no observations,
information that would be extremely useful for conservation
management.

Sensors for assessing behavior and for documenting the
internal and external states of animals now also provide a means
for identifying and quantifying the context and drivers of animal
movement (see review by Brown et al., 2013). For example, the
“daily diary” tag (https://wildlifecomputers.com/our-tags/daily-
diary/) has a tri-axial accelerometer, providing high resolution
data (32 sec−1) on movement on three axes (pitch, roll, and
heading). Where previous work has matched behaviors to
accelerometer signals, such information allows movements to be
related to specific behaviors since foraging, sleeping, running,
etc. produce characteristic patterns of acceleration (see Nielsen
et al., 2010). Indeed, progress in inferring patterns of human
movements from accelerometer data have advanced to the
extent that they can be used to infer specific gestures (Liu
et al., 2009) and gait patterns allowing individual recognition
(Mantyjarvi et al., 2005). Similarly, the CTD-SRDL tag records
location and diving profiles of marine vertebrates. As the animal
dives, the tag samples the water column for conductivity,
temperature, and depth. Animals carrying these tags effectively
become autonomous environmental samplers (Costa et al., 2003)
gathering large data sets on both the physical and biological
conditions they are experiencing (Fedak, 2004) and their own
physiological state along their movement trajectories (Biuw et al.,
2007). These types of tags and the contextual data sets that they
generate provide the benchmark for studies of animal movement
and their use will become more widespread in the future as
technology improves and costs decline. Technological advances
will likely include an improvement in the amount of data that can
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be recorded (and potentially transmitted) and miniaiturization,
with the latter allowing for a range of smaller animals to become
the targets for tagging. For example, the ICARUS initiative
(http://icarusinitiative.org/) is working to mount a new animal
tracking antenna on the International Space Station that would
allow smaller tags (currently 5 g) to send data back through the
low-orbit satellite, allowing the tagging of very small birds and
even large insects.

Analysis of Networks of Animal Movement
and Behavior
On a daily basis, the city is one of the most important scales
for the organization of human movement. Geolocalized data
from phones shows that most travel occurs between the home
and the workplace, with the pathways channeling the flux of
people between these locations being a key feature of a city
(Louail et al., 2015). Analyses of commuting patterns have shown
that, rather than unicentric, cities are polycentric with several
coexisting centers (Kloosterman and Musterd, 2001; Roth et al.,
2011), information that is highly relevant for urban planning.
Given that many animals also commute, for example from
breeding and/or refuges to foraging sites, the use of a similar
analytical approach including residency analysis coupled with
origin-destination matrices (Louail et al., 2015) would allow
for the spatial properties of these animal commuting flows
to be revealed in a novel manner. Such an approach to the
analysis of habitat use by animal populations would complement
existing methods such as switching state-space models that infer
behavioral state (i.e., migrating vs. foraging) (Jonsen et al., 2013),
to allow comparisons of the commuting flows of a species from
a range of breeding sites. These comparisons could identify
sub-populations at risk where the distance or time of commuting
was increasing over time, perhaps as a result of environmental
change. The state-space models mentioned above are a common
and very useful approach for analyzing animal tracking data. Not
only do they infer behavioral state, they estimate the parameters
of their distributions and importantly, they also provide
uncertainty information around the location estimates as these
can be subject to severe errors (Patterson et al., 2008), unlike
human tracking data. In addition, they intrinsically account for
the inherent autocorrelation present in animal movement data.
Despite this not being a common feature of network models,
they are being developed in order that they account for memory
and thus deal also with autocorrelation indirectly (Salnikov et al.,
2016). Although there have been some advances in techniques
to allow population level inference from state space and other
hierarchical models (Hooten et al., 2016; Jonsen, 2016) they are
not widely used for this purpose, potentially because of their
additional complexity and computational burden (Hooten et al.,
2017). However advances in software such as STAN, C++,
Template Model Builder (TMB), and Integrated Nested Laplace
Approximation (INLA) could assist here as could use of Cloud
computing using platforms like Amazon Web Services and
others.

At a larger spatial scale (100s of km), the extent to which
human activity patterns correspond to administrative boundaries

has been examined by applying algorithms of topological
community detection to country-wide telephone call networks
(Sobolevsky et al., 2013) and patterns in the circulation of bank
notes (Thiemann et al., 2010). These studies typically report
poor matches between administrative boundaries and actual
geographic boundaries calculated from humanmobility data. For
humans, the economic and social implications of poorly defined
borders and sizes of administrative regions are obvious. But such
community detection algorithms also have clear applicability to
animal tracking data, particularly in the case of highly mobile,
migratory species, because their range is likely to encompass
different political jurisdictions, management regimes and
potential threats (Dallimer and Strange, 2015). One of the most
common aims of the analysis of tracking data of animals is the
identification of biologically important areas such as those used
for breeding and foraging and migratory corridors, as these areas
are often the focus for species conservation and management.
Common approaches to this task are home range analysis (e.g.,
kernel density; Worton, 1989) and spatially explicit time-in-area
analyses (Hemson et al., 2005). However, both have difficulty
identifying areas that are critical but infrequently occupied,
such as migratory corridors. While more advanced methods
exist in animal movement ecology to deal with these limitations
such as Brownian (Horne et al., 2007) and biased bridges
(Benhamou, 2011) these methods are undertaken on individual
trajectories and scaling up to population level inference requires
a representative sample of individual tracks and secondary
analyses (e.g., overlaying home ranges in GIS software, use
of random effects for parameters). Community detection
algorithms used to represent patterns of human space use may be
ideal for this task, as they are not subject to the same limitation
and importantly, they can also determine how sub-populations
might be connected at larger spatial scales (Rodríguez et al.,
2017). Again, the power of these algorithms relies on the use
of massive data that examines the movements of hundreds of
individuals across ecosystems (e.g., Rodríguez et al., 2017), an
approach that is still relatively uncommon in animal studies. At a
wider scale, such analyses would aid the development of effective
conservation and management across socio-political borders.
In human societies, community detection algorithms have also
provided insight into processes such as the spread of emergent
infectious diseases (Colizza et al., 2006). A combination of
human mobility (air travel and daily commuting patterns)
and demographic data has enabled the development of models
of the worldwide spread of epidemic diseases (Balcan et al.,
2009) that have been ground-truthed with empirical data from
surveillance and virologic sources (Tizzoni et al., 2012). Similarly,
community detection algorithms could provide information for
the management of disease outbreaks in animals, particularly for
migratory species (e.g., Russell et al., 2005). Indeed, there may
be overlap between both human and animal data in situations
where animal migrations can enhance the global spread of
pathogens (Altizer et al., 2011), for example, zoonotic pathogens
such as the Ebola virus in bats (Leroy et al., 2009).

In addition to diseases, the propagation of ideas, opinions
and innovations can also be followed within societies using
data now available via social media. For example, geolocated
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messages posted on twitter (tweets) have allowed researchers to
measure the overall happiness and moods of people (Mitchell
et al., 2013) and to characterize the worldwide patterns in
linguistic geography (Mocanu et al., 2013). The availability
of such datasets has opened up enormous potential for the
near real-time study of human behavior and societal trends
at very large spatial scales (1,000’s of km) (Mocanu et al.,
2013). Developments in tagging technology may soon also enable
behavioral analyses of animals, including cultural transmission
among individuals. For example, understanding the effects of
social interactions of animals on movement ecology has been
highlighted as a key research question (Hays et al., 2016). Data
from proximity tags recording the proximity and duration of
encounters between tagged animals and captured via download
to networks of radio (see Rutz et al., 2012) or acoustic (Holland
et al., 2009; Lidgard et al., 2014) receivers, can be used to
map network topologies. Such maps will allow the depiction
of social interactions among animals and show how cultural
information diffuses and diversifies in societies of wild animals
(Rutz et al., 2012). At present, limitations of the technology
restrict the use of these tags to animals that live in small groups
(10s of individuals) and move over limited ranges (10s of km),
but miniaturization of the technology and declining costs mean
that this approach will become increasingly popular and could
eventually lead to the application of the technology to entire
local populations (Krause et al., 2013). In turn, this will allow
an understanding of social structure at the level of populations
(Krause et al., 2013). Depending on how we define an encounter,
or association between individuals, a network approach could be
applied to these data to identify associations among and within
communities and species, such as predator-prey relationships.
This goal is considered a critical next step in animal movement
ecology (Hussey et al., 2015; Kays et al., 2015).

Development of Machine Learning
Algorithms to Understand and
Characterize Patterns from “Big” Animal
Movement Data
A benefit of “big data” approaches is the increased opportunity
to apply machine learning algorithms to learn from data in
order to formulate predictions or classify subjects of analysis.
Such methods have already been used widely in the study
of animal movement, particularly where the goal has been to
categorize a set of data inputs into groups. Some examples
include categorizing the different behaviors in diving profiles
of aquatic animals from time-depth recorders (Schreer and
Testa, 1995; Schreer et al., 2001; Thums et al., 2008) and from
accelerometry data (Watanabe et al., 2005; Sakamoto et al.,
2009; Nielsen et al., 2010; Nathan et al., 2012). Comparable
applications exist in studies of human behavior categorized using
data from accelerometers in wearable devices and smartphones
(Casale et al., 2011; Kwapisz et al., 2011). However, the power of
machine learning approaches increases sharply with the volume
of available data, which has grown to be orders-of-magnitude
greater for human subjects than for any other animal species.

The methods mentioned above are supervised machine
learning techniques where the focus of the analysis is on
prediction, based on known properties learned from the training
data. Machine learning can also be un-supervised, where
the focus is on finding some structure in the input or the
discovery of hidden patterns in the data. Hidden Markov models
are examples of one class of unsupervised machine learning
algorithm commonly used to predict or classify future states from
animal and human (e.g., Ashbrook and Starner, 2003) tracking
data. For example, in the case of animals, such states include
spatial location and a behavioral mode such as migrating or
foraging (Patterson et al., 2008). An approach of potential use for
animal movement is where kernel density estimation was used
to estimate the probability that an individual will be at a given
location at a specific time in the future, by using both spatial
and temporal information via multiple kernel functions derived
from smartphone data (Do et al., 2015). Although machine
learning approaches are already used in animal movement
studies, they are usually limited by the familiar problem of
low sample size. Pooling of data among studies may provide
the information required to apply these data-hungry techniques
to investigate patterns at population and community scales.
Advances will be required to deal with the datasets (see Brown
et al., 2013) provided by acceleration and magnetometer sensors
now coupled with GPS in animal-borne tags, which provide an
opportunity to retrieve valuable insights on the links between
animal condition, behavior, and movement and the environment
(Goto et al., 2017). This process has already commenced in
studies of human mobility where machine-learning algorithms
applied to data from mobile devices customizes their services
to the needs and circumstances of each individual and across
many individuals to yield individualized assessments of condition
(Jordan and Mitchell, 2015). A related approach to machine
learning, known as the “inverse problem” approach calculates
the causal factors from a set of observations. For example, time
series data recorded by high resolution GPS loggers attached
to seabirds has been used to understand how the environment
impacts movement by simultaneously estimating navigational
decision making (the animal heading) and the influence of
external factors (ocean winds) on their flight patterns (Goto et al.,
2017). These approaches applied to big data sets would allow for
an understanding of navigational decision making across a range
of species and a range of environmental factors such as wind,
currents and other oceanographic drivers.

Advanced Visualization Techniques for
Complex Datasets of Movement
Visualization of human mobility data is a major challenge
because it requires access to appropriate computational tools for
displaying the large amounts of location and sensor data and
associated attributes of the physical and biological environment.
This problem is particularly acute in the study of community
networks of human mobility (Giannotti et al., 2011). For
example, advanced analytical approaches are yielding a number
of supporting tools to visualize and analyze massive datasets of
human trajectories in order to classify places as home, work or
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locations of social activities (Andrienko et al., 2015) and identify
hotspots of other activities (Shen et al., 2015). A number of these
advanced tools are now freely available and could be used to
further our understanding of animal movement patterns. For
example, software such as the Wireless Rope has been developed
to allow the real-time and dynamic visualization of devices
connected by Bluetooth links (Nicolai et al., 2006). In turn, this
allows examination of interactions among the subjects carrying
these devices. Similarly, MAPMOLTY (MAPping MObility
loyaLTY) is a web-based visualization tool that uses human
mobility data and a set of points of interest to compute a number
of quantitative indicators that show the loyalty of humans to
these points and to depict such relationships on a map (de Lira
et al., 2014). ImMens also supports interactive visual exploration
of large datasets including geographical information (Liu et al.,
2013), while GLEAMviz (Van den Broeck et al., 2011) offers
an environment to simulate models of spread of disease in
combination with integrated mobility patterns of humans. Use of
the latter program is not just confined to the study of disease and
could be applied to animal movement. All of these visualization
tools (see also: http://www.creativebloq.com/design-tools/data-
visualization-712402) developed to visualize and analyse human
movement data offer ecologists a means to make sense of
increasingly large and complex datasets provided both by the
sensors contained in modern tracking devices and the growing
datasets that have tagged multiple individuals and species across
a range of life history stages.

CHALLENGES OF THE BIG DATA

APPROACH TO ANIMAL TRACKING

Although there has been significant progress on the synthesis
of some of the larger animal tracking data sets (e.g., TOPP,
Block et al., 2011; Sequeira et al., in press), for the most part,
these data do not reside in repositories that are open to the
general scientific community, even after publication. A lack
of easy access complicates and hinders any attempt to search
for general patterns in animal movement and document large-
scale movement patterns. This major impediment to research
is well-recognized (Campbell et al., 2007; Rutz and Hays,
2009; Hays, 2014; Hussey et al., 2015; Kays et al., 2015) and
some attempts have been made to rectify it, notably through
initiatives such as Movebank (Wikelski and Kays, 2010) (see
Campbell et al., 2016 for a full list of repositories), however
they do not provide open access to data. In addition, these
data facilities are almost invariably focused on one group of
animals (in the case of Movebank, birds) and thus represent
only a small fraction of existing data. The opportunity to seek
and explore general patterns and underlying principles in animal
movement is consequently limited to the taxa contained in
the database. Clearly, open access to tracking data represents a
major bottleneck to the advance of animal movement ecology
and to the realization of the full value of the investment in
time and money that many thousands of individual researchers
and institutions have made in collecting these data over the
last decades. Development of a culture to deposit the data in

open-access data repositories as a resource for the research
community, as is now the case in many fields of biology such
as genetics (Mount, 2004), must be a critical priority for all
grant agencies, government institutions and commercial entities
that invest in this type of research. Some progress is now being
made on this issue with journals that are the primary outlets
of this type of research insisting that data sets on which results
are based also be published online (e.g., Nature), mostly driven
by efforts to address the current crisis of reproducibility of
results. Although initiatives such as Movebank may shift the
field toward an open access model, such a global, one-size-
fits-all storage facility may be difficult to manage in the long
term and perhaps regional data repositories such as ZoaTrack
(Dwyer et al., 2015) may be less challenging to implement
(Campbell et al., 2007). In the latter, data become open access
after an initial moratorium period. Such an approach has also
been successful for the Integrated Marine Observing System
(IMOS) Animal Tracking Database (http://imos.org.au/facilities/
animaltracking/). Open access datasets need to be coupled with
appropriate, standardized metadata providing the important
contextual information on the tracking data (Campbell et al.,
2016). For example, details of the season, sex and maturity
status of the animal tracked and details of the type of tag and
its program (e.g., duty cycles, etc.) should be included. Also
important is the need to include details on the data processing
and provide access to the raw datasets. Such constraints are not
trivial and databases will need careful consideration of how to
standardize the collection of such data in order to provide the
context needed to facilitate big data analyses, without this being
onerous to data owners. Campbell et al. (2016) provides details
of the data reporting standards that should be implemented
for data collected by animal borne telemetry devices. However,
such challenges are not unique to ecology and standardized,
machine readable meta-data software (e.g., Morpho) might assist
here (Hampton et al., 2013). Hampton et al. (2013) provide an
informative list of action items for ecologists to ensure their
data endure for future big data analyses and Raffaelli et al.
(2014) provide lessons to be learnt from previous attempts to
analyse and organize big data for ecology. Open access databases
combined with the availability of supercomputing resources
through cloud computing services such as AmazonWeb services
and others will make big data analyses more accessible to a larger
community of researchers.

The amount of accessible digital data and the ease by which
it can be collected on nearly any aspect of human activity
has shifted research from a theory and hypothesis-led basis to
one that is data-driven. These approaches are not necessarily
incompatible (Smalheiser, 2002) and need not represent a threat
to the study of animal movement ecology. Big data can be
used to formulate new hypotheses that could not be tested
in the past due to lack of data or conceptual constraints
imposed by dominant paradigms. Importantly, big data analyses
could uncover patterns and relationships in the data leading to
discoveries of behaviors previously unknown or perhaps even
contemplated, a situation likely where many of the animal
subjects that we study have sensory systems so divergent from
our own and are thus likely to perceive the environment in
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a manner very different to our experience (e.g., echolocating
animals).

ROADMAP

We have identified a number of approaches from studies of
human mobility that could increase the progress of research on
animal movement. In order to attain the same rates of advance
achieved by studies of human mobility, it is imperative that
data that already exists is gathered in central repositories and
made freely available to researchers. Data sharing can be achieved
through collaborations of researchers across locations and subject
areas, but also by funders (governments, NGOs etc.) and
scientific journals insisting that the data supporting publications
are uploaded to public-access repositories accompanied by
appropriate meta-data. There has been a ground-swell of support
for this initiative across the research community interested in
animal movement. This will also attract the communities that
have catalyzed the development of human mobility studies,
notably computer and data scientists and scientists working
within the complex-system paradigm, to help propel the field of
animal movement forward.

Beyond the insights into patterns of movement of animals
that might be gained from a transfer of analytical techniques
between the research communities involved with human
mobility and animal movement, an integration of human and
animal movement will help deliver more effective conservation
and management options, as these are critically dependent on
interactions between humans and wildlife. This is necessary
because patterns of human mobility have a direct relationship to
many of the anthropogenic threats faced by animal populations
worldwide (Meekan et al., 2017). For example, road kills
(Clevenger et al., 2003) and ship-strike (Elvin and Taggart, 2008;
Silber et al., 2015) pose major risks to the conservation of many
animals throughout the world, and the infrastructure deployed
to support human mobility, including train and road lines and
cities and harbors, also fragment animal habitats (van Bohemen,
1998). Indeed, to identify possible human-animal interactions
and to better inform conservation strategies, data on human
presence in the environment also needs to be integrated with
animal tracking data. Just as data on human mobility were
a fundamental underpinning of developments such as “smart-
cities” where electronic developments were used to improve the
decision-making process by engaging citizens with democratic
activities (Paskaleva, 2009), data on animal movement can
potentially aid the construction of “smart-environments” where
a better understanding of movement patterns of both humans
and wildlife would assist conservation andmanagement planning
both interactively and in the long-term (Meekan et al., 2017).

The opportunity to accelerate progress in animal movement
ecology based on approaches used in human mobility studies
will require the development of supporting infrastructure and
communities. Once quality-controlled data are available through
the use of open repositories, analysis code developed on open
platforms such as R (R Core Team, 2017) and web-based
visualization and analytical resources can be written for the

estimation of new metrics that describe movement patterns.
These developments will catalyze progress by enabling the
search for common or analogous mechanisms that describe
the ways in which animals move and use their environments,
as well as identifying impacts and disruptions to patterns of
animal movement by both natural and anthropogenic threats
and teleconnections in animal movement at global scales.
Most importantly, because animals perceive their environments
through sensory systems that are often very different from those
of humans, the analysis of big data offers the opportunity to
search for and identify patterns within animal movement data
sets for which we are effectively “blind,” yet may be critical in
organizing the ecology and behavior of these species.

Research on human mobility initially borrowed analytical
techniques developed for the study of animal mobility
(Viswanathan et al., 1996). This process has now begun to
move in a full circle, through the application of new techniques
developed for or applied to the analysis and visualization of large
data sets of human mobility to animal models. In many ways,
the data now available from the latest generations of animal tags
are very similar to that recorded by smart devices now being
worn by humans. New smartwatches include an accelerometer,
thermometer, heart rate monitor, altimeter, barometer, compass,
chronograph, cell phone and GPS navigation, an almost identical
range of sensors to those deployed on the “daily diary” tags
used to reveal animal behaviors such as foraging, resting and
migrating. The significance of being able to passively obtain data
on the habits of millions of users from these new technologies
has already been recognized (Kwapisz et al., 2011). Perhaps the
major difference between tags that track animals and the smart
devices that now track humans is the fact that animals must be
caught and restrained to have a tag fitted, whereas humans wear
such devices voluntarily and typically pay for the privilege to do
so. The convergence between these technologies emphasizes the
possibilities for cross-fertilization and collaboration between the
research fields of animal movement and human mobility. Given
the concerns about the conservation future of large wild animals,
the cross-fertilization and collaboration advocated here are not
only necessary to catalyze scientific advances, but ultimately
an imperative for effective conservation and survival of many
animals, since the principal threats to their existence now are
largely anthropogenic.
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