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The elemental composition of calcite is of critical value in paleoceanographic

reconstructions, yet little is known about biological processes underlying elemental

uptake by foraminifers during calcification. Especially crucial in the understanding

of elemental composition and distribution is the involvement of organic templates

separating different layers of calcite forming the wall of a foraminiferal chamber. In

this study, we applied the focused ion beam (FIB) scanning electron microscopy

(SEM) technique to the site of calcification (SOC) in a newly growing chamber of

Ammonia “beccarii”, a benthic foraminifer, to reveal the ultra- and microstructure during

calcification. This allowed cross-sections of both soft and hard tissues, allowing detailed

observation of the SOC across a series of calcification stages. For the first time, we show

that numerous voids of calcareous layers and internal organic structures are present

within the SOC during the calcification process. The series of SEM observations suggest

that organic layers are actively involved in calcite precipitation. We provide the first

evidence that the SOC is isolated from surrounding seawater during calcification. Our

findings improve the understanding of foraminiferal biomineralization and characterize

key conditions under which element partitioning and isotope fractionation occur.

Keywords: foraminifera, biomineralization, ultrastructure, calcification, FIB, SEM, marine biology,

micropaleontology

INTRODUCTION

Foraminifera is a group of ameboid protists which form calcareous exoskeletons (“tests”) that
are commonly preserved in sediments and constitutes a widely used tool for paleoceanographic
reconstructions. This is achieved by either using known ecological preferences of a particular group
or by analyzing the test chemistry which reflects ambient environmental conditions during the
foraminifer’s lifespan. The incorporation of magnesium, for instance, is known to be primarily
governed by temperature (Nürnberg et al., 1996; Elderfield and Ganssen, 2000; Anand et al., 2003)
and therefore used to reconstruct oceanic thermal history (e.g., Lear et al., 2000).

Improved analytical techniques have enhanced our knowledge regarding spatial resolution and
chemical characterization of foraminiferal tests. The use of spot analytical tools such as electron
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probe micro analysis (EPMA), laser ablation inductively coupled
plasma mass spectrometry (LA-ICP-MS), and secondary ionized
mass spectrometry (SIMS) reveals large intra- and inter-
specific variability in the elemental and isotopic composition of
foraminiferal tests. These can be attributed to a combination of
species-specific biological conditions and environmental factors
such as temperature, salinity, and seawater chemistry (e.g., Eggins
et al., 2003; Erez, 2003; Sadekov et al., 2005; Toyofuku and
Kitazato, 2005; Kunioka et al., 2006; De Nooijer et al., 2014a).
In addition, condensed bands of magnesium, barium and sulfur
are found in close association with the organic template within
chamber walls (e.g., Kunioka et al., 2006; Paris et al., 2014; Spero
et al., 2015; Van Dijk et al., 2017). The origin of these bands
and the physiological processes responsible for their elemental
uptake and incorporation are only partly understood (Elderfield
et al., 1996; Zeebe and Sanyal, 2002; Erez, 2003; Toyofuku et al.,
2008, 2017; De Nooijer et al., 2014b). To improve the reliability of
foraminifer-based proxies it is crucial to identify and understand
complex components of their biomineralization.

A pioneering study by Angell (1967) observed the relationship
between newly precipitated calcite and cell materials in the
benthic foraminifer Rosalina floridana by combining optical
microscopy (OM), transmission electron microscopy (TEM) and
scanning electron microscopy (SEM). There were numerous
foamy structures described to be present at the site of calcification
(SOC), which were shown to form the base of the initial organic
matrix, termed “Anlage.” The Anlage is fibrous and composed
of spherical structures. After its construction, microcrystals are
deposited to form the layer of the chamber wall. Hemleben
et al. (1986) also combined OM, TEM, and SEM to show the
involvement of various foam-like structures during calcification
in the planktonic foraminifer Globorotalia truncatulinoides. The
Anlage was acting as an organic template for calcification in this
species too. Later, the Anlage has also been referred to as Primary
Organic Membrane (POM), and more recently the term Primary
Organic Sheet (POS) has been proposed (Erez, 2003).

Spero (1988) showed TEM and SEM images of the
calcification of the planktonic foraminifer Orbulina universa.
Numerous vesiculate organic structures (submicron-1µm in
diameter) were present around the organic layers of both inner
and outer surface of calcite wall, suggesting that this layer is
actively involved in manipulating the chemistry of the fluid in
the SOC. In addition, the primary organic sheet was found to be
sandwiched by calcite layers, followed by outer and inner organic
layers. It was also indicated that the primary organic sheet served
as an organic calcification template on which the first layer of
calcite was precipitated. The formation of pores, one important
feature of foraminifera, was also shown. SEMmicrographs of the
constructing chamber showed that three organic layers (the outer
organic layer, the inner organic layer, and the primary organic
sheet) converged at the pore plates. In many subsequent studies
(e.g., Spero, 1988; Bentov and Erez, 2006; DeNooijer et al., 2009a)
it was assumed that the space between the primary organic sheet
and the outer (as well as the inner) organic layer is completely
filled by calcium carbonate during biomineralization.

A number of previous studies on biomineralization showed
that the SOC (also termed the “deliminated space”) in a variety

of organisms are partly occupied by small volumes of fluid
within calcite layers (Wilbur, 1964; Mann, 2001; Tambutté et al.,
2011; Keul et al., 2017). These pockets of fluid, if present, likely
reflect the manipulated solution from which calcium carbonate
is precipitated. In foraminifera, it has recently been shown by
ratiometric fluorescent probe with pyranine (De Nooijer et al.,
2009a) and micro glass electrode (Glas et al., 2012) that this fluid
has a considerably higher pH than the surrounding medium, a
result of proton pumping during calcification (Toyofuku et al.,
2017). The external-internal pH difference may be as large
as 2 pH units, meaning the SOC is well separated from the
outside environment. This has important implications for the
incorporation of elements, since they have been proposed to
result from seawater entering the SOC (Erez, 2003; Bentov and
Erez, 2006).

Among various calcification models proposed for
foraminifera, Nehrke et al. (2013) proposed that ions other
than calcium and carbonate (e.g., Mg2+, Sr2+, B(OH)−4 ) enter
the SOC via a combination of Transmembrane Transport (TMT)
and Passive Transport (PT) which is compatible with the SOC
being separated from surrounding seawater. This model could
be extended if the microstructure of the SOC and the flux of ion
inwards could be accurately established. Observations on the
SOC are currently limited to SEM observations, only showing
the surface of the outer organic layer or the calcite layer.

To reveal the detailed configuration of the SOC, we fixed
calcifying specimens of the benthic foraminifer Ammonia
“beccarii” and subsequently prepared cross-sections using
focused ion beam (FIB) to observe the detailed microstructure.
The exposed sites of calcification were analyzed to determine
their appearance and development throughout the process of
chamber formation. Here, we focus on the structures that
constitute the SOC, which we define here as the combination of
the organic structures, the precipitated calcium carbonate, and
the spaces between them, that together form the foraminiferal
chamber wall.

MATERIALS AND METHODS

Sample Collection and Laboratory Culture
Living foraminifera were collected from brackish salt marsh
sediments of Hiragata bay, Natsushima-cho, Yokosuka, Japan
(35◦19′21′′N, 139◦38′5′′E). Surface (the top 5mm) sediments
were collected and transported to the laboratory to serve
as a stock from which foraminifera were isolated. Living
specimens were recognized by their bright yellow coloration and
pseudopodial activity. They were cleaned from excess sediment
and debris under a stereomicroscope (SteREO Discovery V12,
Zeiss Co. Ltd.) and then transferred to filtered (0.2µm) natural
seawater (salinity 35) in a Petri dish. The dishes were maintained
as stock cultures at 20◦C and a small amount of living microalgae
(Dunaliella tertiolecta) were added to the Petri dishes twice a
week. Within a few days after feeding, some individuals started
chamber formation and were selected for observation.

Prior to chamber formation, foraminifera retract their
psuedopodia and stay in a fixed location (Figure 1A). After that,
the cytoplasm forms a shape corresponding to the new chamber
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FIGURE 1 | Chamber formation of the studied species Ammonia “beccarii”.

(A) Just before forming a new chamber, with many fine filamentous

pseudopodia protruding from the existing test. (B) About 20min after shell

formation started. (C) About 2 h after shell formation started. (D) About 5 h

from the start of shell formation when chamber thickening takes place.

to be formed (Figure 1B). Calcium carbonate precipitation can
be identified by the bright rim of the formed cytoplasmic
structure (Figure 1C) and then the chamber wall is thickened
(Figure 1D). The formation of a new chamber takes 8–12 h in
this species. By comparing with the sequence shown in Figure 1,
our fixed specimens were estimated to have been fixed 2–4 h after
the calcification process started. Five individuals with differing
thickness of the new chamber wall were selected for FIB-SEM
observation. These individuals were given sequential numbers
#1-#5 from the thinnest to the thickest new chamber wall.

Microstructure Observation and EDS
Analysis
All specimens were fixed simultaneously using a fixing solution
(3% paraformaldehyde, 0.3% glutaraldehyde, 2% NaCl in PBS
buffer, pH 7.8) and subsequently stored in 2.5% glutaraldehyde
at 4◦C to avoid any morphological changes in cell material
by dehydration. They were then washed in filtered seawater,
postfixed with 2% osmium tetra oxide filtered seawater for 2 h
at 4◦C. Then the specimens were rinsed with distilled water
and conductive staining was performed by incubating in 0.2%
aqueous tannic acid (pH 6.8) for 30min. Following another wash
using distilled water specimens were treated with 1% aqueous
osmium tetra oxide for 1 h. Finally, they were dehydrated in a
graded ethanol series and critical point dried (JCPD5; JEOL Ltd.,
Tokyo, Japan). All specimens were placed on glass plates for
FIB cutting after drying to reduce handling damage. Specimens
#1 and #3 were sputter coated with carbon, sectioned using a

Hitachi MI4000L Focused Ion Beam SEM (FIB-SEM) system
using gallium ion beam at the high voltage electron microscope
(HVEM) laboratory, Nagoya university, Japan, with additional
SEM observations carried out on a JSM6700F field emission
scanning electron microscope (FE-SEM) in Japan Agency for
Marine-Earth Science and Technology (JAMSTEC), Yokosuka,
Japan. Specimens #2, #4, and #5 were osmium-coated and
sectioned also using gallium ion beam with a FEI Helios G4 UX
FIB-SEM (JAMSTEC). Elemental composition of all specimens
was analyzed using a EDAX Octane Elite Super 70 energy
dispersive spectrometer (EDS) equipped on the Helios G4 UX at
JAMSTEC.

RESULTS

Scanning electron micrographs of cross sections of the newly
forming chamber wall in the five specimens, representing
different stages of calcification, are shown in Figures 2–6. For the
ease of direct comparison, Figure 7 shows the cross sections at
the same scale. Specimen #1 had the thinnest SOC (Figure 7A).
The width of the SOC increased with thickening of the crystal
layers from Specimen #1 (Figure 7A; ∼0.5µm) to Specimen #5
(Figure 7E; ∼1.5µm). By having a series of five specimens in
progressive calcification stages, the similarity of the structures
in Specimen #1 and #5 can be confirmed, even if they appear
quite different at the first glance. Figure 8 shows the calcium
(Ca) distribution from SEM-EDS measurement at the SOC in all
specimens (Figure 8, Figure S1). Ca signals overlapped on the
calcareous layers. The spot analyses showed there were carbon
(C), oxygen (O) and Ca signals detected with silicon (Si), gallium
(Ga), osmium (Os) on the wall layer (Figure 8E-3). The elements
Ca, O, and C are consistent with chemical contents of calcium
carbonate, Ga was the source of FIB used for specimen cutting,
Os is from osmium coating of the specimens, and Si is interpreted
to be from glass plates used to handle the specimens post-critical
point drying.

The growth of SOC was documented sequentially from
Specimen #1 to #5 (Figures 2–7). Calcareous layers were sparser
in specimens #1 and #2 (Figures 7A,B) compared to specimens
#3–#5 (Figures 7C–E). The calcareous layers were horizontally
divided into the outer calcareous layer (OCL in Figures 2C,
6C) and the inner calcareous layer (ICL in Figures 2C, 6C)
by the boundary (POS in Figures 2C, 6C) on all specimens.
The primary organic sheet is clearly visible in specimens #1–#3
(POS in Figures 2C, 4C), but in specimens #4–#5 the primary
organic sheet was not clearly visible and instead a series of small
cavities were visible in the same position (POS in Figures 5C,
6C). The outer calcareous layers were slightly thicker than the
inner layers in specimens #4 and #5 (Figures 5C, 6C). Focusing
on the morphology of the materials in the calcareous layer,
blocky, parabolic conical, and columnar shapes were observed
in specimens #1 and #2 (C in Figures 2D,E, 3D,E). All of these
shapes were in contact with either the primary organic sheet, the
inner/outer organic layers, or both. The horizontal space between
these materials decreased in specimen #3 (Figure 4C). Then,
calcareous layers further increased in abundance in specimens #4
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FIGURE 2 | SEM images showing the microstructure of the SOC in specimen #1 processed by FIB on the newly calcified chamber wall. (A) Overview. (B) The newly

calcified chamber (white rectangle in (A). The field of FIB processing is indicated by the white rectangle. (C) Composite SEM cross section of SOC of specimen #1.

Upper side is the outside whereas the lower side is the cytoplasm side. The white dotted line in the calcareous layer indicates the boundary between outer side and

cytoplasmic side of calcareous layer. (D) Magnified image of the empty inside of spherical structures on outer organic layer. (E) Higher magnification showing the void.

OOL, outer organic layer; OCL, outer calcareous layer; POS, primary organic sheet; ICL, inner calcareous layer; IOL, inner organic layer; S, spherical structures; CM,

calcareous materials; gray triangles, void; white arrows, cavities.
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FIGURE 3 | SEM images of specimen #2. (A) Overview. The white rectangle indicates the obseved newly calcifing chamber. (B) The newly calcified chamber (white

rectangle in (A). The field of FIB processing is indicated by the white rectangle. (C) Composite SEM image of the FIB processed SOC. Upper side is the outside and

whereas the lower side is the cytoplasmic side. The white dotted line in the calcareous layer indicates the boundary between outer side and cytoplasmic side of

calcareous layer. (D) Magnified image of small calcareous materials. (E) Higher magnification showing the details of SOC. OOL, outer organic layer; OCL, outer

calcareous layer; POS, primary organic sheet; ICL, inner calcareous layer; IOL, inner organic layer; S, spherical structures; CM, calcareous materials; PP, pore plate;

gray triangles, void; white arrows, cavities; white dot, sponge like structure.
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FIGURE 4 | SEM images of specimen #3. (A) Overview. (B) The newly calcified chamber (white rectangle in (A). The field of FIB processing is indicated by the white

rectangle. (C) Composite SEM image of the FIB processed SOC. Upper side is the outer side and whereas the lower side is the cytoplasmic side. White dotted line in

the calcareous layer indicates the boundary between outer side and cytoplasmic side of calcareous layer. (D) Magnified image of porous structure of SOC. (E) Higher

magnification showing the cavities within primary organic sheet and outer organic layer. OOL, outer organic layer; OCL, outer calcareous layer; POS, primary organic

sheet; ICL, inner calcareous layer; IOL, inner organic layer; S, spherical structures; CM, calcareous materials; gray triangle, void; white arrow, cavity; asterisk, opening

spherical structure from cavity into void.
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FIGURE 5 | SEM images of specimen #4. (A) Overview. (B) The newly calcified chamber (white rectangle in (A). The field of FIB processing is indicated by the white

rectangle.(C) Composite SEM image of the FIB processed SOC. The upper side is the outer side and whereas the lower side is the cytoplasmic side. White dotted line

in the calcareous layer indicates the boundary between outer side and cytoplasmic side of calcareous layer. (D) Magnified image of spherical structure on primary

organic sheet. (E) Higher magnification showing the outer organic layer is cave into void of outer calcareous layer (CO). A cavity (white arrow) can be identified on

spherical structure of outer organic layer (LS). OOL, outer organic layer; OCL, outer calcareous layer; POS, primary organic sheet; ICL, inner calcareous layer; IOL,

inner organic layer; S, spherical structures; CM, calcareous materials; PP, pore plate; gray triangles, void; white arrows, cavities in the organic structure; CO,

concavity; asterisk, opening spherical structure from cavity into void; LS, spherical structure with larger cavity.
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FIGURE 6 | SEM images of specimen #5. (A) Overview. (B) The newly calcified chamber (white rectangle in (A). The field of FIB processing is indicated by the white

rectangle. (C) Composite SEM image of the FIB processed SOC. The upper side is the outer side and whereas the lower side is the cytoplasmic side. White dotted

line in the calcareous layer indicates the boundary between outer side and cytoplasmic side of calcareous layer. (D) Magnified image of the contact place between

outer organic layer and outer calcareous layer. (E) Higher magnification showing the adjoining place between inner organic layers with inner calcareous layer. OOL,

outer organic layer; OCL, outer calcareous layer; POS, primary organic sheet; ICL, inner calcareous layer; IOL, inner organic layer; S, spherical structures; CM,

calcareous materials; gray triangles, void; white arrows, cavities in the organic structure.
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FIGURE 7 | The SEM image of the SOC on the same magnification of all observed specimens. (A–E) corresponding to Specimen #1 to #5, respectively.

and #5 (Figures 5C, 6C). A sharp, serrated surface was seen on
the calcareous layer of specimen #4 (Figure 5E).

Spatial voids existed between the calcareous layers, facing both
outer and inner organic layers in all specimens (gray triangles in
Figures 2C, 6C). Some voids were also found around the primary
organic sheet (gray triangles in Figures 4D,E, 5D). Spherical
structures were found in both outer and inner organic layers at
all stages (S in Figures 2–6). Some cavities were found in the
spherical structures and primary organic sheet (white arrows in

Figures 2–6). These spherical structures varied in size between
∼100 nm and ∼1µm. Occasionally, spherical structures with
a diameter of ∼0.5–1µm were seen with a spongy interior
(white dot in Figure 3C). Convex structures were observed
on calcareous sides of the organic layer and were positionally
arranged toward the calcareous layer (asterisks in Figure 4D)
and the primary organic sheet (asterisk in Figure 5D). As
the calcareous layer developed, larger spherical structure were
formed overhanging into the space of the calcareous layer side
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from outer organic structure (LS in Figure 5E). Also, the convex
shapes were found to intrude into the space toward calcareous
layer (CO in Figure 5E). The spherical structures and cavities
were more frequently found on the thicker specimens #3–#5 than
the thinner specimens #1 and #2. Pore plates were also identified
on specimen #2 (PP in Figure 3C). Outer and inner organic layers
converged into each other at the position of the primary organic
sheet.

DISCUSSION

The benthic foraminifer Ammonia “beccarii” and other
Ammonia species are widely distributed and can be found
in many coastal environments including tidal flats, harbors
and brackish lakes. Due to its tolerance to a wide range of
environmental parameters, it is a popular genus to employ in
laboratory cultures and are used to calibrate elemental/isotopic
geochemical signatures as functions of physical and chemical
conditions. As a result, over 20 studies have analyzed geochemical
signatures and calcification process in this genus (Table 1). This
makes understanding the detailed micro-configuration of the
SOC in this genus crucially important in the interpretation of
the results from such studies. This was made possible in this
study through application of the FIB-SEM technique which
allows making sections through calcareous material at a fine
scale.

Structures Within the Site of Calcification
During Chamber Formation
The foraminiferal SOC has not been pictured before in cross-
section and our results allow for the first time to characterize the
distribution of calcareous materials between the primary organic
sheet and the outer and inner organic layers during chamber
formation (Figures 2–8). These materials are shown to grow over
time by gradually filling the space between the primary organic
sheet and outer and inner organic layers (Figures 2C, 6C).
Growth of the calcareous chamber wall is bidirectional from
the primary organic sheet toward the outside as well as the
cytoplasmic side, as was generally accepted. Meanwhile, some
calcareous materials were found to attach only on the outer or
inner organic layer (Figure 3D). At some locations, calcareous
materials were bridged on either side of the primary organic
sheet to the outer or inner organic layers (Figures 2C, 3C,D),
while the cavities between materials appeared to have been filled-
in horizontally afterwards (Specimen #3–#5). We interpret that
the calcification processes happens continuously and that thereby
the chamber wall thickens over time. In some locations, no
calcareous materials grew yet and voids remained, which would
supply the source for construction of calcareous wall. Then these
voids would be pushed away by the growing calcareous test and
moved to the top of the growing surface. A schematic illustration
is shown in Figure 9.

Although the composition of fluids within these voids has
not been characterized yet, it would likely have a similar
composition to the calcification fluid described for bivalves
and corals (Wilbur, 1964; Erez, 2003; Tambutté et al., 2011;

FIGURE 8 | EDS results on the SOC for specimens #1 to #5. (A–E)

corresponding to specimen #1 to #5.−1, calcium distributions;−2, calcium

image superimposed on the SEM image. The brightness of calcium distribution

shows the intensity of calcium signal as legend of the bottom right. E-3, EDS

spectrum of spot measurement on the black square on E-1 of specimen #5.

De Nooijer et al., 2014b; Keul et al., 2017; Toyofuku et al., 2017).
Previous studies (e.g., Angell, 1979) showed that the distribution
of organic structures within the foraminiferal chamber wall
and assumed that small black dots adhering to the membrane
were calcium carbonate microcrystals. In addition, such calcium
carbonate crystals were assumed to have filled the vacant holes
in ultrathin TEM sections in the later stages of calcification,
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TABLE 1 | Evaluation of geochemical signatures and calcification process in Ammonia species.

Study Species Topic

Toyofuku et al., 2011 Ammonia “beccarii" Temperature, Salinity on Mg/Ca, δ18O from culture

Diz et al., 2012 Ammonia tepida Salinity on Mg/Ca and Sr/Ca heterogeneity, δ18O, δ13C from culture

De Nooijer et al., 2014a Ammonia tepida Mg and Sr heterogeneity in clones from culture

Dissard et al., 2010 Ammonia tepida pCO2 on Mg/Ca and Sr/Ca from culture

Dissard et al., 2010 Ammonia tepida Salinity on Mg/Ca and Sr/Ca, from culture

Raitzsch et al., 2010 Ammonia tepida [Ca2+]/�Calcite on Mg/Ca and Sr/Ca from culture

Dueñas-Bohórquez et al., 2011 Ammonia tepida [Ca2+] and [CO2−
3 ] on Mg/Ca and Sr/Ca from culture

Mewes et al., 2014 Ammonia aomoriensis [Mg2+] on Mg/Ca from culture

Mewes et al., 2015 Ammonia aomoriensis [Mg2+] on Sr/Ca from culture

Keul et al., 2017 Ammonia sp. [CO2−
3 ] on Sr/Ca from culture

Le Cadre and Debenay, 2006 Ammonia beccarii [Cu2+] on Cu/Ca and distortion of morphology from culture

Ammonia tepida

Maréchal-Abram et al., 2004 Ammonia beccarii [Cd2+] on Cd/Ca from culture.

Munsel et al., 2010 Ammonia tepida [Ni2+], [Cu2+], [Mn2+] on Ni/Ca, Cu/Ca, Mn/Ca from culture

Havach et al., 2001 Ammonia beccarii [Ba2+], [Cd2+] on Ba/Ca, Cd/Ca from culture

Keul et al., 2013a,b Ammonia sp. U/Casw on U/Ca from culture

De Nooijer et al., 2009b Ammonia tepida Seawater uptake and calcification via culture

Nehrke et al., 2013 Ammonia aomoriensis [44Ca2+] on 44Ca/40Ca and seawater uptake and calcification via culture

De Nooijer et al., 2008 Ammonia beccarii pH imaging

De Nooijer et al., 2009a Ammonia beccarii pH imaging

Glas et al., 2012 Ammonia sp. pH variability during calcification via culture

Toyofuku et al., 2008 Ammonia beccarii Ca imaging during calcification via culture

Keul et al., 2013b Ammonia sp. [CO2−
3 ] on calcification via culture

Toyofuku et al., 2017 Ammonia sp. pCO2 on pH imaging during calcification via culture

so that the discontinuous shape of early calcareous tests (as
we observe in specimens #1 and #2; Figures 2, 3) may not
have been fully preserved in former studies (e.g., Angell, 1979).
In some previous TEM-studies (Angell, 1967), the sample
preparation methods used likely resulted in artifacts in the
prepared sections. As the resin used for embedding has a different
hardness compared to the foraminiferal test, the cytoplasm
(substituted with resin) was successfully thinly sliced while the
calcite part of the test would be lost. It was therefore assumed
that, any vacant spaces in the thin sections were completely
filled with calcium carbonate crystals. In other studies (e.g.,
Spero, 1988) calcium carbonate were dissolved during sample
preparation to enable ultrathin sectioning for the observation
of the cytoplasm configuration during shell formation. With
the calcareous materials absent, it was again assumed that the
space between primary organic sheet and outer organic layer
was completely filled by calcite crystals, which is different from
what we observed here. On the other hand, the introduction
of FIB technology made it possible to produce cross sections
with both soft, delicate organic structures and hard, brittle
calcium carbonate fully preserved, as exemplified by the present
study. The results indicate that calcium carbonate grows not
only from the primary organic sheet to the outer/inner organic
layer but also vice versa unlike previously thought (Hemleben
et al., 1977). Furthermore, this constitutes the first observation
of numerous voids within both organic structures and calcareous

layers. The primary organic sheet, outer and inner organic layers
have been described previously and were also observed in this
study. Previous studies suggested that the primary organic sheet
was often discontinuous and does completely separate the outer
from the inner lamellae in the bilamellar chamber wall (Spero,
1988).

Former studies have reported the existence of spherical
structures thought to be vesicles around the outer and inner
organic layers (Angell, 1967, 1979; Hemleben et al., 1986; Spero,
1988). Our observations confirm that there are many spherical
structures associated with the outer and inner organic layers
(S in Figures 2C,D, 3C–E, 4C–E, 5C,E, 6C,D). By using FIB-
SEM to prepare the samples, we show that the inside of some
spherical structures appeared to contain cavities (e.g., white
allow in Figure 2D). In addition, cavities were also found as
a seemingly integral part of the primary organic sheet (e.g.,
white arrows on POS in Figures 4D,E, 5D). If such cavities
were related to foraminiferal vesicles as previous studies have
described, they are likely to be filled with fluids. In addition,
spherical structures were formed from the outer organic layer in
contact with surrounding water (CO in Figures 5E, 9). It is likely
that some of these spherical structures directly enclose a part
of the surrounding seawater. In addition, a number of spherical
structures with a diameter of ∼1µm were characterized by a
spongy inner structure (white dot in Figure 3C). These structures
(∼1µm) correspond to mitochondria, since they are present at
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high densities near organic layers during the calcification process
(Spero, 1988). Furthermore, the voids and vesicles appeared to
be connected to the outer and inner organic layers, indicating
exocytosis (asterisks in Figures 4D, 5D, 9) and endocytosis (CO
in Figures 5E, 9).

One possible significance of these spherical structures
is in increasing the total exchangeable area between the
ambient seawater and the foraminiferal calcification fluid, since
continuous calcium and carbon source supply is, naturally,
required during calcification. Meanwhile, the chemistry of the
fluid should be strongly governed by the organism thoughout the
process. The numerous vesicles could reflect an increased density
of transmembrane transporters to achieve a high flux of ions (i.e.,
Ca2+ and inorganic carbon) from seawater to the SOC. Tyszka
(in prep.) considers that the outer and inner organic layers are
not just organic sheets but are actively involved in calcification.
Our results support the hypothesis that these organic structures
are indeed involved in mineralization, perhaps by collecting
ions necessary for calcification, transporting them to specific
locations, or by releasing unnecessary substances from the SOC
(Figure 9). The relative importance of vesicles in the outer and
inner organic layers are interpreted to increase as calcification
proceeds, since they were more numerous in specimens #3–
#5 than specimens #1 and #2. Together, these observations
show that the primary organic sheet is not just a template for
calcium carbonate deposition, but instead is actively involved in
biomineralization. For example, calcium ions, carbon sources,
and acidic amino acids made of cytoplasm would be supplied
to both sides of the primary organic sheet. The outer and inner
organic layers and primary organic sheet would be active at these
earlier phases of chamber formation. Banner andWilliams (1973)
reported that the primary organic sheet acts simply as a template
upon where calcification occurs, which appears to be different
from the results of the present study; further work is required in
this area.

Regarding the calcareous layer, it is evident that calcium
carbonate is present in both calcareous layers (outer and
inner calcareous layers) in all individuals observed in this
study (Figure 8). In specimens #3-#5, especially, it is presumed
that the nature of the calcium carbonate are calcite crystals
because they resemble ordinary test cross sections (Nakajima
et al., 2016). In specimen #1 and #2, the form of the
calcareous materials is not of a typical crystalline appearance but
appeared rather irregular. This is different from the previously
reported appearance of calcitic walls of this species (Nakajima
et al., 2016). Elemental analysis results with SEM-EDS support
that these structures are indeed calcium carbonate, but the
crystallographical structure remain uncharacterized and is a
subject of future studies. Submicron periodic lateral layers
(∼200–450 nm) in a single lamellar structure has been reported
previously and was considered to represent the smallest unit of
crystal growth in foraminifera (Nakajima et al., 2016). These are
comparable to crystals found in the planktonic Globigerina sp.
and Groborotalia sp. (Cuif et al., 2011). In our cross-sections,
the crystal units within the foraminiferal chamber wall do not
appear to be formed by a spiral growth mode. This implies
that partition coefficients for elements obtained from inorganic

FIGURE 9 | Schematic illustration of the SOC. (A) Earlier stages

corresponding to specimens #1 and #2. (B) Later stages corresponding to

specimens #3-#5. OOL, outer organic layer; OCL, outer calcareous layer;

POS, primary organic sheet; ICL, inner calcareous layer; IOL, inner organic

layer; S, spherical structures; CM, calcareous materials; PP, pore plate; gray

triangles, void; white arrows, cavities in the organic structure; CO, concavity;

asterisk, opening spherical structure from cavity into void; LS, spherical

structure with larger cavity inside projection to voids.

precipitation experiments (e.g., Rimstidt et al., 1998) are not
directly comparable to those observed in foraminifera, since
spiral crystal growth (e.g., Davis et al., 2000, 2004) has a
different element incorporation rate than precipitation from an
amorphous precursor (e.g., De Yoreo et al., 2015; Blue et al.,
2017).

Contribution to Improvement of Suggested
Foraminiferal Calcification Models
Our cross sections identified various structures within the
foraminiferal SOC. Since there has been no study revealing the
detailed ultrastructure of the SOC and the possible existence of
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calcification fluid, these newly revealed findings are crucial in
constraining calcification models in foraminifera (e.g., Nehrke
et al., 2013). It has been reported that in Ammonia sp.,
calcification is achieved by active, outward proton transport
(Toyofuku et al., 2017). Likely, these protons are exchanged
for calcium which enters the SOC by transmembrane transport
(TMT) (Nehrke et al., 2013; Toyofuku et al., 2017). The numerous
spherical structures reported here are expected to play an
important role in this ion exchange, for example by surface
enlargement (S in Figure 9). These structures are likely be
produced by seawater endocytosis and transported from the
surface of the SOC inwards (CO and LS in Figure 9). Ion
pumps can be active through the surface of these spheres, which
will result in concentrated element composition in the vesicles
within the organic layer that will be exocytosed into the voids
where calcification takes place (asterisk in Figure 9). As the
total amount of spherical structures and vesicles increases during
calcification, it is proposed that these structures plays a key role
in transporting substances for calcification. Presence of such
transmembrane transporters and transport pathways will need
to be further confirmed by immunostaining on the spherical
structure and organic layers in the SOC.

It is assumed that the process of calcification is similar between
the inner calcareous layer at the cytoplasmic side and the outer
calcareous layer at the outer side, although the contribution
of ions from seawater vs. the cell should differ. Particularly,
as chamber formation progresses, the precipitated calcite layer
seems to form a barrier that hampers the transport of ions from
the surrounding seawater to the growing inner calcareous layer.
Then, the importance of ion transportation from the cytoplasmic
side would increase. It is possible that the ions transported
from the inside are also seawater-derived, as the chamber that is
being formed appears to are not fully filled with cytoplasm, but
instead with seawater, which in turn, be circulated with ambient
seawater through the aperture. It has been reported that the
calcium signal of the cell body increases during later stages of
chamber formation (Toyofuku et al., 2008), implying that the
contribution of cell-derived calcium ions (Ca2+) increases as
chamber formation proceeds.

CONCLUSION

In this study, we observed the detailed structure of the SOC
during chamber wall calcification in a foramnifer (Ammonia
“beccarii”). By using the FIB-SEM technique we were able
to observe the ultra- and microstructure of an intact SOC,
complete with both calcified parts and the cytoplasm, which
was not previously possible. For the first time, we show
that numerous voids of calcareous layers and internal organic

structures are present within the SOC during the calcification
process and provide evidence to interpret their function which
was previously totally unknown. Our results provide further
support for the existence of calcification liquid within the
enclosed SOC and suggest that organic layers are actively
involved in calcite precipitation. By observing morphology of
the SOC in great detail, we improved the understanding of
foraminiferal biomineralization and key conditions under which
element partitioning and isotope fractionation occur, which is
widely significant as foraminifera is an important proxy in
palaeoceanography.
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