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Microscopic marine phytoplankton drift freely in the ocean, harvesting sunlight through

photosynthesis. These unicellular microorganisms account for half of the primary

productivity on Earth and play pivotal roles in the biogeochemistry of our planet

(Field et al., 1998). The major groups of microalgae that comprise the phytoplankton

community are coccolithophores, diatoms and dinoflagellates. In present oceans,

phytoplankton individuals and populations are forced to rapidly adjust, as key chemical

and physical parameters defining marine habitats are changing globally. Here we

propose that microalgal populations often display the characteristics of a multicellular-like

community rather than a random collection of individuals. Evolution of multicellularity

entails a continuum of events starting from single cells that go through aggregation or

clonal divisions (Brunet and King, 2017). Phytoplankton may be an intermediate state

between single cells and aggregates of physically attached cells that communicate and

co-operate; perhaps an evolutionary snapshot toward multicellularity. In this opinion

article, we journey through several studies conducted in two key phytoplankton groups,

coccolithophores and diatoms, to demonstrate how observations in these studies could

be interpreted in a multicellular context.
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Emiliania huxleyi is the most widespread coccolithophore in modern oceans. Populations of this
microalga form massive seasonal blooms that cover thousands of square kilometers and are easily
detected by satellites (Holligan et al., 1983; Balch et al., 1991; Balch, 2018). The blooms exhibit
unique dynamics whereby they form seasonally over several weeks and then suddenly collapse
(Tyrrell and Merico, 2004; Behrenfeld and Boss, 2014; Lehahn et al., 2014). The sudden demise
of these blooms is mostly attributed to viral infection (Bratbak et al., 1993; Vardi et al., 2012;
Lehahn et al., 2014), and bacteria have also been shown to drive the sudden collapse of E. huxleyi
populations (Segev et al., 2016). Algal death, whether due to biotic or abiotic factors, often bears
much similarity to Programmed Cell Death (PCD), a process known from higher plants and
animals (Bidle, 2016).

PCD has also been reported in diatoms, a key group of phytoplankton. Diatoms are responsible
for 50% of the global phytoplankton productivity (Rousseaux and Gregg, 2014). Diatoms, similarly
to coccolithophores, grow rapidly over wide areas of ocean, forming blooms that suddenly
terminate with death of the vast majority of the population. Autocatalytic death in diatoms was
initially reported in response to nutrient limitation (Brussaard et al., 1997; Berges and Falkowski,
1998). Numerous studies have since provided a comprehensive view of the environmental triggers
and molecular mechanisms underlying various death mechanisms in diatoms (Bidle, 2015, 2016).
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In multicellular organisms, PCD is a process that maintains
proper growth and functionality of individuals (Hamburger
and Levi-Montalcini, 1949; Glucksmann, 1951; Lockshin and
Williams, 1964; Kerr et al., 1972; Milligan and Schwartz, 1996;
Jones, 2001; Danial and Korsmeyer, 2004). PCD is an active
and highly regulated process that can be undertaken by a
subpopulation of cells that are infected or genetically perturbed,
in order to eliminate the harmful influence and/or agent and save
the other cells. It is considered to be an altruistic act executed
by individual cells for the greater good of the entire organism
(Glucksmann, 1951; Lockshin and Williams, 1964; Kerr et al.,
1972; Milligan and Schwartz, 1996; Jones, 2001; Danial and
Korsmeyer, 2004).

Much research has been conducted in recent years to elucidate
the eco-physiology of PCD in phytoplankton (Franklin et al.,
2006; Bidle, 2015, 2016). While knowledge about mechanisms
driving and controlling PCD in phytoplankton expands, it
remains unclear why a unicellular organism would execute
a highly controlled death process. The paradox of PCD in
single-celled organisms has been previously raised and discussed
(Ameisen, 1996, 2002; Franklin et al., 2006; Nedelcu et al., 2011;
Bayles, 2014; Durand et al., 2016). It has been posited that PCD
in single-celled organisms has a different origin and nature than
in multicellular organisms (Nedelcu et al., 2011). In addition, it
has been proposed that PCD can increase biological complexity
in microbial communities (Durand et al., 2016). Faced with the
puzzling nature of unicellular PCD, we offer several observations
and highlight reports from the literature that encourage a
reconsideration of the multicellular features of phytoplankton.
We provide several lines of evidence demonstrating multicellular
traits of phytoplankton and subsequently discuss the benefits of
phytoplankton PCD in analogy to this process in multicellular
organisms.

To examine multicellular traits of phytoplankton, we sought
to find a definition for multicellularity. Multicellularity has
independently evolved at least 16 times within all domains
of life (Bonner, 1998; King, 2004; Rokas, 2008; Knoll, 2011).
Previous attempts to define multicellularity, especially in the
microbial world, have delineated two essential parameters
that must be met in a multicellular scenario: intercellular
communication that leads to coordinated action, and cell-cell
adhesion (Lyons and Kolter, 2015). In the next paragraphs
we demonstrate modes of phytoplankton communication and
cell-cell adhesion, and we discuss how phytoplankton PCD
could be interpreted as a coordinated population action. While
clearly phytoplankton cells exist as individual cells, we find
ample reports suggesting that microalgae are frequently found as
multicellular-like assemblages.

PHYTOPLANKTON COMMUNICATION
AND COORDINATED BEHAVIOR

In diatoms, individual cells can communicate warning signals to
the entire population, triggering either cell death or community-
wide defense mechanisms. A diatom cell experiencing stress
conditions will produce the lethal aldehyde (2E,4E/Z)-decadienal

(DD) (Miralto et al., 1999; Pohnert, 2002). Diatoms that are
exposed to high levels of DD will execute PCD through cellular
events that are based on nitric oxide (NO) signaling (Vardi
et al., 2006). At the same time, diatoms that are exposed to
lower levels of DD initiate an intracellular signaling cascade
culminating in resistance to lethal concentrations of DD (Vardi
et al., 2006). The first diatoms that are exposed to stress, release
DD to the environment before they die, and in their death the
hazard is communicated to the rest of the population enabling
a coordinated population-wide immunization. DD discharge by
the dying diatoms has another benefit for the population; one of
the common stresses experienced by diatoms is due to copepod
feeders that graze on diatom communities. DD impairs normal
development of copepods and other invertebrates (Miralto et al.,
1999; Caldwell et al., 2002; Ianora et al., 2004).

Nitric oxide (NO) is another potent signaling molecule
with potential roles in phytoplankton cell-cell communication.
NO has an established cellular function as a pivotal signaling
molecule during PCD in both diatoms and coccolithophores.
Diatom cells produce NO under various stresses (Vardi et al.,
2008). Production of NO is likely to lead to the formation of
reactive oxygen species and ultimately PCD. Upon lysis of the
cell and the release of its content, the produced NO may be
a cue that triggers PCD in neighboring cells (Vardi, 2008). As
a freely diffusing free radical gas, NO from lysing cells easily
spreads through the diatom population acting as a signal (Vardi
et al., 2006). NO, along with other signaling molecules, has been
defined a phytoplankton “infochemical” (Vardi, 2008), due to its
capacity to carry information between individual phytoplankton
cells.

Significant production of NO was also observed in E. huxleyi
populations, both in virus-infected cultures and in natural
populations in the ocean (Bidle, 2015; Hirsh et al., 2016). Indeed
it appears that phytoplankton communities share information in
complex manners facilitating communication between cells. The
release of signals from some cells, which are perceived by other
cells, culminates in a variety of coordinated actions including
death, resilience, and possibly additional modes of behavior
yet to be explored. Physical proximity between individuals
would facilitate efficient communication within the population,
especially when using universal signals as NO.

PHYTOPLANKTON CELL-CELL ADHESION

We have found that E. huxleyi cultures regularly aggregate.
While clumping seemed no more than a technical nuisance, a
closer look revealed that algal aggregates are a complex structure
of cells encased within an extracellular matrix (Figure 1). The
algal aggregates are held together by at least two structural
components: extracellular DNA (Figure 2) and Transparent
Exopolymer Particles (TEP) (Figure 2). Recently, proteins
were characterized as an additional structural component
involved in phytoplankton aggregation (Thornton and Chen,
2017). Interestingly, TEP generation increases under stress
conditions, however production of matrix proteins does not
(Thornton and Chen, 2017). These observations suggest
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that the production of the two polymers is differentially
regulated, demonstrating the insufficiently studied complexity
of phytoplankton aggregates. Further investigation both in the
lab and in the environment is needed to determine the precise

FIGURE 1 | Threads of extracellular matrix connect algal cells. Scanning

Electron Microscopy (SEM) image of E. huxleyi cells with threads attaching

individual calcified and naked cells. Coccoliths debris seen trapped in the

threads (see arrow head), suggestive of the adhesive nature of the filaments.

Scale bar corresponds to 1µm. See Data Sheet 1 for Materials and Methods.

composition of the phytoplankton extracellular matrix. Current
observations hold promise in providing a starting point for
studying algal aggregation into multicellular-like assemblages.
Both extracellular DNA and exopolysaccharides are structural
component of bacterial biofilms (Watnick and Kolter, 2000;
Whitchurch et al., 2002; Vlamakis et al., 2013). Bacterial
biofilms are multicellular structures where, similar to E. huxleyi
aggregates, individual bacterial cells rely on an extracellular
matrix to act as a scaffold that holds the community together.

The phenomenon of phytoplankton aggregation through TEP
has been widely explored. Most reports examined TEP-mediated
aggregation as a mechanism facilitating the sinking of particles

composed primarily of stressed and dying cells (Nissimov and
Bidle, 2017). TEP production indeed increases under various
stresses (Chow et al., 2015), but generation of the polymer is also

seen in the absence of stress conditions. Diatom production of
these polysaccharides was shown to be dynamic, influenced by
various environmental conditions such as temperature, acidity

and light (Ferreyra et al., 2006; Seebah et al., 2014). TEP
formation in diatoms varies between species and was found

to change during different growth phases (Passow, 2002; Kahl
et al., 2008; Chen and Thornton, 2015). The formation of diatom

TEP is increased under turbulent conditions that challenge cell-
cell adhesion, and coagulation of TEP-precursors is enhanced
(Schuster and Herndl, 1995; Stoderegger and Herndl, 1999;
Passow, 2000).

TEP formation by natural E. huxleyi populations was

monitored in mesocosm experiments in which TEP production
was followed during the course of an induced E. huxleyi

bloom (Vardi et al., 2012). In this work, two mesocosms
exhibited high and constant basal levels of polysaccharide

production. In a third mesocosm TEP increased significantly

following viral infection. Microscopy images show algal

FIGURE 2 | DNA-like threads and polysaccharide fibers in algal aggregates. (A) Phase contrast microscopy of an algal aggregate reveals linear structures looking like

extracellular DNA threads (see arrow head). (B) Fluorescence image of the same algal aggregate demonstrating a fluorescent signal from the threads following DNA

staining with Sytox green, a dye that cannot penetrate the cell membrane and thus stains extracellular DNA as well as DNA in cells with perturebed membranes. Scale

bar corresponds to 4µm. (C) Image of an algal aggregate stained with the polysaccaride-binding stain alcian blue. Individual fiber-like structures are seen (indicated

by arrow heads). The central mass of algal cells appears to be encased in a matrix that absorbed the stain, suggesting an exopolysaccharide composition similar to

TEP. Scale bar corresponds to 4µm. See Data Sheet 1 for Materials and Methods.
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cells entangled in an extracellular matrix of TEP fibers
(Vardi et al., 2012).

Taken together, cells in both coccolithophore and diatom
communities appear to be joined together by components of
structural and functional complexity. Interestingly, many genes
that are necessary for animal multicellularity are involved in
cell-cell adhesion and have evolved prior to animal origins
(Brunet and King, 2017). Furthermore, clumping has been used
as a trait to experimentally evolve multicellularity in yeast and
algae (Ratcliff et al., 2012, 2013; Driscoll and Travisano, 2017).
Following clumping, improved cooperation was evident resulting
in better growth and enhanced ability to compete for resources
(Koschwanez et al., 2011). In populations of the freshwater alga
Chlorella as well as Chlamydomonas, a unicellular Volvocine
alga, clumping occurred in response to predation as a defense
mechanism (Sathe and Durand, 2016; Kapsetaki et al., 2017).
Volvocine algae have been studied as a model system for the
transition from unicellular to multicellular life (Kirk, 1999;
Herron, 2016). This group includes species of clumping unicells
such as Chlamydomonas, and the complex multicellular species
of Volvox exhibiting division of labor into non-reproductive
cells (Kirk, 1999; Hanschen et al., 2014; Herron, 2016). Genetic
analysis of Volvocine algae revealed the key role of extracellular
matrix in the transition to multicellularity (Merchant et al.,
2007; Prochnik et al., 2010). It would therefore be fascinating to
explore the genetics of phytoplankton exopolymers and modes
of attachment and compare them to components with known
functions in multicellularity such as cadherins, integrins, and
extracellular matrix domains (Brunet and King, 2017). A better
characterization of the phytoplankton extracellular polymers is
crucial in determining whether these structural components
are specific only toward the organisms that produce them, or
whether the fibers are generally adhesive thereby promoting
multi-species assemblages.

SEA SKIN

TEP have long been recognized as crucial components in the
upper millimeter of the ocean, a region also known as the
sea surface microlayer (SML) (Verdugo et al., 2004; Wurl and
Holmes, 2008). In 1983, Sieburth first hypothesized that the SML
is a continuous hydrated gelatinous layer formed by complex
organic structures, and referred to it as the “sea’s skin” (Sieburth,
1983). Later studies have confirmed and further discussed the
role of TEP in the formation and gelatinous nature of the SML
(Wurl andHolmes, 2008; Cunliffe andMurrell, 2009). The source
of the TEP that accumulates and determines the SML properties
are the phytoplankton communities beneath it that continuously
produce and replenish the reservoir of oceanic extracellular
polysaccharides (Cunliffe and Murrell, 2009). The fact that TEP
are found at the sea surface, attests to the buoyant nature of
these polymers. The floating capacity of TEP would be crucial
in mediating multicellular-like assemblages without forcing them
to sink. Indeed further study into the composition and structure
of TEP in floating versus sinking particles is needed. Floating
colonies of the phytoplankton Phaeocystis are composed of cells

embedded in a polysaccharidic matrix (Schoemann et al., 2005).
The matrix in these colonies maintains the buoyancy of the
aggregated cells and keeps them afloat (Schoemann et al., 2005).
One could think of the SML as a viscous scaffold holding together
a global and probably diverse community of phytoplankton cells
that comprise Sieburth’s sea skin.

CONCLUDING REMARKS

Given the abundance of an oceanic gelatinous SML matrix,
the ability of phytoplankton to aggregate, communicate and
execute coordinated behaviors, perhaps we should think of the
global phytoplankton population as an “oceanic tissue”? An
ecosystem of multicellular units, each unit interconnected by
an extracellular matrix, acting semi-coherently across kilometer
scale. The basic multicellular unit would be of physically
attached cells. But what are the physical dimensions of such
multicellular units? How big are populations of physically
attached phytoplankton cells? These questions should be the
subject of further study. Furthermore, once attached through
extracellular fibers, do cells keep dividing? This might be a key
question in attempts to decipher the onset of phytoplankton
aggregates; do individual cells converge or do cells undergo
clonal divisions while attached? Both modes of multicellular-
like assemblages occur in various microorganisms including
choanoflagellates, ciliates, fungi, amoeba, and more (Brunet and
King, 2017). Aggregation and clonal division are considered to be
ancestral forms of current complex multicellularity, with clonal
development being ancestral to all forms (Brunet and King,
2017). Regardless of its mode of formation, physical proximity
between phytoplankton cells would make it easier for metabolites
to diffuse among individuals, transferring information that
enables coordinated behaviors.

The existence and evolution of PCD in unicells is controversial
(Deponte, 2008). PCD in unicellular organisms could be
explained from an evolutionary point of view using inclusive
fitness theory, as long as cells are surrounded by genetic
relatives (Hamilton, 1964). Adaptive explanations regarding the
benefits conferred by PCD in a population of unicells have been
discussed and supported by empirical work (Franklin et al.,
2006; Vardi et al., 2007; Durand et al., 2014). Non-adaptive
explanations discussing the different evolution and functions of
phytoplankton PCD have also been raised and experimentally
supported (Segovia et al., 2003; Jiménez et al., 2009; Nedelcu
et al., 2011). Here we argue that phytoplankton populations have
multicellular features that encourage examination of PCD in
phytoplankton similarly to PCD in metazoans.

In analogy to the benefits of PCD in metazoans, a subset of
the community members must survive the death of their siblings
for a population-wide PCD to be beneficial in a multicellular-like
community. Indeed, both coccolithophores and diatoms have
such subpopulations with altered and durable phenotypes; in
E. huxleyi a shift to a motile cell type occurs in a small part
of the population following viral infection (Frada et al., 2017).
The motile cells are resistant to the virus. Thus, while the virus
triggers the spread of PCD in the population, the infection
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gives rise to a resistant subpopulation. A similar phenotype-
remodeling mechanism is seen in diatoms, where resting spores
that are highly resilient cells that endure environmental stresses,
can be formed (Sims et al., 2006). These survival strategies
demonstrate how the context of multicellularity could facilitate
a better understanding of phytoplankton PCD and phenotypic
variations.

What areas of research would benefit from acknowledging
the multicellular features of phytoplankton? We offer here two
examples of testable hypotheses with the hope of sparking
discussions that would lead to further ideas:

(i) The algal microenvironment- In E. huxleyi, chemical
features of the algal cell and its mineralized shell are used as
indicators of environmental and physiological conditions.
Examples include boron concentrations and isotopic
composition as pH indicators (Stoll et al., 2012) and carbon
isotopes as CO2 proxies (Pagani, 2002). In algal clumps, it
is likely that the chemical features of microenvironments
within aggregates differ from the ambient conditions due to
respiration, calcification and altered diffusion imposed by the
extracellular matrix. Therefore clumping, as a regular feature
of multicellularity, should be considered in efforts to use algal
derivatives as indicators of environmental conditions. In line
with this idea, in blooms of the dinoflagellate Peridinium
gatunense, the pH increases in dinoflagellate patches resulting
in CO2 limitation and oxidative stress (Vardi et al., 1999).
Further, the chemical regime in the aggregate microenvironment
would likely resemble a semi-closed system due to restricted
diffusion. In comparison with the open ocean, nutrients would
be exhausted more rapidly within aggregates and cells would
become isotopically heavier (Kendall and Caldwell, 1998).

(ii) Functional heterogeneity- Phenotypic heterogeneity in
isogenic phytoplankton communities is found in enzymatic
activities (Dyhrman and Palenik, 2003), structural features
(Godoi et al., 2009), biomineralization processes (Znachor et al.,
2013), biosynthesis of secreted molecules (Hamilton and Lenton,
1998), motility (Frada et al., 2017) and more. In a multicellular

context, the heterogeneity in these populations could be a
manifestation of division of labor (Crespi, 2001). Whether
disruption of algal aggregates influences the heterogeneity of algal
populations should be further tested.

As our oceans change, phytoplankton populations
are forced to quickly adapt. How phytoplankton cells
adhere to each other, share information, and give rise
to coordinated activity merits further study both in the
laboratory and in the environment to allow a comprehensive
understanding of these key populations under changing
conditions.
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