
METHODS
published: 20 August 2018

doi: 10.3389/fmars.2018.00286

Frontiers in Marine Science | www.frontiersin.org 1 August 2018 | Volume 5 | Article 286

Edited by:

Yuichiro Takeshita,

Monterey Bay Aquarium Research

Institute, United States

Reviewed by:

Melissa Ward,

University of California, Davis,

United States

Byron Walter Blomquist,

University of Colorado Boulder,

United States

*Correspondence:

Tatsuki Tokoro

tokoro-t@pari.go.jp

Specialty section:

This article was submitted to

Coastal Ocean Processes,

a section of the journal

Frontiers in Marine Science

Received: 27 March 2018

Accepted: 27 July 2018

Published: 20 August 2018

Citation:

Tokoro T and Kuwae T (2018)

Improved Post-processing of

Eddy-Covariance Data to Quantify

Atmosphere–Aquatic Ecosystem CO2

Exchanges. Front. Mar. Sci. 5:286.

doi: 10.3389/fmars.2018.00286

Improved Post-processing of
Eddy-Covariance Data to Quantify
Atmosphere–Aquatic Ecosystem CO2
Exchanges
Tatsuki Tokoro* and Tomohiro Kuwae

Coastal and Estuarine Research Group, Port and Airport Research Institute, Yokosuka, Japan

The capture of carbon by aquatic ecosystems and its sequestration in sediments has

been studied as a potential method for mitigating the adverse effects of climate change.

However, the evaluation of in situ atmospheric CO2 fluxes is challenging because of the

difficulty in making continuous measurements over areas and for periods of time that are

environmentally relevant. The eddy covariance method for estimating atmospheric CO2

fluxes is the most promising approach to address this concern. However, methods to

process the data obtained from eddy covariancemeasurements are still being developed,

and the estimated air-water CO2 fluxes have large uncertainties and differ from those

obtained using conventional methods. In this study, we improved the post-processing

procedure for the eddy covariance method to reduce the uncertainty in the measured

air-water CO2 fluxes. Our procedure efficiently removes low-quality fluxes using a

combination of filtering methods based on the received signal strength indicator of the

eddy covariance sensor, the normalized standard deviation of atmospheric CO2 and

water vapor concentrations, and a high-pass filter. The improved eddy covariance fluxes

revealed diurnal and semi-diurnal cycles and a significant relationship with water fCO2,

patterns that were not observed from the results before filtering. Although there were still

differences with indirect conventional measurements like the bulk formula method, the

methods used in this study should improve the accuracy of carbon flow estimates at

sites with complex terrains like coastal areas.

Keywords: CO2 flux, eddy covariance, post-processing, aquatic ecosystems, indirect conventional method

INTRODUCTION

Aquatic environments are considered critical to the mitigation of adverse climate change effects
because of their ability to store atmospheric CO2. Previous studies have estimated that the ocean
absorbs approximately one-fourth of the CO2 emitted by anthropogenic activities (IPCC, 2013).
However, the effect of shallow aquatic ecosystems on atmospheric CO2 remains a controversial
topic. Several previous studies, after taking into account carbon inputs from land, have concluded
that shallow aquatic ecosystems are sources of atmospheric CO2 (e.g., Gazeau et al., 2005; Borges
et al., 2006; Chen et al., 2013). In contrast, some autotrophic, shallow aquatic ecosystems have been
reported to be net sinks for atmospheric CO2 (e.g., Schindler et al., 1997; Tokoro et al., 2014).
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In situ measurements of atmospheric CO2 fluxes are
necessary for precise analysis of carbon cycling in aquatic
environments. CO2 fluxes in aquatic environments are difficult
to determine because of the variability of several factors,
including concentrations of CO2 in the water and air and the
physical characteristics of the atmosphere and water surface.
Several methods have been proposed for measuring in situ CO2

fluxes. Because each of these methods works best at a different
combination of spatial and temporal scales and is associated with
different costs and technical difficulties, a variety of methods
have been applied to different aquatic environments (e.g., oceans,
estuaries, and lakes) to assess rates of aquatic carbon cycling.

Methods of estimating air-water CO2 fluxes can be assigned
to one of two categories: (1) indirect estimations based on
CO2 concentration gradients just below the water surface (Lewis
and Whitman, 1924) or from the renewal rate of a very small
body of water (Danckwerts, 1951) and (2) direct estimations.
With either of the indirect methods, the CO2 flux is calculated
from the product of the difference in the CO2 fugacity (fCO2)
between air and water, the CO2 solubility, and a physically
regulated parameter called the transfer velocity. Because the
transfer velocity cannot be estimated directly, empirical and
hydrodynamic models for estimating transfer velocities have
been proposed (Garbe et al., 2014).

At the present time, the empirical model is primarily used
for evaluating aquatic CO2 fluxes because of the difficulty in
applying the hydrodynamic model. In the empirical model, the
regulating factor for transfer velocity has been identified from
several direct CO2 measurements by using tracers such as 14C
and SF6 (e.g., Broecker and Peng, 1982; Ho et al., 2014) or
water-tank experiments (e.g., Komori et al., 1993). Based on
these results, several empirical equations have been formulated
manly for the open ocean fluxes. The wind speed above the water
surface is a metric of one regulating factor (e.g., Liss andMerlivat,
1986; Wanninkhof, 1992; Ho et al., 2006). In the case of shallow
systems, water velocity fields and depths also have been used to
estimate the gas transfer velocity (O’Conner and Dobbins, 1958;
Borges et al., 2004).

However, the relationship between the gas transfer velocity
and such environmental parameters is affected by the topography
(depth, bottom roughness, distance from the land, etc.) and
is site-specific (e.g., Tokoro et al., 2008) especially at coastal
area because the physical conditions near the water surface that
unambiguously regulate the gas transfer velocity are functions
of the topography, even under the same wind and current
conditions. Furthermore, application of the empirical method is
limited by its poor temporal and spatial coverage. Moreover, the
determination in most previous studies of air-water CO2 fluxes
as snapshots that did not account for diurnal changes or annual
cycles resulted in considerable uncertainty and bias (Kuwae
et al., 2016). In brackish environments in particular, temporal
variability of water fCO2 is significant, and because the carbonate
buffer effect is weak, fluctuations of fCO2 become very large
(Zeebe and Wolf-Gladrow, 2001). Use of empirical methods to
carry out a comprehensive analysis of dynamic carbon cycling in
aquatic environments with large spatial and temporal variability
would therefore be very costly and require much effort.

Another method for evaluating air-water CO2 fluxes is direct
measurement of in situ fluxes. One such technique involves use
of a chamber floating on the water surface (e.g., Frankignoulle,
1988; Tokoro et al., 2008). The floating chamber method is
used to determine the air-water CO2 flux from continuous
measurements of CO2 concentrations in the air inside a hollow,
box-shaped device floating on the water surface. Although this
method is the easiest of the direct methods to use in shallow
coastal waters because of its relative simplicity, like the empirical
method it is poorly suited for obtaining long-termmeasurements
over wide areas.

Another direct measurement technique is the eddy covariance
(EC) method, which is commonly used to determine mass and
heat fluxes in terrestrial environments and has recently been
used to estimate air-water fluxes of greenhouse gases (e.g.,
Tsukamoto et al., 2004). The determination of the EC CO2 flux is
based on the micrometeorological behavior of atmospheric eddy
diffusion and is calculated from the covariance of atmospheric
CO2 concentrations and vertical wind speeds measured at high
frequency (more than 10Hz). Because EC measurements can be
performed automatically and represent the flux over a large area,
the EC method can be used to obtain a detailed analysis of CO2

fluxes.
Despite the promise of EC measurements, their application

in aquatic environments remains challenging (Tsukamoto et al.,
2004; Rutgersson and Smedman, 2010; Vesala, 2012; Blomquist
et al., 2013; Ikawa andOechel, 2014; Kondo et al., 2014; Landwehr
et al., 2014). The main difficulty is that the air-water CO2 flux
is small compared with the air-land CO2 flux (Vesala, 2012;
Landwehr et al., 2014).

There are several other problems in addition to the small
fluxes in using EC measurements in aquatic environments.
The uncertainty of EC measurements has been attributed to
the spatial and temporal heterogeneity of water (Mørk et al.,
2014). The EC flux is calculated as the average within a
measurement area called the “footprint,” which can range from
several hundred meters to several kilometers windward from
the measurement point (e.g., Schuepp et al., 1990). Therefore,
EC fluxes at heterogeneous water sites are different from the
fluxes determined by methods that estimate the CO2 flux in an
area of only several square meters (e.g., the empirical method
and floating chamber method). The inflow of terrestrial air
can cause unnatural temporal changes in the atmospheric CO2

concentration and spatial heterogeneity at the measurement site.
It is therefore necessary to account for the characteristics of the
aquatic environment and carry out post-processing (Leinweber
et al., 2009) to avoid large uncertainties or biases in EC flux
calculations. Relevant procedures include use of a statistical test
based on the short-term variance of CO2 and vertical wind
speed and measurement of the integral turbulent characteristics
of vertical wind and air temperature (Mauder and Foken,
2004).

In this study, we improved a post-processing procedure for
aquatic EC measurements that excludes low-quality data and
corrects unnatural changes in EC measurements by using a
series of data-filtering steps. The improved process is based on
the idea that the unnatural changes during flux measurements
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causes spikes, drifts, offsets, and long-term variation of the
CO2 and H2O raw data. We compared the results calculated
with our procedure to those obtained using conventional EC
post-processing procedures along with an existing EC filtering
procedure and a parameter of the indirect model. We then
discuss the differences among these post-processing methods
with respect to the regulating factors of aquatic CO2 fluxes.

METHODS

Field Measurements
Continuous EC measurement data were used for the evaluation
of the post-processing procedure and analysis of atmospheric-
aquatic ecosystem CO2 exchanges. The data were collected from
a brackish lagoon in Japan (the Furen Lagoon, Figure 1) from
28 May to 21 October 2014, during which time the water
surface was not frozen. Most of the study area (57.4 km2) was
covered by seagrass meadows (mainly Zostera marina). The
water was shallow (1–2m), except in a channel that connected
the eastern and western basins of the lagoon (approximately
5m deep). Freshwater flows into the western basin through
several rivers that run through the surrounding grass farms,
and seawater is exchanged through the lagoon mouth, which
opens to the Okhotsk Sea. A previous study has found that
the air-water CO2 flux in the lagoon is affected by changes
of salinity caused by the inflow of river water and tides as
well as by changes of dissolved inorganic carbon resulting
from biological processes such as photosynthesis (Tokoro et al.,
2014). The measurement platform was built at the same
site used in that previous study (43◦19.775′ N, 145◦15.463′

E); the effects of photosynthesis and changes in salinity are
most notable at this location in the lagoon (Tokoro et al.,
2014).

The EC devices used in this study were as follows.
Atmospheric CO2 concentrations and water vapor were
measured with an open-path sensor (LI-7500A, LI-COR, USA).
The three-dimensional (3D) wind velocity, air temperature,
and atmospheric pressure were measured with a 3D sonic
anemometer (CSAT-3, Campbell Scientific, USA). The data
were logged and managed by a SMARTFlux system (LI-COR,
USA). The open-path sensor and the wind velocimeter were
attached to the platform approximately 3.0–5.5m above the
water surface (the height varied with the tide). The sampling
rate for all data was 10Hz, and the fluxes (CO2, water vapor,
and heat) were calculated as averages over 30-min intervals.
Batteries and solar panels were attached to the platform as
power sources. Battery replacement, data collection, and device
maintenance were performed approximately every 2 weeks.
Water temperature and salinity were measured continuously
with a conductivity-temperature sensor (Compact-CT, Alec,
Japan).

Conventional Calculation and
Post-processing of Fluxes
The conventional EC flux calculation method (hereafter PP1)
is described in this section, for comparison with the proposed

FIGURE 1 | Location of the measurement site (Furen Lagoon, Hokkaido,

Japan). The lagoon is shallow (1–2m). Green area indicates seagrass

meadows. Eddy covariance (EC) measurements were performed on the

platform in 2014.

improved procedure introduced in the next section. The air-
water CO2 flux (F) was calculated every 30min using the
following equation:

F = ρ′
cw

′ · F1 + µ
ρc

ρd
ρ′
vw

′ · F1 + ρc

(

1+ µ
ρv

ρd

)

T′
aw

′

Ta
· F2 (1)

where the coefficients F1 and F2 are correction terms based on
the transfer functions that correct for the frequency attenuation
of the air-sea CO2 flux caused by the response time of the sensor,
path-length averaging, sensor separation, signal processing, and
flux-averaging time (Massman, 2000). The first term on the right-
hand side of Eq. (1) is the product of F1 and the uncorrected
air-sea CO2 flux calculated as the covariance of the CO2 density
ρc and the vertical wind speed w (the bar and the prime indicate
the mean and the deviation from the mean, respectively). The
second and third terms are the Webb-Pearman-Leuning (WPL)
correction of latent heat and sensible heat, respectively (Webb
et al., 1980). The other variables in Eq. (1) are defined as
follows: ρd is dry air density, ρv is water vapor density, Ta

is air temperature, and µ is the ratio of the molar weight of
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dry air to that of water vapor. The footprint (measurement
area) depends on several factors, including the measurement
height, wind speed, atmospheric stability, and measurement site
roughness (10−4 cm) (Schuepp et al., 1990; Kondo, 2000). This
footprint was several hundred meters on the windward side of
the measurement site.

The deviation of each parameter in Eq. (1) was calculated
by subtracting the 30min average from the instantaneous data
after deleting obviously low-quality data (e.g., negative values of
CO2 or water vapor concentration). Other corrections to the raw
data included coordinate rotation of the 3D wind component
(double rotation; Lee et al., 2004), time lag of the measurement
due to the separation of the CO2 sensor and the wind velocimeter
(covariance maximization; Lee et al., 2004), exclusion of wind
data contaminated by the wind velocimeter frame, and correction
of themeasurement noise (Vickers andMahrt, 1997) based on the
default settings of the data management software (EddyPro 5.1.1,
LI-COR, USA).

For comparison with our improved post-processing
procedure described in the next section, a conventional
post-processing was applied to the PP1 data. The conventional
post-processing was the statistical test using the short-term
variation of CO2 concentrations and vertical wind speeds, and
the integral turbulent characteristics of vertical wind speed and
air temperature (Mauder and Foken, 2004; hereafter, the test is
designated the “TK2” from the software package). The TK2 test
has been widely implemented in several software applications,
including EddyPro. We used the optional EddyPro output with
default setting.

Improved Post-processing Procedure
After calculating the EC flux using conventional post-processing
as described in Sect. 2.2 (PP1), we recalculated the EC flux
using our improved post-processing procedure (called PP2
hereafter; Figure 2). The PP2 procedure is based mainly on
excluding low-quality data and high-pass (HP) filtering. It is
also focused on aquatic environments in which the spatial and
temporal variations of atmospheric CO2 are large. The procedure
combines a series of filtering methods based on the received
signal strength indicator (RSSI) of the EC sensor, the normalized
standard deviation (nSD) of the atmospheric CO2 and water
vapor concentrations, andHP filtering detrending of the rawCO2

signal.
The RSSI, obtained from the CO2 sensor of the EC

measurement instrumentation every 30-min, indicates the
available signal strength of the sensor. This parameter has been
used to assess the validity of the measurement. In this study, we
used the RSSI to filter the CO2 data. First, data in the 30min time
series were excluded if their RSSI was low. The RSSI threshold for
exclusion was set to 90% in this study because the number of data
remaining after the RSSI filtering rapidly decreased at thresholds
above this value (e.g., 91 and 78% of the data remained at RSSI
thresholds of 90 and 95%, respectively).

Second, criteria for excluding low-quality fluxes were
identified. Low-quality fluxes were identified from unnatural
discontinuous change in the CO2 and vapor data, which might
cause the interference to CO2 measurement. Such data were

FIGURE 2 | Post-processing methods for EC flux calculations. The EC CO2

flux was calculated by using conventional post-processing (PP1) in EddyPro.

The corrections involved in PP1 have been described in previous publications

(e.g., Lee et al., 2004). Detrending was performed by using block averaging

(BA). Our new post-processing method (PP2) included two data-filtering steps

based on the received signal strength indication of the CO2 sensor and the

standard deviation of the CO2 and water vapor concentrations divided by the

corresponding average standard deviation during the measurement period

(nSD). Detrending in PP2 was performed by using high-pass filtering

(Massman, 2000).

excluded based on the normalized standard deviation (nSD),
calculated as follows: (1) calculate the SD of 10Hz CO2 and
vapor concentration for every 30min measurement; (2) divide
each CO2 and vapor SD by themean RSSI-filtered CO2 and vapor
concentration during the entire measurement period (CO2: 16.02
mmol m−3, water vapor: 548.10 mmol m−3), respectively; and
(3) take the larger value of the divided CO2 or vapor SD for every
30min measurement. For the determination of the threshold, we
checked the ten most extreme outliers of the CO2 fluxes, which
were probably low-quality, and we confirmed whether they were
actually low-quality or not by visual confirmation of whether
there were unnatural discontinuous change, or extreme values
(negative concentration or values that differed from natural
values by more than a factor of 1000). We found that the nSD
threshold eliminated all of the actually low-quality data among
these top ten outliers. In this case, we set the nSD threshold value
to the lowest value among the ten low-quality data (0.050).
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Finally, HP filtering was applied to detrend the raw
concentration deviations in Eq. (1), in place of simple mean
subtraction used in the PP1 procedure. This procedure corrected
relatively long-term (several minutes to 30 minutes) variations
in CO2 or water vapor concentrations that were independent of
eddy fluctuations and were caused by the temporal and spatial
heterogeneity of the atmospheric mass. HP filtering is often
applied to measurements in a complex environment; however,
incorrect application of HP filtering results in underestimation
of fluxes (Lee et al., 2004). HP filtering was applied by using an
exponential moving average as follows:

xi
′
= (1− A) x′i−1 + Axi

A = e
−

(

1
/

fτ

)

, (2)

where xi and xi
′ are an instantaneous datum and filtered datum

for PP2 at time i, respectively. The latter parameter is plugged
in the Eq. (1) as the deviation from the mean. The parameter τ

is the time constant of the exponential moving average, which
was determined to be 150 s in a previous study (McMillen, 1988).
This value means 1, 50, and 99% of the CO2 fluxes (cospectrum
of CO2 and vertical wind speed) are reduced at frequencies
lower than 1/15, 1/150, and 1/1,500Hz, respectively (Massman,
2000). Therefore, the effect of long-term variation of CO2 in each
measurement (during 30min = 1/1,800Hz) could be excluded.
HP filtering was applied to all of the measured instantaneous data
(i.e., 3D wind velocity, air temperature, CO2 and water vapor
concentrations, and atmospheric pressure). The parameter f is
the sampling frequency (10Hz).

Regulation Factor in the Indirect Model
In the indirect model, flux is calculated as the product of the gas
transfer velocity, the CO2 solubility in water, and the difference in
CO2 fugacity between air and water (Lewis and Whitman, 1924).
However, the method of estimating the gas transfer velocity has
varied and should probably be site-specific in coastal areas, as
described above. The estimation should be inaccurate at our site,
in particular, where the water depth was very shallow and seagrass
was abundant. We therefore decided to compare the difference in
CO2 fugacity (1fCO2) with EC data as a theoretical regulating
factor of air-water CO2 flux.

The measurements were performed during the daytime on 29
May, 15 July, and 21 September 2014 for comparison with the
EC measurements. The water samples used to determine CO2

fugacity in water (fCO2water) were collected just below the water
surface (up to 20 cm below the water surface) to measure the
concentration of CO2 where direct gas exchange with air occurs.
The sampling was performed within the EC footprint (estimated
from Schuepp et al., 1990) for purposes of comparing the CO2

fugacity and EC fluxes. The sampling points were determined
from the wind direction and the distance from the platform
measured using a hand-held GPS unit (Venture HC, Garmin,
USA; see Table S1). The water fCO2 was determined from the
total alkalinity and the dissolved inorganic carbon content of
the water sample using a batch-type carbonate measurement
system (ATT-05, Kimoto electrics, Japan) and the CO2SYS

FIGURE 3 | EC CO2 fluxes with (A) PP1 (mean: −1.93 µmol m−2 s−1, SD:

52.4 µmol m−2 s−1, n = 2,502) and with (B) PP2 (mean: −0.54 µmol m−2

s−1, SD: 2.2 µmol m−2 s−1, n = 1,833). Several data points in panel (A) are

off the scale and not shown for comparison with (B), in which all data are

shown.

program (Pierrot et al., 2006). The CO2 fugacity in air (fCO2air)
was calculated from the CO2 concentration, air temperature,
pressure, and humidity measured by the EC devices.

RESULTS

PP1 Data and TK2 Test
During the deployment period, 4,464 flux data points
corresponding to 2,232 h were obtained; 1971 of those data
points (44%) were excluded as low-quality data after PP1
application. The mean and SD of the EC CO2 fluxes were−1.93
and 52.4 µmol m−2 s−1, respectively. Figure 3A shows the
retained CO2 flux data.

Examples of PP1 measurements were some extremely high
values of the CO2 fluxes. The largest positive CO2 flux (release
to atmosphere) was 156.51 µmol m−2 s−1 at 2:00 on 23 June
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(day 56). The largest negative CO2 flux (uptake of atmospheric
CO2) was −217.93 µmol m−2 s−1 at 22:00 on 4 October (day
129). These fluxes were more than three orders of magnitude
larger than the average of themeasured EC fluxes. Figure 4 shows
the instantaneous atmospheric CO2 concentration, water vapor
concentration, and the cumulative covariance between CO2 and
vertical wind speed during the times when the CO2 fluxes were
most positive or most negative. Among the most positive data,
spikes and discontinuities were observed in the atmospheric CO2

and water vapor concentrations, despite the prior correction
applied by the PP1 processing. On the other hand, shifts of
atmospheric CO2 and vapor were observed during the first
5min for the most negative data. On the other hand, shifts of
atmospheric CO2 and vapor were observed during the first 5min
for the most negative data, leading to two unnatural fluctuations
in the flux during the first 5min. This fluctuation in the computed
flux was caused by the cross-sensitivity (interference between
CO2 and vapor measurement) given the unnatural change of
vapor and the inverse correlation between CO2 and vapor.
The cumulative covariance indicated that the covariance at
certain periods (0–5min) contributed significantly to the total
cumulative covariance.

The TK2 test flagged the best quality data (flagged “0” in
the EddyPro output), the general quality data (flagged “1”), and
wrong data that should be discarded (flagged “2”). The mean and
SD after removal of the data flagged “2” from PP1 were−2.53 and
57.2 µmol m−2 s−1, respectively (196 data removed). The mean
and SD after removal of the data flagged “1” and “2” from PP1
(only data flagged “0” were retained) were −2.15 and 4.48 µmol
m−2 s−1, respectively (1395 data removed).

PP2 Data
Figure 3B shows the EC CO2 flux data subjected to PP2 (RSSI,
nSD, and HP filtering). Of the 2,493 total data points remaining
after PP1, approximately 234 (9%) were excluded by RSSI
filtering. Subsequent nSD filtering removed 426 additional data
points (17%); approximately 73% of the measurement data
remained after this filtering. Themean and SD of the ECCO2 flux
after PP2 were −0.54 and 2.2 µmol m−2 s−1, respectively. For
comparison, the mean and SD obtained by block averaging, not
HP filtering, were−1.02 and 2.74 µmol m−2 s−1, respectively.

The number of data remaining after PP2 was almost the same
during the day and night, but the average value of the flux
shifted to positive in the daytime. This shift was observed after
HP filtering in PP2 but not after excluding data with the nSD
(Figure 5). Cumulative fluxes showed an influx in the summer
season and an efflux in autumn and winter (Figure 6). The trend
was the same between PP1 and PP2 data, but a large jump at
around 30 days was absent from the PP2 data.

Figure 7 shows the nSD for the EC CO2 flux data. There was
no significant relationship between the nSD and atmospheric
parameters (air temperature, water vapor, atmospheric CO2

concentration, wind speed and wind direction; the multiple
correlation coefficient was 0.23) and water parameters (salinity,
water temperature and water depth; r= 0.25). However, a nSD of
more than 0.3 was observed only when atmospheric conditions

FIGURE 4 | Instantaneous values of (A) atmospheric CO2 concentration,

(B) water vapor (atmospheric H2O) concentration, and (C) cumulative

covariance of atmospheric CO2 concentration and vertical wind speed

calculated with PP1 when the CO2 fluxes showed the largest positive value

(156.5 µmol m−2 s−1; blue) and the largest negative value (−217.9 µmol

m−2 s−1; red). Note that the covariance was not equal to the CO2 flux

because there was no Webb-Pearman-Leuning correction.

were relatively stratified and humid. Water vapor around the EC
devices may therefore have contaminated the CO2 measurement.

The nSD and TK2 test produced consistent results. Among the
best quality data based on the TK2 test (flagged “0” in EddyPro),
the nSD was the lowest and equal to 0.043 ± 0.133 (average
± SD, n = 1,098). In contrast, the nSD was 0.062 ± 0.209
(n = 1,199) among the general qualified data (flagged “1”) and
was the highest, 0.090± 0.340 (n= 512), among wrong qualified
data (flagged “2”). Meanwhile, the nSD after PP1 and PP2 were
0.057 ± 0.207 (n = 2,493) and 0.024 ± 0.011 (n = 1,833),
respectively. However, the large SD showed that the TK2 test and
the nSD filtering were not completely consistent.

Figure 8 shows an example of the results in which the
difference of CO2 fluxes between before and after HP filtering was
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FIGURE 5 | Changes in (A) the number of data points and (B) average value

of diurnal flux by filtering. Some plots of data after PP1 were omitted for clarity.

The remaining ratio of the flux data after PP2 (red line) was almost the same

between daytime and nighttime. In contrast, the average value in the daytime

shifted to positive (efflux). The shift was caused by high-pass filtering (black

solid line and closed circles), not the filtering using nSD (dashed line and open

circles to green data). The error bars mean the 95% confidential limit.

a maximum (measured at 8:00 on day 84, August 21). These data
were not excluded by the RSSI and nSD filtering (RSSI = 100%,
nSD = 2.07 × 10−2), thus it was not thought to be low-quality
in spite of the spikes in the raw data and co-spectrum. The trend
showed by the concentration of atmospheric CO2 over the 30-
min time interval indicated that the block average could not
extract appropriate eddy movements from the time-series data.
The normalized cospectrum of CO2 concentration and vertical
wind speed showed that the cospectrum density at low frequency
before HP filtering was very large and not convergent. The
implication is that themeasurement was not appropriate, because
the average flux value should have changed if the measurement
period was shorter or longer than 30min. However, the density
after HP filtering was reduced and convergent. The filtering
thus successfully excluded the effect caused by the variation of
atmospheric CO2 concentrations.

Difference in CO2 Fugacity in the Indirect
Model
The measured differences in CO2 fugacity showed spatial and
seasonal variations (see Table S1). The means and SDs were
469.21 ± 732.29µatm (n = 18) on 29 May (day 1), 2890.51

FIGURE 6 | Cumulative EC flux after PP1 and PP2. The data during the gap

period due to bad weather conditions were not counted. The seasonal trends

of the fluxes were roughly the same, except for the large change around 30

days after the measurements started. This comparison shows that the PP2 did

not bias the seasonal trend and improved the continuity.

FIGURE 7 | Comparison between the effects of the filtering parameter and the

CO2 flux after the RSSI filtering procedure. The threshold (broken red line) was

determined so as to remove the confirmed low-quality data. Normalized

standard deviation (nSD) is the standard deviation over 30-min interval divided

by the average during the entire measurement period (threshold = 0.05; 74%

of data retained).

± 1013.98µatm (n = 18) on 15 July (day 48), and −247.73 ±

53.49µatm (n= 10) on 21 September (day 115). The correlation
of the fCO2 was insignificant with PP1 data (P>0.4) while was
significant with PP2 data (P < 10−3).

DISCUSSION

Identifying and removing bad parameters is a longstanding issue
in the application of direct EC flux measurements. This paper
presents two methods for identifying low-quality flux values
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FIGURE 8 | Examples of the deviation calculations of atmospheric CO2

concentration (A) and the cospectrum of atmospheric CO2 concentration and

vertical wind speed (B). The cospectrum density was normalized by each

covariance of CO2 and vertical wind speed.

and a high-pass filtering procedure for detrending low-frequency
variability in the raw data prior to computing covariance.

Our filtering method, PP2, successfully excluded low-quality
fluxes. The SD was decreased by a factor of 24 (52.4 µmol m−2

s−1 in PP1 to 2.2 µmol m−2 s−1 in PP2). While the atmospheric
CO2 uptake rate calculated via PP1 measurements (−1.93 µmol
m−2 s−1) was reduced in magnitude by 72% after PP2 to −0.54
µmol m−2 s−1.

Removing only the wrong data (flagged “2”) with the TK2 test
was inadequate for the comparison because the SD was almost
the same as before filtering. Given the complex situation at the
measurement site, only the best quality data (flagged “0”) should
be used for the comparison with the PP2 procedure (mean and
SD were−2.15 and 4.48µmol m−2 s−1, respectively). The largest
difference between the flagged “0” data and PP2 data was the
mean CO2 flux during the measurement period. Unfortunately,
there was not a large difference between these data during the
water fCO2 measurement period. It was therefore difficult to
evaluate which data were reliable by the indirect model or other
flux estimation. However, the uptake rate based on the PP2
data would be more consistent with the range of atmospheric
CO2 uptake rates reported in previous coastal studies by the
indirect method and the direct measurement using the floating
chamber method (e.g., Borges et al., 2005; Chen et al., 2013;
Laruelle et al., 2013); the most negative CO2 flux ever reported
was −1.08 µmol m−2 s−1 during spring in the Baltic Sea

(Chen et al., 2013). In addition, the data in Figure 4, which
were the largest positive and negative flux after PP1 should also
support the validity of PP2. The data has unnatural spikes and
fluctuations by the cross-sensitivity and was removed by PP2
while the data was flagged “1” by TK2 and passed by usual
application of TK2. This is an example of higher accuracy of
PP2 than that of TK2 in this study. These results indicate that
the thresholds of the RSSI and nSD in this study were valid
although they determined by arbitral criteria. Given that the
theoretical identification of signal and noise is still discussing in
many field like informatics, the PP procedure in this study should
be practical and basically applicable to the EC flux at several
coastal area.

The diurnal and seasonal variations during the measurement
period were not affected by the RSSI and HP filtering
(Figures 5, 6). In the case of the diurnal cycle, the positive shift
in the daytime was caused by HP filtering, not by excluding low-
quality data based on the RSSI and nSD. This positive shift is
inferred because HP filtering did not affect the WPL terms in Eq.
1, which were based on heat fluxes and usually positive, relative
to the covariance term of CO2 and vertical wind. In contrast,
the similar trend of the seasonal cycles showed that the PP2 did
not bias monthly temporal variations. Rather, PP2 improved the
continuity of the seasonal trend by removing the large jump at
about 30 days.

Even after the exclusion of low-quality outliers by PP2, no
significant relationship between CO2 fluxes and environmental
parameters could be discerned, in similar to the case with the nSD
(r = 0.23 and 0.33 for atmospheric and water parameters). On
the other hand, filtering contributed to the time-series analysis.
The normalized power spectrum of the EC CO2 fluxes after
PP1 displayed large, noise-like fluctuations at high frequencies
(Figure 9), and thus any suggestion of peaks in the time series was
obscured. After PP2, however, the noise-like fluctuations were
smaller, and two peaks associated with semi-diurnal (∼12.5 h)
and diurnal (∼24 h) time intervals were apparent. On the
other hand, such peaks were obscure in the spectrum from
TK2 “0” data. The fCO2 variations in the lagoon, which are
among the parameters that regulate air-water CO2 fluxes, have
been confirmed to be related to mixing of lagoon water with
freshwater coming from rivers and with biological processes
such as photosynthesis (Tokoro et al., 2014). Given that the
former and latter phenomena are caused by the semi-diurnal tidal
cycle and diel changes of irradiance, respectively, the peaks in
the power spectrum are consistent with the results of Tokoro
et al. (2014). This consistency is a good demonstration of the
utility of the PP2. The positive value of the average CO2 flux in
the daytime (Figure 5) indicates that the effect of mixing with
freshwater was larger than the effect of photosynthesis during the
measurement period. This was because the average water depth
was the shallowest around noon due to the tidal condition at
the site in spring and summer when most of the experiment was
performed.

The most of EC data that were inconsistent with 1fCO2

in terms of their signs (plus or minus) were excluded by PP2
(Figure 10). Although EC data and 1fCO2 cannot be compared
directly, the sign should be consistent, because other parameters
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FIGURE 9 | Power spectra of CO2 flux with PP1 (black line), PP1 with TK2

(blue line) and PP2 (red line). The spectra were normalized using the variances

of CO2 flux for the entire measurement period after each calculation. The

shaded areas indicate the frequency around the 24 h diurnal cycle (left) and

12.5 h tidal cycle (right). Average CO2 flux data during the entire measurement

period were used to replace missing CO2 flux data.

in the indirect model (the gas transfer velocity and solubility)
are always positive. Furthermore, the linear relationship between
the EC data and 1fCO2, which is suggested in the indirect
model, was highly significant (P < 10−3) after PP2 but was
insignificant (P > 0.4) only after PP1. However, the EC fluxes
estimated with PP2 did not always agree with the estimation
by the indirect model. Because the fCO2water is theoretically
never negative, a theoretical maximum negative flux can be
calculated by arbitrarily setting fCO2 equal to zero and using
the largest estimation of the gas transfer velocity. The maximum
negative flux calculated in this way with the gas transfer velocity
estimated in several studies (Wanninkhof, 1992; Borges et al.,
2004; Mørk et al., 2014) was −6.16 µmol m−2 s−1 at 15:00 on
30 May (day 2), when the maximum wind speed was recorded
(11.9m s−1). Forty-seven EC flux data points (3% of all data)
indicated even lower fluxes. Because the maximum negative
value was the theoretical limit with the indirect model, some
of the EC fluxes cannot be explained by only the indirect
model.

Similar inconsistencies between air-water CO2 fluxes
calculated with the EC method and other conventional methods
have been reported in several studies (e.g., Tsukamoto et al.,
2004; Rutgersson and Smedman, 2010). In the case of coastal
measurements, water side convection due to vertical temperature
gradients within the water column has been postulated to
enhance the gas transfer velocity (Rutgersson and Smedman,
2010). However, such an enhancement has not been previously
observed with direct flux measurements using a floating chamber
at our site (Tokoro et al., 2014). Because the very shallow water
depth (less than 2m) at our site cannot explain any enhancement
by the Rutgersson’s model, we suspect that water side convection
was not the main reason for the inconsistency of the fluxes.

On the assumption that the EC fluxes obtained with PP2
were valid, the discrepancy between the EC and the indirect

FIGURE 10 | Comparison of 1fCO2 (water minus air), EC flux with PP1 and

EC flux with PP2. Significant linear relationship (solid line; P < 10−3) was

observed after PP2, but not after PP1 (P > 0.4).

TABLE 1 | Summary of the differences in fluxes calculated by the eddy covariance

and bulk formula methods.

Eddy covariance Bulk formula

Major sources of

uncertainty

- Cross sensitivity

- Long-term variation

(minutes) of CO2 and

water vapor

concentrations in air

- Wind-dependent

formula

- Heterogeneity of

measurement site

Vegetation on the water

surface

- effect included - effect not included

estimation was also postulated to reflect the limitations of the
indirect model. One consideration with respect to the limitations
of the indirect model is that seagrass leaves, which reached
the water surface during low tide at the study site, might have
affected the physical and chemical conditions at the water surface
(Watanabe and Kuwae, 2015). The indirect model assumes that
the CO2 flux is caused by the CO2 concentration gradient just
below the water surface. The indirect model should therefore
not be applied when seagrass is present on the water surface.
A previous study that investigated the radiocarbon isotopic
signatures of seagrass at the study site indicated that of the total
CO2 assimilated by the seagrass, 0–40% (mean= 17%) originated
from the atmosphere and the rest from the water (Watanabe
and Kuwae, 2015). The implication is that there is enhanced
uptake of atmospheric CO2 (rather than uptake through the
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water column) by seagrass when seagrass leaves are on the water
surface. Atmospheric CO2 is therefore directly taken up within
a thin film of water over the seagrass leaves, but this seagrass-
driven CO2 flux is not included in the indirect model using the
gas transfer velocity.

In summary, we attribute the discrepancy between the EC and
conventional indirect model to (1) major technical uncertainties
in both methods and (2) limitations of the indirect model related
to the presence of vegetation on the water surface (Table 1). The
latter one may cause the actual CO2 flux to be larger than the
indirect estimation in aquatic systems that have large amounts
of vegetation. Determination of the contribution of aquatic
ecosystems to mitigating the adverse effects of climate change
will require consideration of all processes related to atmosphere-
aquatic ecosystem exchange. For this purpose, the EC CO2 flux
should be a more robust indicator than the indirect estimation,
which includes only processes related to air-water exchanges.
Improving the EC method and the post-processing procedure
are therefore essential for a re-evaluation of atmosphere-aquatic
ecosystem CO2 gas exchanges and comprehensive analyses of the
contributions of aquatic environments to mitigating the adverse
effects of climate change.
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