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Expanding urbanization in estuaries and the increase in pollutants from anthropogenic
point sources can affect nearby benthic assemblages. Using a paired impact-control
design, we assessed the effects of pollution from anthropogenic point sources (marinas,
storm-water drains, sewage outfalls and fish farms) on algal and sessile invertebrate
recruits to pavers placed in an industrialized Tasmanian estuary. Species number
and cover of native recruits were lower after 12 months at sites outside marinas
relative to paired control sites, whereas non-native and cryptogenic recruits were
significantly higher outside marinas and near sewage outfalls. The cover of fast-growing,
opportunistic species was significantly higher at sites near fish farms and sewage
outfalls, and the cover of native species was also greater at sites near sewage outfalls
relative to the paired control sites. Our results suggest an increased management focus
on controlling pollution from marinas and sewage outfalls is warranted to limit the spread
of non-native and cryptogenic species.

Keywords: introduced species, macroalgae, sewage outfall, fish farm, marina, stormwater drainage

INTRODUCTION

Many of the world’s major urban centers are established on the land–sea interface of large estuaries
(Waltham and Connolly, 2011). Continued population growth in these areas has resulted in the
proliferation of man-made structures including marinas, sewage outfalls, storm water drains, and,
in more remote locations, fish farms (Airoldi et al., 2015; Dafforn et al., 2015). Artificial structures
can alter flow rates and act as point sources of pollutants, which places pressure on the adjacent
near-shore rocky reef biota (Vitousek et al., 2007; Airoldi and Bulleri, 2011; Strain et al., 2015).
Their impacts can vary temporally and spatially, and are often amplified in estuaries which are
subject to a variety of other environmental stressors (Edgar et al., 2000; Roy et al., 2001).

The successful establishment of sessile species onto rocky reefs is a key process in temperate
marine systems (Airoldi and Beck, 2007; Mangialajo et al., 2008; Gorman and Connell, 2009;
Gorman et al., 2009). Pollution from anthropogenic point sources can reduce the survival of
new recruits (Vadas et al., 1992) and are an important force in structuring the existing species
assemblage (Johnston et al., 2002). Nutrient enrichment from sewage outfalls and fish farms can
negatively affect the fertilization of canopy-forming algae and increase the mortality of juveniles
(Coelho et al., 2000; Kevekordes and Clayton, 2000). High sediment from sewage outfalls and storm
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water drains can smother canopy algae recruits (Strain et al.,
2015) and promote the growth of more tolerant opportunistic
species (Eriksson et al., 2002). Ports and marinas are rich in
heavy metals and biocides, and can cause selective mortality of
native algae (Coelho et al., 2000) and sessile invertebrates (Schiff
et al., 2004; Medina et al., 2005; Johnston and Roberts, 2009).
Despite widespread concern, single impacts are often studies in
isolation (e.g., Crooks et al., 2011; Megina et al., 2016) and studies
comparing the relative impacts of different sources of urban
pollution on the recruitment of sessile species are rare.

The loss of native sessile algae and invertebrate species in
estuaries (Johnston et al., 2011; Dafforn et al., 2012) represents
a form of disturbance. Recent succession theory suggests that
invasive and rapidly growing opportunistic species may capitalize
on these empty niches (Levine, 2000; Ruiz et al., 2000; Piola and
Johnston, 2008b; Johnston et al., 2011). In addition, certain types
of anthropogenic point sources (such as marinas, and jetties)
provide bare substrate and altered environmental conditions
(i.e., reduced light and wave action or increased turbidity and
sedimentation) which result in increased colonization of non-
native species (Dafforn et al., 2009) and may act as sources and
“corridors” for the spread of invasive species into natural habitats
(Airoldi et al., 2015). Yet relatively little is known about the
effects of different anthropogenic point sources in promoting the
successful establishment of invasive species on nearby rocky reefs
(but see Dafforn et al., 2008; Sheehy and Vik, 2010).

In the present paper, we used a paired control-impact design to
assess the effects of pollution from four different anthropogenic
point sources on the species richness and cover of recruited
algae and sessile invertebrates in the Derwent Estuary, Australia.
This design allowed us to distinguish the effects of these
anthropogenic point sources from the site variation in other
environmental stressors. We hypothesized that sites outside
marinas (50 m) and near storm water drains (20 m), where
inorganic and toxic pollutants or sediment (storm water drains
only) enter the system, would have an early successional sessile
assemblage comprising reduced native species richness and cover
relative to nearby control sites ( > 1 km away) (Whitehead
et al., 2010; Coughanowr et al., 2015). In contrast, sites near
fish farms (100 m) and sewage drains (20 m), which release
organic pollution or sediment, would have higher native species
richness and cover of opportunistic species, and lower cover
of non-opportunistic species, compared with paired control
sites ( > 1 km away), (Coughanowr et al., 2015; Oh et al.,
2015). We also hypothesized that species richness and cover
of non-indigenous species would be higher at sites outside
marinas because of higher pollution loads, proximity to donor
populations (e.g., boats) and bare space relative to the other
anthropogenic point sources.

MATERIALS AND METHODS

Study Sites
Effect of Pollution From Anthropogenic Point Sources
on Algae and Sessile Invertebrate Recruits
A total of one hundred and twenty eight 0.3 × 0.3 m concrete
pavers were deployed for 12 months (March 2011–2012) at 27

sites along two connected marine embayments on the south-
eastern coast of Tasmania, Australia (Figure 1): the Derwent
Estuary, located adjacent to the state capital city of Hobart, and
the D’Entrecasteaux Channel, which lies between Tasmania and
Bruny Island (Fowles, 2017). The two estuaries are micro-tidal
(0.8 m), with exposure to moderated oceanic swells, and wide
entrances that promote efficient marine flushing (Whitehead
et al., 2010).

In the study region, historical contamination from industry
has resulted in sediment heavy metal contamination levels that
are among the highest in the world (Whitehead et al., 2010).
More recent point sources of metal contamination include

FIGURE 1 | Location of the 27 sites used to test the effects of pollution from
anthropogenic point sources on algal and sessile invertebrate recruits in the
Derwent and D’Entrecasteaux Channel, Tasmania (43.03◦ S 147.34◦ E). The
dashed line indicates 5 km from Hobart CBD that separates sites in the
central Hobart region from the greater Derwent region. Solid symbols are
impact sites, open symbols control sites. Diamonds = sewage outfalls,
squares = marinas, circles = fish farms, triangles = storm water drains. The
study area has a long history of extensive foreshore development, including
establishment of commercial and recreational boating marinas, storm water
drains and sewage outfalls starting in the early 1900’s, and more recently the
introduction of salmon farming in the D’Entrecasteaux Channel in the 1980s.
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storm water run-off, antifouling paint fragments, and wastes
associated with marinas (Whitehead et al., 2010; Coughanowr
et al., 2015). The other major point sources of pollution are
sediment from storm water drains, nutrients from sewage
outfalls, and fish waste associated with salmon aquaculture
farms (Whitehead et al., 2010; Coughanowr et al., 2015; Oh
et al., 2015). These elevated nutrient concentrations are largely
localized and retained within the estuarine systems (Coughanowr
et al., 2015).

Concrete pavers presented a rough surface to facilitate
recruitment by algal spores and sessile invertebrates (Park et al.,
2014) and support growth of dense native algal communities
similar to that found on natural rocky shores (Fowles, 2017).
Four pavers were placed at each of the four sites, each in
close proximity to four different anthropogenic point sources
(fish farm, marinas, sewage outfalls and storm water drains).
Four pavers were also placed in nearby control rocky reefs
located ∼1 km (upstream in as many cases as possible) from
the treatment sites as well as 1 km from any other known
point source of pollution (Figure 1). This 1 km distance
was chosen based on previous research in this region which
has shown that the outputs of storm water drains, and
enrichment from fish farms and sewage outfalls attenuate rapidly
from point sources (Roberts et al., 2007; Whitehead et al.,
2010; Wild-Allen et al., 2013; Coughanowr et al., 2015; Oh
et al., 2015; Condie et al., 2017). Pavers were deployed on
rocky reef along the 2–4 m depth contour, approximately
0.5 to 1.0 m apart and at least 3 m from the reef-sand
interface. Marina sites were located 50 m from permanent
boat moorings that harbored between 200 and 400 recreational
and commercial vessels. Fish farm sites were all located
in the D’Entrecasteaux Channel 100 m from stocked cages.
Storm water pipe sites were located 20 m from the pipe
outlet, which consisted of a large concrete pipe (30–50 cm
in diameter) that extended into the estuary perpendicular to
the shoreline. Sewage outfall sites were located 20 m from
the pipe outlet. The impacted sites had high pollution loads
(Whitehead et al., 2010; Coughanowr et al., 2015; Oh et al.,
2015) and were based on distances to the nearest rocky
reef.

At the conclusion of the experiment (March 2012), a
0.3 m × 0.3 m quadrat was placed on each paver. The
percentage cover of all sessile taxa was estimated by counting
the number of times each taxon occurred directly under 18
string intersection points, dividing by the number of points
counted, and multiplying by 100. Taxa were identified to
the highest taxonomic resolution practical. Abiotic variables
(sediment and bare paver surface) were considered separately
in the analyses as a measure of potential recruitment space.
During the experiment, 30 pavers were lost or turned over by
storms. The missing pavers were not spread evenly across all
sites and resulted in 5 sites (1 fish farm impact and 1 fish
farm control site; 1 sewage outfall and 2 sewage control sites)
being excluded from analyses due to lack of replication. Pavers
were collected after visual assessment of percent cover, and the
species identity checked where necessary using microscopes in
the laboratory.

Statistical Analyses
The effect of the different anthropogenic point sources on the
benthic community assemblage was assessed using canonical
analysis of principal coordinates (CAP) (Anderson, 2003). CAP
was “constrained” by the point source type to maximize the
separation between the impact and control sites. To reduce
variability in outputs, data were averaged at the site level. The
resultant “site× species” matrix was square root transformed and
converted to a Bray Curtis similarity matrix. We used a Spearman
correlation (r) between the canonical axes and density of taxa
to measure the contribution of individual taxa to the differences
between the impact and paired control sites. These correlations
are shown visually as a vector plot for taxa with r > 0.5. All
multivariate analyses and plots were conducted with the package
PRIMER 6.1.13 (Clarke, 1993; Anderson et al., 2008).

The taxa identified during this study were classified into
broad functional groups: non-indigenous/cryptogenic or native;
and opportunistic or non-opportunistic species based on the
literature in Table 1. Opportunistic species exhibited at least
two of the following traits; fast growing, ephemeral, and with
continuous periods of reproduction (Lobban and Harrison,
1995). Non-opportunistic species exhibited at least two of
the following traits; slower growing, relatively long life span,
perennial, and shorter periods of reproduction (Littler and Littler,
1980).

The effects of the pollution from anthropogenic point sources
on the number of species and the cover of the different
functional groups were tested using generalized linear mixed
models. A quasi-poisson distribution was used for the number of
species and a quasi-binomial distribution was used for the cover
data. The models included the fixed effects of anthropogenic
point source (fish farms, marinas, sewage outfalls, and storm
water drains) relative to the paired controls, region, wave
exposure, and the random effect of site. The random effect
of site was included in the model to adjust for the natural
variability between sites. Region was a categorical variable with
two levels that distinguished sites within 5 km of the Hobart
CBD (called central Hobart region), from sites greater than
5 km from Hobart CBD (called greater Derwent region; See
Figure 1). Sites near the capital were assumed to be more
heavily impacted by historical contamination and cumulative
pressures (Coughanowr et al., 2015). Exposure was measured
using a fetch model, which used the distance of 14 vectors
from a site to any mass of land in multiple directions
as a proxy for potential wind-generated waves (Hill et al.,
2010).

All univariate analyses were carried out with the Rgui version
3.1.0 (R Core Team, 2013). Confidence intervals (95%; CIs) and
p-values were obtained for the model estimates (or log response
ratios), assuming that they are t-distributed with the appropriate
degrees of freedom. The log response ratios for the anthropogenic
point sources (and associated CIs) were further converted to
percentage change (or n-fold increase if>100%) relative to the
paired control sites. The percentage change was calculated as
100∗[exp(estimate)-1]. If the percentage change was greater than
100%, the n-fold increase was reported for ease of interpretation
[n-fold increase as exp(estimate)]. CIs and p-values were used
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TABLE 1 | Summary of taxa found during the experiment and the information
source used to classify them as native (N) or non-indigenous (NIS), cryptogenic
(C), opportunistic (OP) or non-opportunistic (NO) based on the criteria outlined in
the methods.

Species name Status Life
history

Source

Fauna

Crassostrea gigas NIS OP Aquenal, 2002

Barnacles N OP Aquenal, 2002

Bryozoans N OP Combined species

Flora

Acrocarpia paniculata N NO Womersley, 1987

Aeodes nitidissima NIS OP Scott, 2012

Ballia callitricha N NO Womersley and Wollaston,
1998

Branched brown algae N NO G. Kraft (pers. comm.)

Brown filamentous algae N OP Aquenal, 2002

Callophycus harveyanus N NO Womersley, 1994

Callophycus spp. N NO Womersley, 1994

Callophyllis rangiferina N NO Womersley, 1994

Callophyllis spp. N NO Womersley, 1994

Carpoglossum confluens N NO Womersley, 1987

Carpothamnion gunnianum N NO Womersley and Wollaston,
1998

Caulerpa longifolia N NO Womersley, 1984

Caulerpa trifaria N OP Womersley, 1984

Caulocystis cephalornithos N NO Womersley, 1987

Chaetomorpha coliformis N OP Valiela et al., 1997

Champia viridis N NO Womersley, 1996

Cladostephus spongiosus N NO Womersley, 1987

Codium fragile NIS OP Aquenal, 2002

Codium sp. NIS OP Womersley, 1984

Crustose coralline algae N NO Edgar, 2008

Curdiea spp. N NO Womersley, 1996

Cystophora sp. N NO Womersley, 1987

Delisea spp. N NO Womersley, 1996

Dictyota dichotoma C OP Aquenal, 2002

Ecklonia radiata N NO Womersley, 1987

Foliose red algae N OP A. Fowles pers. obs.

Glaphyrymenia spp. N NO Womersley, 1994

Gracilaria secundata N OP Womersley, 1994

Grateloupia spp. C OP Womersley, 1994

Green filamentous N OP A. Fowles pers. obs.

Griffithsia spp. N OP Womersley and Wollaston,
1998

Haliptilon roseum N NO Womersley, 1996

Halopteris spp. N NO Womersley, 1987

Hemineura frondosa N NO Womersley, 2003

Hincksia sordida N OP Womersley, 1987

Laurencia spp. N OP Womersley, 2003

Lenormandia marginata N NO Womersley, 2003

Lessonia corrugata N NO Womersley, 1987

Macrocystis pyrifera N NO Womersley, 1987

Myriogramme gunniana N NO N. Barrett pers. comm.

Perithalia caudate N NO Womersley, 1987

Plocamium angustum N NO Womersley, 1994

Polysiphonia spp. C OP Womersley, 2003

Red filamentous algae C OP Aquenal, 2002

Red foliose epiphyte N OP Aquenal, 2002

(Continued)

TABLE 1 | Continued

Species name Status Life history Source

Rhodymenia australis N NO Womersley, 1996

Sargassum spp. N NO Womersley, 1987

Sporochnus sp. N OP Womersley, 1987

Turf brown algae N OP G. Kraft pers. comm.

Ulva rigida N OP Lavery and McComb, 1991

Undaria pinnatifida NIS OP Valentine et al., 2007

to assess significance of differences in the number of species or
percentage cover of the different functional groups at impacted
sites relative to paired controls.

RESULTS

Effect of Pollution From Anthropogenic
Point Sources on Species Assemblage
During the experiment, fifty-one species of algae (94%) and
three species of (6%) sessile invertebrates recruited to the
pavers (Table 1). In general, cover was low on the pavers.
Sessile invertebrates were not prevalent or abundant enough
to analyse separately and so were analyzed in combination
with algae in each of the broad functional groups. The
most abundant species were Ulva rigida, Polysiphonia
spp., brown algal turf, Aeodes nitidissima and Codium
fragile.

The anthropogenic point sources (fish farms, marinas, sewage
outfalls and storm water drains) and their paired control
sites were generally separated along the first two axes of
canonical space (Figure 2). The greatest difference in community
assemblage were observed between the marina impact and paired
control sites (Codium spp. r = 0.52; Grateloupia sp. r = −0.60;
Figure 2). There were also significant differences between the
fish farm and sewage outfall paired impact sites and control sites
(Chaetomorpha coliformis r = 0.59, Polysiphonia sp. r = −0.51;
Figure 2). In contrast, no significant differences were detected
between the paired storm water drain impact and control sites
(Figure 2). Supplementary Table S1 shows absolute values for
each functional group in each treatment and control.

Effect of Pollution From Anthropogenic
Point Sources on the Species Richness
of Different Functional Groups
As expected, the number of native species at sites outside marinas
was significantly lower than at paired control sites (−96% change,
t = −3.45, df = 80, p < 0.001, Figure 3). There was also a
significantly greater number of cryptogenic and non-indigenous
species (e.g., Crassostrea gigas, Polysiphonia spp. and Codium
fragile) at the sites outside marinas (2.7- fold increase, t = 2.9,
df = 79, p < 0.01) and sewage outfalls (6.1- fold increase, t = 2.11,
df = 79, p = 0.04) than at paired control sites, although there was
high variation between pairs of sites (Figure 3). In contrast, no
difference was evident in the number of native species at sites
near fish farms (16% change, t = 0.51, df = 79, p > 0.05), storm
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FIGURE 2 | Canonical analysis of principal coordinates (CAP) ordination showing differences in the recruited sessile assemblage on pavers near anthropogenic point
sources (solid symbols) relative to their paired control sites (open symbols). Taxa that contributed to the greatest dissimilarity between the impact and paired control
sites are shown by vector plot, with circle diameter showing correlation of 1. Anthropogenic point sources are: sew = sewerage outfall, storm = storm water drains,
fish farm = fish farms, marina = marinas.

water drains (−34% change, t = −1.63, df = 79, p > 0.05), or
sewage outfall (8% change, t = 0.36, df = 79, p > 0.05) when
related to paired control sites (Figure 3). There were also no
detectable differences in the number of non-indigenous species
between sites near storm water drains (78% increase, t = 1.61,
df = 79, p > 0.05) and fish farms (25% increase, t = 0.26, df = 79,
p > 0.05), and their paired control sites (Figure 3).

Contrary to our hypotheses, the recruitment of opportunistic
species but not the non-opportunistic species differed between
the anthropogenic point sources (Figure 3). There were
significantly fewer opportunistic species at marina sites than at
the paired control sites (47% change, t =−2.0, df = 80, p > 0.05).
In contrast, there were no detectable differences in the number
of opportunistic species in the sites near fish farms (−11%
change, t = −0.77, df = 80, p > 0.05), storm water drains
(−11% change, t = −0.43, df = 80, p > 0.05), or sewage outfall
(−27% change, t = −1.29, df = 80, p > 0.05) relative to their
paired control sites (Figure 3).

Supplementary Table S1 shows absolute values for each
functional group in each treatment and control and shows that in
absolute terms marina impacts sites are devoid of native species
cover, high in opportunistic species cover and high in non-
indigenous species richness compared to both marina control
sites and all other control and impact sites.

Effect of Pollution From Anthropogenic
Point Sources on the Cover of Different
Functional Groups
As expected, the biotic (i.e., visible algae and sessile invertebrates)
cover was significantly higher at sites near sewage outfall (72%

increase, t = 2.37, df = 79, p < 0.02) relative to their paired control
sites (Figure 4). The sites near fish farms had slightly higher,
but not significant, biotic cover (46% increase, t = 1.61, df = 79,
p > 0.05) than their paired control sites (Figure 4). In contrast,
the biotic cover was slightly lower, but not significant, at sites
outside marinas and near storm water drains relative to the paired
control sites (Figure 4).

Consistent with our expectations, significantly lower cover
of native species (97% decrease, t = −4.1, df = 79, p < 0.01),
and higher cover of non-indigenous species (7.7- fold increase
t = 2.04, df = 79, p > 0.001), were found at sites outside
marinas than at paired control sites (Figure 4). Sites near sewage
outfalls also had a higher cover of non-indigenous species (12.8-
fold increase, t = 2.44, df = 79, p = 0.02), but no significant
difference in cover of native species (33% increase, t = 1.4,
df = 79, p > 0.05), compared with their paired control sites
(Figure 4). In contrast, no significant differences in the cover
of native species (5% increase, t = 0.24, df = 79, p > 0.05)
or the cover of non-indigenous species (37% increase, t = 0.9,
df = 79, p > 0.05) were found at sites near storm water
drains relative to paired control sites (Figure 4). Sites near fish
farm sites also had significantly higher cover of native species
(43% increase, t = 1.97, df = 79, p = 0.05) than at paired
control sites but no detectable differences in the cover of non-
indigenous species (66% decrease, t = −0.71, df = 79, p > 0.05),
(Figure 4).

Sites near fish farms had significantly higher cover of
opportunistic species relative to their paired control sites (85%,
t = 2.38, df = 79, p < 0.05), as did sewage outfalls (2.3-fold
increase, t = 2.04, df = 79, p = 0.05, Figure 4). Overall, there
were no detectable differences in the cover of non-opportunistic
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FIGURE 3 | Effects of pollution from anthropogenic point sources [fish farms (FF), marinas (M), sewage outfalls (S), and stormwater drains (ST)] on the percentage
change in the number of recruited (A) non-indigenous, (B) native, (C) opportunistic and (D) non-opportunistic species. Effects are significant if confidence intervals
do not overlap zero. Percentage change was calculated from GLMM estimates based on a quasi-poisson, mixed effect model with a log link.

species between the impact sites relative to the paired control sites
(Figure 4).

DISCUSSION

The paired study design applied here allowed us to distinguish the
effects of pollution from anthropogenic point sources (marinas,
storm-water drains, sewage outfalls and fish farms) from the
natural site variation in environmental conditions (i.e., > 5 km
of the capital city, wave exposure), extending prior studies of
estuaries that have focused on single impacts (e.g., Johnston et al.,
2011; Hedge and Johnston, 2012). Whilst a paired design was
optimal, the choice of control sites is important but difficult
in estuaries that are subject to multiple current and historical
sources of pollution. Including a factor that accounted for
expected differences in historical contamination assisted analyses
and our results support the growing body of literature that
indicates marinas, storm water drains, sewage outfalls and fish
farms have different influences on the nearby rocky reef biota

(Airoldi and Beck, 2007; Mangialajo et al., 2008; Gorman and
Connell, 2009; Gorman et al., 2009).

Marinas had the greatest impacts on recruitment of the algal-
dominated species assemblage. Pavers located in sites outside
marinas were largely devoid of biotic cover (i.e., visible algae and
sessile invertebrates), with half the species richness and cover
of native species relative to associated control sites and lower
absolute coverage and richness compared to all other treatments
(Supplementary Table S1). The impacts of marinas probably
stem from the high levels of heavy metals and biocides released
into the surrounding waterways at these location (Whitehead
et al., 2010; Johnston et al., 2011). Previous studies have
consistently demonstrated that the heavy metal and biocides used
in anti-fouling paints can dramatically reduce the recruitment
success of native algae and invertebrates (Piola and Johnston,
2008a,b; Piola et al., 2009).

Similar to other studies, we found higher cover but
not species richness of opportunistic species such as Ulva
rigida at sites located near sewage outfalls and fish farms
relative to nearby control sites (Lavery and McComb, 1991;
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FIGURE 4 | Effects of pollution from anthropogenic point sources [fish farms (FF), marinas (M), sewage outfalls (S), and storm water drains (ST)] on the change in
percentage cover of recruited (A) biotic species (i.e., visible algae and sessile invertebrates), (B) abiotic (bare space and sediment), (C) non-indigenous species (D)
native species, (E) opportunistic species and (F) non-opportunistic species. Effects are significant if confidence intervals do not overlap zero. Percentage change
was calculated from the GLMM estimates based on a quasi-binomial, mixed effect model with a log link.

Munda and Veber, 2004; Oh et al., 2015). Both of these
anthropogenic point sources contribute to high nutrient levels
in the study region (Whitehead et al., 2010; Coughanowr et al.,

2015; Oh et al., 2015). Ulva rigida is ephemeral, with the ability
to assimilate high levels of nutrients, reproduce year-round, and
tolerate substantial sedimentation (Littler and Murray, 1975;
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Correa et al., 1999). Contrary to our expectations, a higher
cover of native algae recruits (e.g., Carpoglossum confluens, Ulva
rigida, and Acrocarpia paniculata) was also found at sites near
sewage outfalls relative to paired control sites. Previous research
suggests the elevated nutrient inputs from sewage outfalls and fish
farms may allow some native algal taxa to colonize and grow on
nearshore rocky reefs (Campbell, 2001).

Studies have demonstrated that anthropogenic point sources
can support high densities of non-native species (Carlton, 1987;
Dafforn et al., 2009; Ling et al., 2012). Our results demonstrated
a much higher number and cover of non-indigenous and
cryptic species at sites outside marinas and near sewage outfalls
relative to their paired control sites. A dominant non-indigenous
species observed was Codium fragile subsp. fragile (Suringar)
Hariot, 1889 [formerly C. fragile subsp. tomentosoides (van
Goor) Silva, 1955], an alga regarded as native to Japan and
Korea (Lyons and Scheibling, 2009), and that has only recently
been identified in South Australian and Tasmanian waters
(McDonald et al., 2015). Previous research has demonstrated
this species has high tolerance for heavy metals and elevated
nutrients, and the ability to withstand sedimentation (Gorgula
and Connell, 2004). It can also spread, regenerate and grow
quicker than many native algal species (Bégin and Scheibling,
2003). The continuing spread and establishment of this alga
in sites adjacent to marinas and sewage outfalls is concerning
given the additional stress from competition on native species
in addition to stresses from these sources of contamination (Vye
et al., 2015).

Polysiphonia spp. also recruited disproportionately to
locations outside marinas and near sewage outfalls. The
introduced red filamentous alga Polysiphonia senticulosa
occurs in moderate water movement, an important trait for
establishing permanent populations in newly invaded habitats
(Thomsen et al., 2007). Polysiphonia spp. have frequently
been recorded on artificial structures in marinas and ports
(Womersley, 2003), suggesting that they may quickly establish
on newly available substrata, but are perhaps less able to
compete with native communities when present. In this
study, Polysiphonia spp. were able to colonize free space
more efficiently than any native species so appears to be
relatively tolerant of contamination by heavy metals and
other pollutants found at sites located outside marinas in the
Derwent Estuary (Whitehead et al., 2010; Coughanowr et al.,
2015).

Estuaries are rapidly undergoing transformation by
anthropogenic point sources, which can adversely affect nearby
intertidal and subtidal marine habitats, both rocky reef and soft
sediment (Schiff et al., 2004; Dafforn et al., 2009). Our study
indicates the pollution from these anthropogenic point sources
can cause shifts in algal- dominated rocky coastal habitats from
native to more opportunistic/non-indigenous species. These
opportunistic and non-indigenous species could potentially
benefit from reduced competition with native species, increased
tolerance of heavy metals and biocides and the presences of
empty niches in locations where their propagule pressure is
greatest.

Our results suggest that management needs to focus on
reducing the pollution loads from these anthropogenic point
sources, in particular marinas and sewage outfalls, to minimize
declines in populations of native species and to prevent the
spread of non-native species in nearby rocky reefs. Further study
is, however, required to understand what contaminants (i.e.,
heavy metals, biocides, or high sediment loads) from marinas
and sewage outfalls have the greatest impacts on algal and
sessile invertebrate recruits. New research has identified a range
of potential solutions including, non-toxic antifouling paints
(Maréchal and Hellio, 2009), and filtration systems (bioretention
systems, rain gardens, vegetated filter strips, permeable asphalt
or concrete pavement and drainage wells) which could be
used to treat the runoff from urban infrastructure (McNabb,
2017). Future research should assess the effectiveness of these
solutions in providing positive benefits in marine estuarine
environments.
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