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Following earlier regional assessment studies, such as the Assessment of Climate

Change for the Baltic Sea Basin and the North Sea Region Climate Change Assessment,

knowledge acquired from available literature about future scenario simulations of

biogeochemical cycles in the Baltic Sea and their uncertainties is assessed. The

identification and reduction of uncertainties of scenario simulations are issues for marine

management. For instance, it is important to know whether nutrient load abatement

will meet its objectives of restored water quality status in future climate or whether

additional measures are required. However, uncertainties are large and their sources

need to be understood to draw conclusions about the effectiveness of measures. The

assessment of sources of uncertainties in projections of biogeochemical cycles based

on authors’ own expert judgment suggests that the biggest uncertainties are caused by

(1) unknown current and future bioavailable nutrient loads from land and atmosphere,

(2) the experimental setup (including the spin up strategy), (3) differences between the

projections of global and regional climate models, in particular, with respect to the global

mean sea level rise and regional water cycle, (4) differing model-specific responses of

the simulated biogeochemical cycles to long-term changes in external nutrient loads

and climate of the Baltic Sea region, and (5) unknown future greenhouse gas emissions.

Regular assessments of the models’ skill (or quality compared to observations) for the

Baltic Sea region and the spread in scenario simulations (differences among projected

changes) as well as improvement of dynamical downscaling methods are recommended.

Keywords: Baltic Sea, nutrients, eutrophication, climate change, future projections, uncertainties, ensemble

simulations
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INTRODUCTION

Due to its location (Figure 1) and physical characteristics, the
semi-enclosed Baltic Sea is vulnerable to external pressures such
as eutrophication, pollution or global warming (e.g., Jutterström
et al., 2014). The Baltic Sea is surrounded by a large catchment
that is populated with about 90 million people (Ahtiainen and
Öhman, 2014). In particular, the southern Baltic Sea region
is characterized by a high population density and intensive
agricultural activities causing anthropogenic loads of nutrients
and pollutants (Hong et al., 2012; HELCOM, 2015, 2018a).
During the 1950s and 1960s, agriculture in the Baltic Sea region
was facilitated by both mechanization and greatly increased
fertilizer application, thus causing an increase in nutrient
input from the southern agricultural landscapes (Gustafsson
et al., 2012). The progressing urbanization was initially not
accompanied by appropriate wastewater treatment and led to a
further increase in nutrient loads. Since the 1980s, riverborne
nutrient loads and the atmospheric deposition of nitrogen
decreased as a consequence of an expanded wastewater treatment
and reduced fertilizer usage in the Baltic Sea region (Savchuk
et al., 2012b; HELCOM, 2015, 2018b; Savchuk, 2018).

To project the future environmental status of the Baltic
Sea and to support marine management with nutrient load
abatement strategies such as the Baltic Sea Action Plan (BSAP)
of the Helsinki Commission (HELCOM) (HELCOM, 2007a,b,
2013a,b), scenario simulations have been developed taking both
changing climate and changing anthropogenic nutrient loads
into account (e.g., Meier et al., 2011b; Neumann et al., 2012;
Omstedt et al., 2012; Saraiva et al., 2018, 2019). For a summary of
available future scenario simulations of the biogeochemical cycles
of the Baltic Sea, the reader is referred to Table 1.

One aim of scenario simulations of the Baltic Sea ecosystem
is to provide decision makers with reliable information about
multiple stressors (e.g., Jutterström et al., 2014). Hence,
dynamical downscaling of global climate change may contribute,
in particular, to the development of an improved BSAP in
future climate and, in general, to an improved holistic marine
management because of the long response time scale of the
Baltic Sea of about 30 years (e.g., Omstedt and Hansson,
2006a,b). In this context, the assessment of uncertainties (or
knowledge gaps) of scenario simulations is of utmost importance
(Mastrandrea et al., 2010).

In general, uncertainties in scenario simulations (here defined
as the variances of mean changes between future and historical
climates) are caused by climate model uncertainties, by unknown
future greenhouse gas (GHG) emissions (or concentrations)
and by natural variability (Hawkins and Sutton, 2009). Natural
variability has two contributions, i.e. unforced internal and
externally driven variations such as solar variability and volcanic
eruptions. The latter source of uncertainty is usually neglected,
since scenario simulations are not predictions but projections of
only anthropogenic climate change (Rummukainen, 2016b). In
addition to these three distinct sources inherent to all climate
projections, uncertainties in regional projections comprise even
the experimental setup of the downscaling approach including
for instance lateral boundary conditions such as the global

FIGURE 1 | Bottom topography of the Baltic Sea. The Baltic proper

comprises the Arkona Basin, Bornholm Basin and Gotland Basin. The solid

line marks the border between Kattegat and Skagerrak which is the lateral

boundary in BALTSEM and other Baltic Sea models (see text).

mean sea level rise (Meier et al., 2017) and initial conditions
(including the spin up strategy), or unknown regional nutrient
load scenarios (Zandersen et al., 2019). Further, insufficient
process descriptions in state-of-the-art biogeochemical models
for the Baltic Sea such as unknown bioavailable fractions of
external nutrient loads (e.g., Eilola et al., 2011), the insufficient
description of non-Redfield stoichiometry (e.g., Fransner et al.,
2018) and benthic macrofauna (Timmermann et al., 2012), the
missing impact of invasive species (e.g., Holopainen et al., 2016;
Isaev et al., 2017), the implicit description of the microbial loop
(e.g., Wikner and Andersson, 2012), and the lacking top-down
cascade in the food web including the impact of fishing (e.g.,
Niiranen et al., 2013; Nielsen et al., 2017; Bauer et al., 2018,
in press) contribute to the overall uncertainties of projections.

In this study, we identify, discuss and rank uncertainties in
scenario simulations of the Baltic Sea by assessing the existing
literature and by expert judgment. The purpose of the review is
to better understand the various sources of uncertainties and to
identify knowledge gaps.

In the following two sections, results of scenario simulations
of biogeochemical cycles in the Baltic Sea (Background) and
the methods used for the projections of coastal seas (Dynamical
Downscaling Methods) are reviewed. Further, uncertainties of
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scenario simulations are qualitatively assessed and their sources
are discussed (Results of the Assessment of Uncertainties).
Identified or hypothesized uncertainties are related to (1) lack
of observations for model calibration, (2–3) differences between
projections of General Circulation or Global Climate Models
(GCMs) and Regional Climate Models (RCMs), (4) unknown
changes in the regional water cycle, (5) natural variability,
(6) unknown bioavailable fractions of nutrient loadings from
land and the unknown impact of changing climate on nutrient
loads, (7) unknown future GHG emission or concentration
scenarios, (8) unknown initial conditions of nutrient pools in
the water and sediment or unsuitable spin-up simulations due
to lack of observations, (9) differences in Global Mean Sea Level
(GMSL) projections, (10) lateral boundary conditions, (11) bias
correction, (12) differences between projections of the Baltic Sea
Models (BSMs), (13) unknown processes of the carbon cycle,
and (14) weighting of ensemble members (Table 2). Finally, we
discuss methods to estimate and to narrow uncertainties in
projections.Weighting is regarded both as a source of uncertainty
and as an opportunity to narrow uncertainty. An example
illustrating the spread in projected hypoxic area for the Baltic Sea
is presented as Supplementary Material. Here, hypoxic area is
defined as the area of bottomwater with an oxygen concentration
less than 2mL L−1. Conclusions finalize the review. Acronyms
used in this study are explained in Table 3.

BACKGROUND

For the Baltic Sea and North Sea regions detailed assessments of
scenario simulations are available (BACC Author Team, 2008;
BACCII Author Team, 2015; Schrum et al., 2016; cf. Omstedt,
2017; cf. Räisänen, 2017). Since the first quantitative scenario
simulations of biogeochemical cycles in the Baltic Sea did not
become available until the year 2010, only the BACCII Author
Team (2015) discussed the results of projections of the marine
ecosystem published before the year 2012. In the following, we
summarize these results of the BACCII Author Team (2015) and
of the more recent literature.

Changes in Hydrodynamics
The BACCII Author Team (2015) essentially confirmed the
results by the BACC Author Team (2008) concerning water
temperature, salinity, sea ice, storm surges and sea level. The
projections suggest that the future Baltic Sea would be warmer
(between 1.9◦ and 3.2◦C on average) and fresher (between 0.6 and
4.2 g kg−1 on average) than in present climate with a substantial
decline in sea-ice cover (between 46 and 77%) and increased
storm surges (cf. Meier et al., 2018a). The latter will probably
be caused rather by sea-level rise than by increased wind speed
(Gräwe et al., 2013). Sea levels are rising primarily as a result of
thermal expansion and the loss of land-based ice sheets at global
scale (Stocker et al., 2013). Sea levels in the Baltic Sea will follow
the global trends but changes will partly be compensated by land-
uplift essentially in the northern parts of the Baltic Sea (BACCII
Author Team, 2015). Due to the isostatic adjustment after the last
glaciation of Fennoscandia, the land is rising withmaximum land
uplift in the Bothnian Bay close to the Swedish city Luleå of about

TABLE 2 | Sources of uncertainty addressed by this study and selected key

references of the Baltic Sea. For details, the reader is referred to the text.

Source of uncertainty References

1 Insufficient number of

observational data for model

calibration

Savchuk, 2018

2 Differences between projections

caused by GCMs

Saraiva et al., 2019; Déqué et al.,

2012

3 Differences between projections

caused by RCMs

Christensen and Christensen,

2007; Déqué et al., 2012

4 Unknown changes in the

regional water cycle

BACCII Author Team, 2015

5 Natural variability Kjellström et al., 2011

6 Unknown bioavailable fractions

of nutrient loadings from land

and the unknown impact of

changing climate on nutrient

loads

Eilola et al., 2011; Arheimer

et al., 2012; Saraiva et al., 2018,

2019; Zandersen et al., 2019

7 Unknown future GHG emission

or concentration scenarios

Nakićenović et al., 2000; Moss

et al., 2010

8 Unknown initial conditions of

nutrient pools in the water and

sediment or unsuitable spin-up

simulations due to lack of

observations

Meier et al., 2012c

9 Differences in GMSL projections Saraiva et al., 2019

10 Lateral boundary conditions This study

11 Bias correction Rechid et al., 2016; Schrum

et al., 2016

12 Differences between projections

of the BSMs

Meier et al., 2011b

13 Unknown processes of the

carbon cycle

Omstedt et al., 2012

14 Weighting of ensemble members Meier et al., 2018a

0.8m per century. In the southern Baltic Sea and Kattegat region,
land uplift is close to zero.

Newer studies on past and future sea level variability are based
on advanced methods and confirm earlier results (e.g., Johansson
et al., 2014; Karabil et al., 2017a,b, 2018). Also for sea ice, new
projections have been carried out taking the latest results of the
Coupled Model Intercomparison Project (CMIP), i.e., CMIP5,
into account (e.g., Luomaranta et al., 2014; Seitola et al., 2015).
Further, comprehensive work on coastline changes was done
(e.g., Harff et al., 2017).

During winter, future runoff may increase in the northern
Baltic Sea region whereas in the southern Baltic Sea region the
summer runoff will very likely decrease (BACCII Author Team,
2015). The total runoff into the Baltic Sea is projected to increase
but figures vary substantially depending on the climate model,
GHG emission scenario and downscaling method between about
1 and 21% (Meier et al., 2012c; Donnelly et al., 2014; Saraiva
et al., 2019). As most of the variability in salinity is explained
by the variability in freshwater supply (Meier and Kauker, 2003a;
Schimanke and Meier, 2016), projected salinities are lower than
in present climate but the spread among projections is large
(Meier et al., 2006). Further, Hordoir et al. (2018) suggested that
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TABLE 3 | List of acronyms, their explanation and references (in alphabetical order).

Acronym Explanation Comment References

BED Baltic Environmental Database Marine observational data from the Baltic Sea

monitoring programs

http://nest.su.se/bed/

B-HYPE, E-HYPE Hydrological predictions for the environment

applied for the Baltic Sea, Europe

process-based multi-basin model for the land

surface

http://hypeweb.smhi.se, Arheimer et al., 2012;

Donnelly et al., 2013, 2017; Hundecha et al.,

2016

BSAP Baltic Sea Action Plan Nutrient load abatement strategy for the Baltic

Sea

HELCOM, 2013b

CCLM COSMO Climate Limited-area Modeling

community

Regional climate model https://www.clm-community.eu/

CLEG, REF, BAU Current Legislation, Reference,

Business-As-Usual

Nutrient load scenarios Meier et al., 2012a

CMIP Coupled Model Intercomparison Project of the

World Climate Research Programme (WRCP)

GCM/ESM results from CMIP2, CMIP3 and

CMIP5 are used

https://www.wcrp-climate.org/wgcm-cmip

COHERENS-

OXYCON

OXYgen CONsumption model Coupled hydrodynamical–ecological model for

regional and shelf seas coupled to a pelagic

and benthic oxygen consumption model

Luyten et al., 1999; Bendtsen and Hansen,

2013

CSIM Catchment Simulation Model Hydrological model for river runoff, carbon and

nutrient fluxes

Mörth et al., 2007

EC-EARTH European countries earth system model ESM, CMIP5 https://www.knmi.nl

ECHAM4/OPYC3 Max Planck Institute global climate model GCM Roeckner et al., 1999

ECHAM5-MPI-OM Max Planck Institute global climate model GCM, CMIP3 Roeckner et al., 2006 Jungclaus et al., 2006

ECOSMO Ecosystem model Coupled physical-biogeochemical ocean

circulation model for the North Sea and Baltic

Sea

Schrum, 1997; Daewel and Schrum, 2013

ERA-40 40-year reanalysis of the European Center for

Medium Range Weather Forecast

Reanalysis data used for instance as

atmospheric forcing for ocean models

Uppala et al., 2005

ESM Earth System Model Model applied for global climate simulations

including the carbon cycle

Heavens et al., 2013

GCM General Circulation Model Model applied for global climate simulations Meehl et al., 2004

GETM General Estuarine Transport Model 3D hydrodynamic model for coastal oceans https://getm.eu/

GFDL-ESM2M Geophysical Fluid Dynamics Laboratory Earth

System Model

ESM, CMIP5 https://www.gfdl.noaa.gov/earth-system-

model/

HadAM3H Hadley Center high-resolution Atmosphere

Model, component of HadCM3

GCM Gordon et al., 2000a

HadCM2 Hadley Center Climate Model GCM, Global ocean-atmosphere circulation

model

Johns et al., 1997; Mitchell and Johns, 1997

HadCM3 Hadley Center Global Climate Model GCM, CMIP3 Gordon et al., 2000

HadGEM2-ES Hadley Center Global Environment Model

version 2 – Earth System

ESM, CMIP5 http://www.metoffice.gov.uk

HBV Hydrologiska Byråns Vattenbalansavdelning Large-scale hydrological model for river runoff Graham, 1999

IOW Leibniz Institute for Baltic Sea Research

Warnemünde

German research institute http://io-warnemuende.de

IOWMETA Leibniz Institute for Baltic Sea Research

Warnemünde Data Portal

Marine observational data from the German

monitoring program

http://iowmeta.io-warnemuende.de

IPCC Intergovernmental Panel on Climate Change Performed assessment reports of past and

future changes in 1990, 1995, 2001, 2008,

2013 inter alia based upon CMIP results

http://www.ipcc.ch

IPSL-CM4 Institute Pierre Simon Laplace Climate Model ESM Marti et al., 2006

IPSL-CM5A-MR Institut Pierre Simon Laplace Climate Model -

Medium Resolution

ESM, CMIP5 https://www.ipsl.fr/en/

MPI-ESM-LR Max Planck Institute Earth System Model - Low

Resolution

ESM, CMIP5 https://www.mpimet.mpg.de

(Continued)
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TABLE 3 | Continued

Acronym Explanation Comment References

NCEP/NCAR National Centers for Environmental Prediction

(NCEP) and the National Center for

Atmospheric Research (NCAR)

Atmospheric reanalysis data used inter alia as

atmospheric forcing for ocean models

(1948-present)

Kalnay et al., 1996, https://www.esrl.noaa.gov/

psd/data/reanalysis/reanalysis.shtml

RCA0 Rossby Center Atmosphere Model version 0 Regional Climate Model Räisänen et al., 2001; Rummukainen et al.,

2001

RCA3 Rossby Center Atmosphere Model version 3 Regional climate model Samuelsson et al., 2011

RCA4-NEMO Rossby Center Atmosphere model version 4 –

Nucleus for European Modeling of the Ocean

Coupled atmosphere-ocean model applied for

the Baltic Sea and North Sea

Dieterich et al., 2013; Kupiainen et al., 2014;

Wang et al., 2015; Madec and The NEMO

team, 2016

RCAO Rossby Center Atmosphere Ocean Model Regional climate model Döscher et al., 2002

RCM Regional Climate Model Regional atmosphere or coupled

atmosphere-ocean model applied for

dynamical downscaling of changing climate

Rummukainen, 2010, 2016a; Feser et al.,

2011; Rockel, 2015; Rummukainen et al.,

2015; Schrum, 2017

RCO-SCOBI,

BALTSEM,

MOM-ERGOM,

PROBE, SPBEM

Model abbreviations Coupled physical-biogeochemical models for

the Baltic Sea Meier et al. (2018a, this research topic), their

Tables 1, 2 and references therein

RCP Representative Concentration Pathway Greenhouse gas concentration scenario Moss et al., 2010; Van Vuuren et al., 2011

RCSM Regional Climate System Model Regional coupled

atmosphere–sea-ice–ocean–wave–land

surface–atmospheric chemistry–marine

ecosystem model

Giorgi and Gao, 2018

SHARK Swedish Ocean Archive Marine observational data from the Swedish

monitoring program

https://sharkweb.smhi.se/

SMHI Swedish Meteorological and Hydrological

Institute

Swedish center for weather forecasts and

climate scenarios

http://www.smhi.se

SRES Special Report on Emission Scenarios Described greenhouse gas emission scenarios,

e.g. A1B, A2, B2, B1

Nakićenović et al., 2000

SSP Shared socio-economic pathways Narratives of socio-economic changes, here

downscaled to the Baltic Sea region

O’Neill et al., 2014

STAT Hydrological model Statistical model for river runoff calculated from

precipitation and evaporation over land

Meier et al., 2012a

STAT_S Hydrological model Statistical model for river runoff calculated from

the soil model of the RCM

Neumann, 2010

UERRA Uncertainties in Ensembles of Regional

Re-Analyses

Atmospheric reanalysis data used inter alia as

atmospheric forcing for ocean models

http://www.uerra.eu/

Worst Case Worst Case scenario Nutrient load scenario Saraiva et al., 2018

aFor the explanation, why HadAM3H instead of HadCM3 was used, the reader is referred to Räisänen et al. (2004).

the estuarine overturning of the Baltic Sea would slow down in
warmer climate although the causes are not well understood.

Changes in Biogeochemical Cycles
Changing hydrographic conditions due to changing climate
will affect biogeochemical cycles in many ways (e.g., BACCII
Author Team, 2015). Higher water temperatures may cause
increased algae production and increased remineralization of
dead organic material and will reduce the air-sea fluxes of oxygen
(Meier et al., 2011b). Furthermore, warming will preferentially
favor cyanobacteria blooms compared to the blooms of other
phytoplankton species such as diatoms, flagellates and others.
The spring bloom is expected to start (and end) earlier
(depending on the nutrient and light conditions), and nitrogen
fixation might increase (Neumann, 2010; Meier et al., 2012b;
Neumann et al., 2012). Indeed, both long-term remote sensing
data and BALTSEM (Savchuk, 2002; Gustafsson, 2003; Savchuk

et al., 2012a) simulations indicate prolongation of the marine
vegetation season in the 2010s comparing to the 1970s, shifting
of the annual biomass maximum from spring to summer with
the cyanobacteria bloom occurring by half a month earlier, and
a tripling of the simulated nitrogen fixation and net primary
production (Kahru et al., 2016).

Related to higher air temperatures in future climate is a
shrinking sea-ice cover in the northern Baltic Sea that will
lead to an earlier onset of the spring bloom due to improved
light conditions (Eilola et al., 2013). Due to the reduced sea-
ice cover, winds and wave-induced resuspension may increase,
causing an increased transport of nutrients from the productive
coastal zone into the deeper areas of the northern Baltic Sea.
Scenario simulations suggest that increased winter mixing (due
to shrinking sea-ice cover) and increased freshwater supply may
cause a reduced stratification in the Gulf of Finland (Meier
et al., 2011b, 2012a). The reduced sea-ice cover therefore partly
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counteracts eutrophication because the increased vertical mixing
improves oxygen conditions in lower layers.

For the southern Baltic Sea regions without regular seasonal
sea-ice cover, it is unclear whether mixing and light conditions
will change in future climate because projected changes in wind
and cloud cover over the Baltic Sea are uncertain (Räisänen et al.,
2004; Kjellström et al., 2011). In a recent study by Gröger et al.
(manuscript under review), a consistent northward shift in the
mean summer position of the westerly winds was found causing
an increase of the wind speed in particular over the southwestern
Baltic Sea. For mixing, wind speed extremes are important.
However, projected changes in wind speed extremes have a large
spread among scenario simulations (Nikulin et al., 2011).

Increasing river runoff together with increased precipitation
extremes may reinforce river-borne nutrient loads (Stålnacke
et al., 1999; Arheimer et al., 2012; Meier et al., 2012b).
However, other drivers than climate change such as sewage
treatment and livestock density may become even more
important controlling the changes in nutrient loads (e.g.,
Humborg et al., 2007). Humborg et al. (2007) speculated that
riverborne nitrogen loads might increase due to higher livestock
densities whereas phosphorus and silica fluxes may decrease
due to improved sewage treatment. Such changes would have
significant impact on phytoplankton communities. However,
these projections do not consider the impact of changing climate
on terrestrial biogeochemical processes, which may counteract
other anthropogenic effects (Arheimer et al., 2012). Since the
1980, observed phosphorus and nitrogen loads decreased as
a response to nutrient load abatement measures (Gustafsson
et al., 2012) whereas silicate concentrations showed no significant
changes in the northern Baltic proper, Gulf of Finland and Åland
Sea during 1979–2011 (Suikkanen et al., 2013). In present climate,
silicate is not regarded as limiting nutrient.

As the Baltic Sea is shallow with a mean depth of only 52m,
the nutrient exchange between sediment and water column and
resuspension of organic matter are important processes for the
biogeochemical cycling. Eilola et al. (2012) suggested that in
future climate the exchange between shallow and deeper waters
might intensify and that the internal removal of phosphorus
might become weaker because of an increased production in
the coastal zone and expanding oxygen depletion in the deep
water, respectively.

How saltwater inflows may change is unclear (Schimanke
et al., 2014). In present climate, no statistically significant trends
were found (Mohrholz, 2018). However, global mean sea level
rise may enhance the salt transport into the Baltic Sea causing
increased stratification, reduced deep water ventilation and
expanding hypoxia in the Baltic proper (Meier et al., 2017).

The rising atmospheric CO2 concentration will lead to a
decrease in pH (Omstedt et al., 2012), while eutrophication
and enhanced biological production would enhance the seasonal
cycle of pH. Eutrophication in the Gulf of Finland is projected
to increase assuming a “business-as-usual” (BAU) nutrient load
scenario (Lessin et al., 2014). This scenario is characterized by
decreasing bottom oxygen concentrations, more frequent anoxic
conditions, and increasing phosphate and decreasing nitrate
concentrations below 60m depth. These changes may cause a
considerable increase in nitrogen fixation.

In a recent study, a decline in oxygen concentrations in the
Bothnian Sea during the last 20 years was found (Ahlgren et al.,
2017). This finding is surprising because the Bothnian Sea was
so far considered to be oligotrophic. The oxygen depletion was
primarily a consequence of warmer water temperature. Further
causes were an increase in dissolved organic carbon (DOC) and
the import of nutrients from adjacent sub-basins.

Finally, it should be noted that in future climate also the
ecosystem structure and functioning is projected to change
(BACCII Author Team, 2015). An example is the recent study
by Vuorinen et al. (2015), who analyzed the effects of salinity
changes on the distribution of marine species. They found a
critical shift in the salinity range between 5 and 7 g kg−1,
which is a threshold for both freshwater and marine species
distributions and diversity. Andersson et al. (2015) provided
an overview about future climate change scenarios for the
Baltic Sea ecosystem, both for southern and northern sub-
basins, and concluded that climate change is likely to have
large effects on the marine ecosystem. For instance, in the
north heterotrophic bacteria might be favored by allochthonous
organic matter, while phytoplankton productionmay be reduced.
In scenario simulations with biogeochemical models, the
impact of changing ecosystem structure and function on the
biogeochemical cycles are not considered, representing a source
of uncertainty.

Changes in Hypoxic Area
Changes in hydrographic conditions and changes in external
nutrient loads may cause changes in oxygen depletion and
hypoxic area. Meier et al. (2011b) showed with the aid of a
multi-model ensemble that hypoxic area might expand in future
climate because of increased nutrient loads due to enhanced
river runoff, reduced air-sea fluxes and accelerated recycling
of organic matter due to higher water temperatures. More
frequent and longer lasting periods of hypoxia in future climate
(Neumann et al., 2012) may lead to larger phosphorus fluxes
from the sediment into the water column (or reduced retention
capacity of the sediment) and intensified eutrophication (Meier
et al., 2012c; Ryabchenko et al., 2016). Recently, Meier et al.
(2018d) found that after saltwater inflows under contemporary
environmental conditions oxygen consumption rates in the deep
water were accelerated compared to less eutrophied conditions.
This acceleration further amplifies deoxygenation in the Baltic
Sea and counteract natural ventilation. The reason is that water
of inflow events originates mainly from the Baltic surface layer
and contains under contemporary environmental conditions,
inter alia, higher concentrations of organic matter, zooplankton
and higher trophic levels (causing increased heterotrophic
oxygen consumption).

Hypoxia is an important indicator of ecosystem health but also
a challenge for modeling. In the Supplementary Material, results
of past and future changes in hypoxic area of various scenario
simulations are summarized.

DYNAMICAL DOWNSCALING METHODS

In this section, various dynamical downscaling methods used
to perform Baltic Sea projections are reviewed. In general, the
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dynamical downscaling method uses high-resolution regional
simulations to dynamically extrapolate the effects of large-
scale climate variability to regional or local scales of interest
(Figure 2A). Regional climate atmosphere models have an added
value compared to global climate models with respect to the
representation of orographic details, the land-sea mask, sea
surface boundary conditions (sea surface temperature (SST)
and sea ice), more detailed vegetation and soil characteristics,
and extremes, e.g., cyclones (e.g., Rummukainen, 2010, 2016a;
Feser et al., 2011; Rockel, 2015; Rummukainen et al., 2015).
Corresponding arguments apply for regional climate ocean
models (e.g., Meier, 2002a). From the ocean perspective,
historically the main requests from the regional atmospheric
forcing were proper wind fields and atmospheric surface variables
that take the changing sea-ice cover in the Baltic Sea under global
warming into account (Meier et al., 2011c; their Figure 3). Due
to the ice-albedo feedback in the northern Baltic Sea (Bothnian
Bay, see Figure 1) winter mean changes in SST and wind speed
may differ between individual scenario simulations performed
with uncoupled (atmosphere) and coupled (atmosphere–sea-ice–
ocean) regional climate models by more than 3◦C and 1m s−1,
respectively (Meier et al., 2011c; their Figures 10, 11). Even larger
discrepancies were reported from the European PRUDENCE
project (Christensen and Christensen, 2007) emphasizing the
added value of coupled RCMs. However, the added value of
the usage of coupled RCMs or Regional Climate System Models
(RCSMs; Giorgi and Gao, 2018) is often overshadowed by the
uncertainties from the lateral boundary data from the GCMs or
the experimental setup (Schrum, 2017; Mathis et al., 2018).

The first scenario simulations of the Baltic Sea based upon
coupled physical-biogeochemical ocean circulation models were
performed by Neumann (2010) and Meier et al. (2011a).
Earlier scenario simulations that have been developed since the
end of the 1990s focussed only on hydrodynamic changes in
the Baltic Sea (Table 1). Neumann (2010) performed transient
simulations for the period 1960–2100 with an ecosystem model
driven by the atmospheric and hydrological forcing from a
regional climate atmosphere model with sea surface and lateral
boundary data from a global climate model, which is in
turn driven by two GHG emission scenarios (A1B and B1,
see Nakićenović et al., 2000).

Meier et al. (2011a) performed six 30-year time slice
experiments driven by two regionalized GCMs, i.e. two control
simulations representing present climate (1961–1990) and four
simulations with A2 or B2 emission scenario, representing
the climate of the late twenty-first century (2071–2100).
To regionalize global climate change, the regional coupled
atmosphere–sea-ice–ocean model by Döscher et al. (2002) with
lateral boundary data from the two GCMs was applied (Räisänen
et al., 2004).

Meier et al. (2011a) applied the delta approach for the time
slice experiments considering only climatological monthly mean
changes of the atmospheric and hydrological forcing together
with the reconstructed variability of the period 1969–1998.
Hence, they assumed that on interannual and longer time scales
the temporal variability of the forcing does not change in
future climate.

In recent years, the dynamical downscaling approaches used
in these two pioneering studies by Neumann (2010) (Figure 2B)
and Meier et al. (2011a) (Figure 2C) were significantly improved
(Table 1). For instance, improved versions of GCMs or Earth
System Models (ESMs) and RCMs (i.e., coupled atmosphere–
sea-ice–ocean models), historical spin up of the BSM, transient
simulations (instead of time slices), limited usage of bias
correction, expanded multi-model ensembles, more plausible
nutrient load scenarios and updated GHG concentration
scenarios characterize the latest scenario simulations (e.g.,
Saraiva et al., 2018, 2019). Since uncertainties are considerable
and large ensembles of scenario simulations are needed to
estimate uncertainties, the sizes of the ensembles were enlarged
with time (e.g., Meier et al., 2011b, 2018a; Omstedt et al., 2012;
Holt et al., 2016; Saraiva et al., 2019).

Figure 2 shows various experimental setups of the dynamical
downscaling approach. Ideally, boundary data from available
GCMs or ESMs would be used to force a RCSM, i.e., a
regional coupled atmosphere–sea-ice–land surface–ocean model
including the regional carbon and nutrient cycles (Giorgi and
Gao, 2018). Hence, changes in atmospheric, hydrological and
nutrient forcing of the coastal sea of interest, in this case the Baltic
Sea, would be calculated by the RCSM based upon global GHG
emission (Nakićenović et al., 2000) or concentration (Moss et al.,
2010) scenarios and regional nutrient load scenarios (Zandersen
et al., 2019). In case of the ecosystem model comprising even
higher trophic levels (e.g., Niiranen et al., 2013; Bauer et al., 2018,
in press), also fishery scenarios would be needed (cf. Rose et al.,
2010). Regional scenarios of nutrient loads and fishery would
be consistently downscaled from global Shared Socio-economic
Pathways (SSPs) (Van Vuuren et al., 2011; O’Neill et al., 2014; see
Zandersen et al., 2019).

Although the dynamical downscaling approach was improved
in recent years, existing methods do not follow the ideal
experimental setup described above (Figure 2A) and results still
suffer from shortcomings. For instance, the work by Saraiva et al.
(2018, 2019) employed a hydrological and biogeochemical Land
Surface Model (LSM), E-HYPE (Arheimer et al., 2012; Donnelly
et al., 2013), separated from the RCSM (Figure 2D). In a first
step, the scenario simulations with a coupled atmosphere–sea-
ice–ocean model (RCA4-NEMO, Dieterich et al., 2013; Gröger
et al., 2015; Wang et al., 2015; see Table 1) were carried out.
Surface fields of precipitation and air temperature over land were
stored, bias corrected and used to force the uncoupled E-HYPE
model that calculates runoff and nutrient loads into the Baltic Sea
(Hundecha et al., 2016). In a second step, the atmospheric forcing
from RCA4-NEMO and river runoff and nutrient loads from E-
HYPE were used to force the simulations of the coupled physical-
biogeochemical model RCO-SCOBI (Meier et al., 2003; Eilola
et al., 2009; see Table 1). The reason for the choice of this more
complicated and not straightforward approach is that RCA4-
NEMO included neither a LSM (just a river routing scheme, see
Wang et al., 2015) nor a module for marine biogeochemistry. In
addition, the atmospheric deposition of nitrogen was prescribed
following the nutrient load scenarios of optimistic conditions
(BSAP), reference or “current” conditions (REF) and “worst case”
conditions (Worst Case) (Saraiva et al., 2018).
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FIGURE 2 | (A) Hierarchy of models in the dynamical downscaling approach (ESM, Earth System Model; RCSM, Regional Climate System Model including

atmosphere, sea ice, ocean, land surface and terrestrial vegetation, atmospheric chemistry, marine biogeochemistry, food web, fishery). (B) Hierarchy of models in the

dynamical downscaling approach used, e.g., by Neumann (2010) (GCM, General Circulation Model or Global Climate Model; RCM, Regional Climate Model, i.e., a

regional atmosphere model; BSM, Baltic Sea Model; BRM, Baltic Region Model including a BSM and data sets for riverine nutrient loads calculated from the product

of river runoff and climatological river nutrient concentration and atmospheric deposition). (C) Hierarchy of models in the dynamical downscaling approach used, e.g.,

by Meier et al. (2011a). Monthly mean changes in atmospheric surface fields were added to a historical reconstruction that forces a Baltic Sea model (LSM, Land

Surface Model; BRM, Baltic Region Model including a BSM, LSM, and data sets for atmospheric deposition). (D) Hierarchy of models in the dynamical downscaling

approach used, e.g., by Saraiva et al. (2018). (E) Hierarchy of models in the dynamical downscaling approach used, e.g., by Holt et al. (2016) (ROM, Regional Ocean

Model for the Black Sea, Barents Sea, North Sea and Baltic Sea, and Northwest European Continental Shelf).
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FIGURE 3 | Hierarchy of models in the dynamical downscaling approach as shown by Figure 2 and selected sources of uncertainties as discussed in the text.

Another approach, that does not follow the ideal experimental
setup shown in Figure 2A, omitting even a regional atmosphere
climate model was presented by Holt et al. (2016) and Pushpadas
et al. (2015) (Figure 2E).

In addition to the models described above, long-records of
homogenous observational datasets, e.g., monitoring data, are
needed for the development of scenario simulations because
climate models have to be calibrated and evaluated for past
and present climate variability before they can be used for
future projections. In this study, uncertainties related to differing
numbers of observations contained in various databases are
discussed (Table 4). The insufficient temporal and spatial data
coverage may cause errors of integrated data products such
as nutrient pools that are used for model calibration and
evaluation (Table 5).

RESULTS OF THE ASSESSMENT OF
UNCERTAINTIES

Estimating Uncertainties
Meier et al. (2012c) compared reconstructed past variations and
future projections of the Baltic Sea ecosystem and described
considerable uncertainties due to model biases, unknown initial
conditions, and unknown GHG emission and nutrient load
scenarios. Therefore, the significance of scenario simulations
is strongly related to the inherent uncertainties. Within the
used model chain the assumptions taken, the dynamic behavior
of the considered system itself and existing knowledge gaps
constitute several sources of uncertainties. They may add up and
pollute the simulation results. Finally, conclusions may become
weak or are even impossible. However, for marine management
combined climate and nutrient load scenario simulations are of
utmost importance because of the long time scales of marine

biogeochemical cycles. Hence, to be useful in the decision-
making process projections have to consider the range of
uncertainty. The challenge for research is to discover how a priori
assumptions (like unknown future scenarios) affect uncertainty
and how uncertainty can be reduced.With this information some
management questions can still be answered with the help of
scenario simulations despite considerable uncertainties.

Uncertainties of future projections are large, as shown by
Meier et al. (2018a). Several differing sources may contribute to
these uncertainties (Figure 3, Table 2). Nevertheless, Meier et al.
(2018a) showed that in a relatively large ensemble of scenario
simulations based on six coupled physical-biogeochemical
models of the Baltic Sea the signal-to-noise ratios of temperature
and salinity at the surface and in the deep water in Bornholm
Basin, Gotland Basin, Gulf of Finland, Bothnian Sea and
Bothnian Bay (for the locations see Figure 1) are larger than 1
(Meier et al., 2018a; their Figure 8). Here, the signal-to-noise
ratio is defined as the absolute value of the ratio between the
ensemble mean change and the standard deviation of the mean
changes between future and historical climates calculated from
all ensemble members, i.e. the ensemble spread.

However, for biogeochemical variables, such as deep water
oxygen concentrations and winter mean surface concentrations
of nitrate and phosphate, the signal-to-noise ratios are mostly
smaller than 1 suggesting that changes are not significant (Meier
et al., 2018a; their Figure 8). Similar results were found by
Meier et al. (2012c their Figure 2) using three coupled physical-
biogeochemical models of the Baltic Sea.

Uncertainties in scenario simulations have been studied
before (e.g., Räisänen, 2001; Hawkins and Sutton, 2009;
Rummukainen, 2016b; Ruosteenoja et al., 2016). Hawkins
and Sutton (2009) identified three sources of uncertainty in
global temperature projections, i.e. model uncertainty, scenario
uncertainty and internal variability (see introduction). They
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TABLE 4 | Total amount of stations (“station” is a vertical profile sampled; it could

be just temperature measured every few centimeters or a full set at standard

depths; it could also include multi-day intensive stations with profiles taken every

few hours) in different datasets: (1) The data archive (http://iowmeta.io-

warnemuende.de) of the Leibniz Institute for Baltic Sea Research Warnemünde

(IOW), (2) the Swedish Ocean Archive (SHARK, https://sharkweb.smhi.se/)

operated by the Swedish Meteorological and Hydrological Institute (SMHI), and (3)

the Baltic Environmental Database (BED, http://nest.su.se/bed) at Stockholm

University.

IOW SHARK BED

1970–2015 757 365 2604

1970–1999 270 198 1571

(BED numbers include stations from IOW and SHARK and are cleaned of “duplicate”

identical stations coming from different providers).

TABLE 5 | Average (2000–2010) basin-wide annual mean concentrations (mmol

m−3) estimated from different datasets (see Table 4).

IOW SHARK BED

Nitrate+nitrite 2.49 ± 0.66 3.18 ± 0.60 3.36 ± 0.41

Phosphate 1.00 ± 0.04 1.09 ± 0.07 1.01 ± 0.06

applied a statistical formalism based upon average variances of
simulated climate change of a smoothed fit of the original time
series and variances of the residuals across scenarios and time.
They concluded that for lead times of the next few decades
or shorter the dominant contributions to the total uncertainty
are internal variability and model uncertainty. The importance
of internal variability increases at regional compared to global
scales and at time scales shorter than a few decades. Consistent
with these results, in many studies the statistical significance of
simulated climate change between future and past time slices
(usually of a 30-year period) was calculated from a Student’s t-test
(e.g., Räisänen et al., 2004). For longer lead times the dominant
sources of uncertainty are model uncertainty and scenario
uncertainty according to Hawkins and Sutton (2009). Finally,
they concluded that the uncertainties from internal variability
and model uncertainty are potentially reducible through better
initialization of climate predictions (e.g., Smith et al., 2007;Meehl
et al., 2009) and progress in model development although the
advantages of improved models are not yet visible (Knutti and
Sedláček, 2013).

In a first attempt to quantify uncertainties in scenario
simulations of the Baltic Sea, Saraiva et al. (2019) analyzed
uncertainties of projected temperature, salinity, primary
production, nitrogen fixation and hypoxic area from an
ensemble of 21 scenario simulations and two sensitivity
experiments using one BSM, one RCM, one hydrological
model, four GCMs, two GHG concentration scenarios (i.e., the
Representative Concentration Pathways RCP 4.5 and RCP 8.5,
see Moss et al., 2010) and three regional nutrient load scenarios
ranging from plausible low to high values following Zandersen
et al. (2019). Saraiva et al. (2019) analyzed uncertainties at the
end of the twenty-first century and consequently neglected the
uncertainty from natural variability (Hawkins and Sutton, 2009).

Hence, for scenario simulations of the Baltic Sea comprehensive,
quantitative analyses of the sources of uncertainty are still
not available.

Sources of Uncertainties
Observations
The mechanisms of eutrophication are better explained by
total amounts (pools) of nutrients in the aquatic system rather
than by concentrations at specific locations because of large
horizontal gradients. Therefore, an assessment of uncertainties
in the pools reconstructed from observations and used for
calibration and validation of the models is very important.
The extent of such uncertainties can be demonstrated by a
comparison of basin-wide mean concentrations of oxidized
nitrogen (NO3+NO2) and phosphate for the Baltic proper
from different measurement datasets for 2000–2010, the time
interval reasonably covered by the national monitoring schemes
(Savchuk, 2018). The datasets differ in station distributions and
number of observations (Table 4). The comparison suggests that
there are systematic differences between the pools reconstructed
from the various datasets, larger for oxidized nitrogen than for
phosphate (Table 5).

Global Climate Models
Over the Baltic Sea region, 60–70% of the uncertainty in the
4th decade of the projection and still 40–50% in the 9th decade
is due to GCM uncertainties (Hawkins and Sutton, 2009; their
Figure 6). GCMs and ESMs are usually not tuned to perform
well in a specific region but rather to reproduce the dynamics
of large-scale key climate processes. Furthermore, the tuning
strategy can differ significantly among different modeling groups
(e.g., Hourdin et al., 2017; Schmidt et al., 2017) and often
the model’s climate sensitivity plays a significant role in model
calibration (e.g., Mauritsen et al., 2012). Moreover, the long-term
development of global models often follows a trend toward more
complexity, i.e., inclusion of more processes and more climate
components leading to more comprehensive ESMs (see, e.g., the
special issue on the development of the MPI-ESM model in
Journal of Advances in Modeling Earth Systems1. However, the
advances in global climate modeling will not necessarily translate
into a better climate representation on the regional scale. A big
problem for the Baltic Sea region still is that it is either not at all
spatially resolved or only treated as a lake (e.g., Sein et al., 2015).
Thus, even in those GCMs, where the Baltic Sea is included, it
does not benefit from the interactive air-sea coupling due to the
coarse resolution. Therefore, there is growing evidence that for
dynamical downscaling of climate scenarios for the Baltic Sea the
use of regional coupled atmosphere-ocean models is beneficial
compared to standalone models (e.g., Tian et al., 2013; Gröger
et al., 2015).

The number of GCMs that can be downscaled for the region
of interest is usually too small to estimate uncertainties. This
requires defining criteria for a careful selection of available
GCM scenarios. Very recently methods were developed for GCM

1available online: https://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/
(ISSN)1942-2466.MPIESM1).
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selection that suggest to select a subset of models that best
represents the whole spectrum of available GCMs (e.g., Wilcke
and Bärring, 2016). In retrospect, the method by Wilcke and
Bärring (2016) motivates the selection of GCMs by Saraiva
et al. (2019) who estimated uncertainties in Baltic Sea ecosystem
projections due to GCMdeficiencies. Saraiva et al. (2019) selected
four out of the five GCMs identified byWilcke and Bärring (2016)
to best represent the optimal number of clusters for the spread
in projections.

Regional Climate Models
The choice of RCM contributes to the uncertainty of simulated
climate in the Baltic Sea first and foremost through the
representation of natural variability (Van der Linden and
Mitchell, 2009) because biogeochemical cycles in the Baltic
Sea are sensitive to atmospheric conditions on shorter time
scales, for example, through Major Baltic Inflows (Matthäus and
Franck, 1992), storm-induced mixing (Reissmann et al., 2009) or
upwelling (Vahtera et al., 2005).

Projections with RCMs inherit the model uncertainty from
the GCMs that are used as boundary forcing for the RCMs.
In addition, strategies, how the equations are discretized and
how sub-grid scale processes are parameterized, contribute to
the uncertainties originating from RCMs. Déqué et al. (2007)
and Déqué et al. (2012) studied projections of temperature and
precipitation over the European region in ensembles of different
RCMs driven by different GCMs to determine the contributions
of GCM and RCM model uncertainties to the total spread in the
projections. They found that in general the GCM has a larger
contribution to the spread. This should come as no surprise since
RCMs are developed and tuned for a specific region, whereas
GCMs need to perform reasonably well everywhere and are
mostly tuned to the large open ocean areas. While the choice of
the GCM becomes important on seasonal and longer time scales,
on shorter time scales the RCM uncertainty dominates. Weekly
to hourly time scales are important, for instance, for large salt
water inflows, upwelling and mixing.

It has been shown by Deser et al. (2014) that uncertainty
on a regional scale can be connected to the natural variability
of the system. Different patterns of atmospheric variability like
Scandinavian blocking2 or a potential shift in the storm track and
its effect on the Baltic Sea ecosystem have not been investigated
so far. It is conceivable that the choice of the GCM and RCM and
even the combination of different GCM/RCM pairs might lead
to different representations of these patterns. In order to quantify
this added uncertainty, specific experiments need to be carried
out for future, more detailed assessments.

Since state-of-the-art multi-model ensembles are using only
a selected number of RCMs to drive the Baltic Sea ecosystem
models, the uncertainty that stems from the choice of the RCMs is
undersampled. Studies like the PRUDENCE project (Christensen
and Christensen, 2007) or the CORDEX effort (Jacob et al.,
2014) showed that, for example, uncertainties in projections of

2Scandinavian blocking is a large-scale, persistent atmospheric pattern of high
pressure over Scandinavia that redirects migrating cyclones. The range of typical
time scales of blocking is several days to even weeks.

precipitation are mainly dominated by the RCM in the Baltic
Sea drainage basin. One of the most important factors that
governs the interaction between the atmosphere and the marine
ecosystem is the wind at the atmosphere-ocean interface. The
surface wind is also one of those variables that on a regional
scale are very much dependent on the choice of the RCM and do
affect the solution of the marine ecosystem. On the other hand,
integrated measurements like the bottom salinity in the Gotland
Basin provide a good test to assess the credibility of a specific
RCM and marine ecosystem combination for hindcast periods
where reanalyses are available to drive the RCM.

Finally, the choice of the size of the RCM domain is a
source of uncertainty. For instance, the freshwater balance of
the Mediterranean Sea depends on storm tracks over the North
Atlantic, which representation are dependent on the resolution
of the models (Gimeno et al., 2012). In addition, atmosphere-
ocean feedbacks potentially outside the coupled model domain
of the RCM may affect cyclones and heavy precipitation events
(Ho-Hagemann et al., 2017).

Regional Water Balance
The global water balance is dominated by precipitation and
evaporation at the ocean–atmosphere interface. In coastal seas,
such as the Baltic Sea, the land influence is high and on long
time scales, the net precipitation over land is balanced by the
river runoff to the sea. The precipitation and evaporation rates
are strongly influenced by themid latitudes’ low-pressure systems
and related trajectories. Fresh water that precipitates over the
Baltic Sea catchment area may come from surrounding sea
areas such as the Atlantic Ocean, North Sea, Barents Sea or
Mediterranean Sea (e.g., Sepp et al., 2018). Long-term changes
in the frequency of cyclones and their trajectories are of major
importance for the hydrological cycle and for example, the
number of cyclones over the Baltic Sea has increased, especially
during winter (e.g., Sepp et al., 2005; BACCII Author Team,
2015). During past decades, efforts have beenmade to analyze the
hydrological cycle in the Baltic Basin area by using hydrological
models calculating the fresh water drainage to the Baltic Sea (e.g.,
Graham, 1999). Coastal ocean models were then used to evaluate
the water balance calculation (see reviews in Omstedt et al., 2004,
2014) based on available data including salinity measurements.
Modeling the Baltic Sea allowed consistent estimates of in- and
outflows for closing the hydrological cycles and a possibility to
estimate uncertainties with regard to the fresh water cycle in
the Baltic Basin area. In the model study by Omstedt and Nohr
(2004), all available data were integrated indicating that the long-
term net water balances (mean errors over decadal time scales)
could be estimated within an error of about± 600m3s−1 or 4% of
the total river runoff (15,000m3s−1). By introducing atmospheric
and land surface models (e.g., Jacob, 2001; Bengtsson, 2010) it
was possible to achieve reasonable estimates of the net fresh
water outflow from the Baltic Sea if the atmospheric model was
driven by observations based on reanalyzed data at the lateral
boundaries. However, estimates on model uncertainties were
not analyzed.

Biases and inconsistent climate signals have been reported
based on present state-of-the-art RCMs (e.g., Turco et al.,
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2013). Frommodel calculations on different levels of complexity,
the uncertainty in RCMs was estimated using the BALTEX
box concept (Raschke et al., 2001). Further, it was shown
that especially for climate change impact studies downscaling
methods using RCMs still indicate a need for improvement
(Omstedt et al., 2000, 2012; Lind and Kjellström, 2009;
Donnelly et al., 2014; BACCII Author Team, 2015). For
example, Omstedt et al. (2012) showed that without bias
corrections related to the fresh water inflow the biogeochemical
calculations in the BSMs would be poor. In addition, Donnelly
et al. (2014) found that the climate sensitivity of their
hydrological model also depends on the bias correction
method applied to precipitation and air temperature from the
driving RCM.

Natural Variability
The Baltic Sea is affected by internal modes of variability of
atmospheric large-scale circulation such as the North Atlantic
Oscillation (NAO, e.g., Tinz, 1996; Omstedt and Chen, 2001;
Andersson, 2002; Meier and Kauker, 2002; Chen and Omstedt,
2005; Löptien et al., 2013) or decadal and centennial variations
related to ocean-atmosphere interactions in the adjacent Atlantic
(e.g., Kauker and Meier, 2003; Meier and Kauker, 2003a,b;
Hansson and Omstedt, 2008; Schimanke and Meier, 2016;
Börgel et al., 2018). Therefore, in order to distinguish natural
variations from anthropogenic induced changes, it is crucial
to determine the magnitude of natural variability of physical
and ecosystem characteristics undisturbed of anthropogenic
influence, even though the projected impact of climate change
at the end of the century can be expected to be substantially
larger than the variability that has been recorded during the
historical period.

Previous downscaling studies usually attempted to estimate
natural variability from reanalysis data or hindcast simulations
by downscaling GCM simulations of the historical period (e.g.,
Holt et al., 2012; Sein et al., 2015; Wang et al., 2015). In addition,
the ensemble approach was applied to distinguish between
natural variability and the climate change signal although the
number of ensemble members was limited (e.g., three members
in Kjellström et al., 2011; Omstedt et al., 2012).

However, anthropogenic influence has already started during
the historical period and common hindcast simulations mostly
cover the period since 1960. Observation based estimates indicate
that the global mean temperature rises at rates between 0.15◦

and 0.2◦C per decade since the seventies of the previous
century (e.g., Hansen et al., 2010). Thus, the currently observed
warming has already reached about half of the rates which
are expected even for the strongest warming projections
reported by the assessments of the IPCC, e.g., 0.34◦C per
decade for the A2 scenario (Meehl et al., 2007) or 0.37◦C
per decade for the RCP 8.5 scenario (Table 12.2 in Collins
et al., 2013). Therefore, estimates of natural variability inferred
from any hindcast simulation are already strongly affected
by climate warming.

An alternative approach to quantitatively estimate natural
variability has been presented by Tinker et al. (2015) and
Tinker et al. (2016). They used the regionalized climate from

HadCM3 applied to POLCOMS for the northwestern European
shelf to downscale 146 years out of a long-term, pre-industrial
control simulation from the HadCM3 global climate model.
Such a control simulation is unaffected by anthropogenic forcing
and thus represents natural variability as realistic as possible.
Accordingly, it can even be used to estimate significance
of changes simulated during the historical period. The long
duration of this simulation likewise allows determining natural
variability at low frequencies, which is typically related to the
ocean with its higher internal inertia.

An even longer simulation of pre-industrial climate of
the Baltic Sea for the period 950-1800 AD was carried out
by Schimanke and Meier (2016). These model data allowed
to analyze the low-frequency natural climate variability of
the Baltic Sea. For instance, Börgel et al. (2018) showed that
the Atlantic Multidecadal Oscillation (Knight et al., 2005)
has a significant impact on Baltic Sea salinity variations
on time scales of 60–90 and 120–180 years for the periods
1450–1650 and 1150–1400, respectively. However, as every
GCM generates its own variability characteristics one would
have to apply the dynamical downscaling procedure for
every individual GCM control climate used in regional
multi-GCM ensembles, which makes it computationally
quite expensive.

Nutrient Loads and Bioavailability
Although being derived from the same original data (e.g.,
Savchuk et al., 2012b), different external nutrient inputs were
used to calibrate the BSMs, with most important differences
originating from the differing assumptions on the bioavailable
fractions of land loads taking coastal nutrient retention into
account. Especially significant are the differences in terrestrial
phosphorus inputs, reaching up to 50% in historical model
simulations (Eilola et al., 2011; Meier et al., 2018a; their Figure
3). Recently, Asmala et al. (2017) estimated from up-scaled
observations that the coastal filter of the entire Baltic Sea removes
16% of nitrogen (N) and 53% of phosphorus (P) inputs from land,
with archipelagos being the most important phosphorus traps.
BSMs covering the entire Baltic Sea do not resolve the processes
of the coastal zone properly, although shallow areas are included
and calibrated to remove “enough” nutrients in the coastal zone
to achieve correct nutrient concentrations in the water column of
the open sea in present climate. For the entire Swedish coastline,
Edman et al. (2018) estimated from a high-resolution coastal
zone model the average nutrient filter efficiency to be about 54
and 70% for nitrogen and phosphorus, respectively. As a result,
the total amounts and the N:P ratio of nutrients actually entering
the open sea biogeochemical cycle are substantially different
between the models, which is a source of systematic quantitative
differences in scenario responses to projected changes given in
absolute amounts.

For instance, in the BALTSEM model the decrease of
phosphorus bioavailability from the current 100% would be
simply equivalent to a reduction of external input. As had already
been shown by Savchuk and Wulff (1999) and was repeatedly
confirmed since then, e.g., by hundreds of numerical experiments
performed for the revision of the BSAP (Gustafsson and Mörth,
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2014), such reduction would result in a weakening of the “vicious
circle”3, which is a positive feedback mechanism that impedes the
switch from eutrophic to oligotrophic conditions (Vahtera et al.,
2007), and would have similar consequences to those already
described with the BSAP scenario.

Atmospheric nitrogen depositions amount up to more
than 25% of the total loads (HELCOM, 2015). Estimates of
atmospheric loads are based on atmospheric transport models
calibrated against monitored nitrogen deposition. Modeling
relies on emission and land use data. Since not only theHELCOM
area contributes to the deposition, also data from outside the
HELCOM area and from shipping are used. Past reconstructions
may involve larger uncertainties due to missing forcing data and
reliable model simulations. Most data have to be considered as
rough estimates (Gustafsson et al., 2012).

Some LSMs like HYPE (Arheimer et al., 2012; Donnelly et al.,
2013) are process-based and calculate the impact of changing
climate on nutrient loads. For instance, Arheimer et al. (2012)
suggested that due to the changing climate the total load from
the catchment area to the Baltic Sea will decrease for nitrogen and
increase for phosphorus in the future. Their scenario simulations
indicate that the impact of climate change may be of the
same order of magnitude as the expected nitrogen reductions
from the measures simulated such as wastewater treatment
and agricultural practices. Whereas the knowledge about soil
processes on shorter time scales is available, the response to
changing climate on longer time scales such as centennial is
lacking. Due to sparse observations of long-term trends in the
nutrient storage in soil caused by changing climate and land use
management, simulated changes in LSMs are difficult to validate.

Emission Scenarios
For addressing uncertainty, new GHG emission scenarios are
designed regularly within the framework of CMIP. During phase
3 of CMIP scenarios were defined that provide a range of slower
and faster increasing emissions from 2001 onward leading to
maximal atmospheric CO2 concentrations at the end of the
twenty-first century (Nakićenović et al., 2000). These scenarios
did not include any specificmitigation actions to explicitly reduce
emissions but rely more on scenarios for economic growth.

For CMIP5 models, RCPs were developed and define a
maximum radiative forcing of GHGs at a certain time with
decreasing forcing afterwards. For example, RCP 2.6 has its
biggest radiative forcing (∼3Wm−2) in themiddle of the twenty-
first century and thereafter it decreases slightly to 2.6W m−2

at the end of the century. Thus, when comparing different
RCP scenarios, the maximal climate response can be expected

3The “vicious circle” is a feedback mechanism that sustains eutrophication
in the Baltic Sea and similar systems (Vahtera et al., 2007; Savchuk, 2018).
Increased nutrient loads lead to increased algae blooms, mineralization and
oxygen consumption in the water column and sediments. Expanding hypoxia
increases removal of nitrogen by denitrification, thus decreasing the N:P ratio.
Under anoxic conditions, the phosphorus retention capacity of sediments is
considerably reduced causing increased phosphorus fluxes from the sediments
into the water column. Deficit of nitrogen and increased availability of phosphate
enhance nitrogen fixation by cyanobacteria making nitrogen available for other
phytoplankton species and thus reinforcing eutrophication.

at different times depending on the respective RCP. Existing
radiative transfer models estimate a present day radiative forcing
due to CO2 of 1.8W m−2 and a combined effect of all GHGs of
2.25W m−2 (Myhre et al., 1998). More recent estimates of the
total radiative forcing from 26 GHGs amount to 2.83Wm−2 (see
Myhre et al., 2013; their Table 8.2, p. 678). It is therefore rather
unlikely that RCP 2.6 can be achieved. Hence, this scenario was
neglected in most of the previous studies (e.g., Meier et al., 2018a;
Saraiva et al., 2018, 2019).

By contrast, the moderate to high radiative forcing scenarios
RCP 4.5, RCP 6.0, and RCP 8.5 reach their respective maximum
in radiative forcing at the end of the twenty-first century. All RCP
scenarios start from the historical period, which ends in 2005.
Not considered yet in scenario simulations are the most recent
emission scenarios developed in the framework of CMIP6. They
are defined from 2015 onward (Eyring et al., 2016) and include
a by far more comprehensive suite of possible SSPs compared to
the previous phases of CMIP (O’Neill et al., 2014).

The two most commonly used RCP scenarios in Baltic Sea
projections, RCP 4.5 and RCP 8.5, are those projections in the
CMIP5 program that are included in the core set of experiments
(Taylor et al., 2012). In terms of CO2 emissions, the RCP 8.5
scenario corresponds to the 90th percentile of the scenarios that
have been considered for the development of the RCPs (Moss
et al., 2010). It represents non-climate policy and high population
scenarios. The socio-economic scenario in RCP 8.5 is not unique.
Different SSPs would be consistent with this RCP. However, RCP
8.5 may be characterized by fossil fuel dominated economy, high-
energy consumption andmedium agricultural land use. The RCP
4.5 scenario is a typical mitigation scenario where CO2 emissions
are stabilized after 2080 (Moss et al., 2010). It is compatible with
different climate policy scenarios, such as the B1 scenario of
the Special Report of Emission Scenarios (SRES) (Nakićenović
et al., 2000). It assumes that the population has reached its peak
around 2080 at 9 billion people. In the RCP 4.5 scenario, energy
consumption ismuch lower (three fifth) than in RCP 8.5 and coal,
oil, gas, bio-energy and nuclear power contribute with roughly
equal amounts. Agricultural land use in RCP 4.5 is very low (Van
Vuuren et al., 2011).

A noteworthy difference to the currently available RCP
scenarios is that the core SSPs, as defined in the CMIP6
ScenarioMIP (Scenario Model Intercomparison Project, O’Neill
et al., 2016), include protocols for overshoot scenarios and long-
term scenarios that proceed up to 300 years into the future.
This refers to the fact that some high impact and non-linear
climate responses (e.g., Liu et al., 2017) can occur on time scales
beyond the common projection period until 2100. In this long-
term perspective, the uncertainty due to the use of different global
models is expected to be large, which demands for a high number
of ensemble members to be considered in future regional studies.

Initial Conditions
Both, multicomponent ESMs as well as high resolution RCMs
have their own internal dynamics and certainly their own
individual biases. Therefore, it is highly unlikely that the
prescribed initial fields are in phase with internal model
dynamics. Especially in the Baltic Sea, which has longer flushing
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times than many other shelf seas (e.g., the North Sea), this can
result in more or less strong model drifts (e.g., Gustafsson et al.,
1998; Omstedt et al., 2000; Meier, 2002a). This applies even more
to biogeochemical variables involved in carbon and nutrient
cycling, and especially to the sediments.

Two approaches have been reported in the literature to
overcome this problem: (1) Prolonged spin up runs applying
repeated forcing according to present day climate (e.g., Meier,
2007; Lessin et al., 2014), or (2) starting the simulation long
before the time period of interest using reconstructed forcing
data (e.g., Gustafsson et al., 2012; Meier et al., 2018a,b,c).

The initialization problem becomes more prominent when
downscaling GCM climate scenarios. Any initialization from
runs other than the corresponding historical run of the global
GCM will result in a more or less strong perturbation due to the
switch in atmospheric forcing. To remedy this problem, different
kinds of bias correction methods have been developed (e.g.,
Meier, 2006; Meier et al., 2011a; Holt et al., 2012; Mathis et al.,
2013; Pushpadas et al., 2015). The general rationale behind those
methods is that global GCMs are considered to be sufficiently
good to simulate global climate change but are biased on the
regional scales (see sub-section on bias correction).

Filtering of nutrients in the coastal zone or burial in the
sediments have very long time scales. Hence, the spin up period
in many of the state-of-the-art ensemble simulations is too short.

Global Mean Sea Level Rise
Projections of GMSL change range from 0.26 to 0.82m for
the period 2081–2100 relative to 1986–2005 (Stocker et al.,
2013). They are dependent on the choice of the emission
scenario (Schrum et al., 2016) and natural climate forcing (e.g.,
solar variability). For the next decades climate variability is
already committed by today’s GHG levels, whereas long-term
projections are more uncertain (Rummukainen, 2016b). A less
likely, higher increase in GMSL cannot be ruled out due to
possible additional ice sheet contributions (BACCII Author
Team, 2015; Schrum et al., 2016).

Uncertainties in GMSL change projections and the different
projected spatial patterns arise from the limited capability of
the models to simulate climate system processes and natural
variability (e.g., El Niño–Southern Oscillation (ENSO) or NAO
on regional scales) as the non-linear system of equations has to be
solved numerically and is therefore an approximation (Schrum
et al., 2016). Horizontal and vertical resolutions are defining the
capability of simulating climate system processes and are limited
by the available computational resources. In addition, different
numerical techniques, parameterizations and model approaches
lead to additional uncertainties, which are not well estimated in
most studies (Schrum et al., 2016).

Beside the uncertainty of future GMSL change itself, its
influence on the Baltic Sea is also uncertain, as only a few
studies have investigated this question. Using a process-oriented
model Gustafsson (2004) investigated the sensitivity of Baltic
Sea salinity to large perturbations in climate such as changes in
GMSL and freshwater supply. He found that a rise in GMSL
of about + 1m would lead to a sea surface salinity increase
from 8 to 9 g kg−1 in the southern Baltic proper. Hordoir et al.
(2015) investigated the influence of GMSL change on saltwater

inflows into the Baltic Sea. They performed idealized model
sensitivity experiments using a regional ocean general circulation
model covering the North Sea and the Baltic Sea. They found
that GMSL rise leads to a non-linear increase in salt inflow
caused by increased cross-sections and reduced mixing in the
Danish straits (Hordoir et al., 2015). However, Arneborg (2016)
disproved the interpretation of the results of Hordoir et al. (2015)
by arguing that the increased salt inflow caused by GMSL rise
is not originating from reduced mixing but is due to a higher
increase of barotropic volume fluxes in the Sound than in the
Belt Sea.

A study by Meier et al. (2017) investigated the influence
of GMSL rise of 0.5m or 1.0m on the water exchange
between the North Sea and the Baltic Sea and the state of
hypoxic areas in the Baltic Sea using a coupled physical-
biogeochemical model. Saraiva et al. (2019) even combined
scenario simulations with a 1.0m higher mean sea level. Both
studies found a linear increase in salt inflow with increasing
cross section and higher stratification in the Baltic Sea and hence
increased hypoxic bottom areas. From the performed idealized
sensitivity experiments where only time-independent sea level
anomalies were added, uncertainties of the scenario simulations
by Saraiva et al. (2019) were estimated. However, the simulations
overestimate the impact of GMSL rise because they do not
take the transient behavior of changing climate into account
(Meier et al., 2017).

Uncertainty in Nutrient Concentrations at the Lateral

Boundary in the Northern Kattegat/Skagerrak
Regional ocean models usually have a boundary to connecting
oceans or seas. Consequently, information at the boundary from
outside the model domain is needed. In the case of the Baltic
Sea, the effect of the open boundary may be limited due to
the bathymetry of the narrow and shallow Danish straits, which
confine the exchange between the Baltic Sea and the open ocean.
Nevertheless, the effective net import of nitrogen from Kattegat
into the Baltic Sea accounts for up to 100 ktons year−1 (Radtke
and Maar, 2016)4. Here, we will discuss the impact of uncertain
information about nutrient concentrations for simulations of the
Baltic Sea.

Sources of uncertainty in boundary conditions
According to several earlier estimates, the water masses at
the entrance to the Kattegat consist of about 80% of Atlantic
waters from the central North Sea, while German Bight and
Baltic waters contribute only about 10% each (e.g., Aarup
et al., 1996; Kristiansen and Aas, 2015). Despite a marked
decrease of nutrient concentrations in the Dutch coastal areas,
almost returning to the pre-industrial levels with slightly higher
N:P ratio (e.g., Troost et al., 2014; Burson et al., 2016), the
concentrations in the offshore areas of the German Bight, where
the Jutland Coastal Current originates, have not changed much
since the known regime shift in the late 1980s (e.g., Lenhart et al.,
2010; Topcu et al., 2011).

4The net import from Kattegat amounts to about 11-14 % of the total bioavailable
riverborne nitrogen load during 1980-2005 according to Meier et al. (2018a).
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A relative stability of the Skagerrak nutrient status has
already been demonstrated by Skogen et al. (2004), when drastic
reductions of 50% of riverine nutrient input to the North Sea
resulted in only about 5% decrease of the simulated primary
production in the Skagerrak, which was far less than the natural
interannual variations. Less than 15% reduction of primary
production has also been simulated with similar nutrient load
reductions in several models covering the entire North Sea
(Lenhart et al., 2010). Scenario simulations with 50% reductions
of the North Sea nitrogen and phosphorus river loads performed
with a biogeochemical model for the coupled North Sea - Baltic
Sea area resulted in a decrease of the winter surface nitrate and
phosphate concentrations at the Skagerrak-Kattegat boundary of
10–20% and 5–10%, respectively (Kuznetsov et al., 2016). The
change in nutrient concentrations in the North Sea, Skagerrak
and Kattegat due to nutrient load reductions in North Sea rivers
is small because of the large exchange of the North Sea water with
the Atlantic.

As trends in nutrient concentrations in Atlantic waters filling
the southern and central parts of the North Sea have not been
observed yet (Radach and Pätsch, 1997; Laane et al., 2005),
nutrient concentrations in Skagerrak are usually assumed to be
constant. However, as was demonstrated by scenario simulations
with a global coupled physical-biogeochemical model with finer
resolved northwestern European shelf, the projected warming
and freshening sharpens stratification and reduces the upward
mixing of nutrient-rich waters along the continental shelf break
and their import into the North Sea (Gröger et al., 2013).
Consequently, nutrient concentrations in the open North Sea are
about halved and primary production is significantly decreased.
Recent scenario simulations suggest that the variability in net
primary production in the North Sea will rapidly increase after
2080 (Mathis et al., 2019). This non-linear effect is explained by
the threshold when the mixed layer depth in the eastern North
Atlantic reaches the shelf break causing high-frequent changes
in nutrient transports into the North Sea. The impact of such
changes for the Baltic Sea has so far not been explored. However,
as the nutrient inventory of the Baltic Sea is rather controlled by
riverine input and interaction with sediments the effect might
probably be small. Efforts to reduce the currently high input of
anthropogenic nutrients from, inter alia, fertilizers could give rise
to a more prominent role of boundary conditions in the eastern
North Sea region in future (see the discussion below).

Impact of uncertainty in boundary conditions
In order to demonstrate the uncertainties introduced into
scenario simulations that keep the nutrient inputs from
Skagerrak unchanged, BALTSEM simulations have been
performed for 300 years under repeated present climate and
the contemporary nutrient inputs to the Baltic Sea (HELCOM,
2015) have been kept unchanged except for the inputs through
the Skagerrak-Kattegat boundary. Two scenarios have been
implemented with reduced boundary nutrient concentrations
from the very start of the simulations: “North Sea” (20%
nitrogen and 10% phosphorus reduction) and “Atlantic” (50%
nitrogen and 50% phosphorus reduction). The comparison
of these scenarios to the reference run, where the Skagerrak

TABLE 6 | Relative changes (in %) of the average (2050–2300) of annual mean

nutrient concentrations and integral fluxes induced by the “North Sea” and

“Atlantic” scenario reductions of the nitrogen and phosphorus imports from

Skagerrak.

BALTSEM basin TN TP PP NF

NORTH SEA SCENARIO (2.9% N AND 4.0% P OF THE TOTAL LOAD)

Central Kattegat −10.8% −7.5% −11.7% −4.9%

Gotland Sea +1.4% −1.2% −2.3% −2.2%

ATLANTIC SCENARIO (7.2% N AND 20.1% P OF THE TOTAL LOAD)

Central Kattegat −30.2 −37.5 −40.4 −55.8

Gotland Sea +7.3 −5.2 −10.2 −10.1

TN, total nitrogen; TP, total phosphorus; PP, net primary production; NF, nitrogen fixation.

The total load to the entire Baltic Sea comprises nutrient inputs from land, via atmosphere,

and through the Skagerrak-Kattegat boundary.

concentrations are kept unchanged, shows much larger changes
in the Kattegat compared to the Gotland Sea, especially in the
more plausible “North Sea” scenario (Table 6).

The weak response of the Baltic Sea as a whole is explained by
the filtering capacity of the shallow and narrow Danish straits.
However, in the “Atlantic” scenario the import to the Arkona
Basin is reduced by 24 and 28%, i.e., by one half of the relative
reductions at the boundary. This small sensitivity might change if
the GMSL increases. It is remarkable that even minor reductions
of both phosphorus inputs and concentrations lead to a decline
of primary production and hypoxic area in the Baltic Sea with
a consecutive decrease of denitrification and increase of the
phosphorus sediment retention, which in consequence could also
be considered as a weakening of the “vicious circle” (Vahtera
et al., 2007). Compared to all other uncertainties and overall
changes projected by the entire ensemble of available scenario
simulations (Meier et al., 2018a), the uncertainties originating
from the prescribed nutrient imports from the North Sea can
be considered as insignificant. Differences among the models are
probably small because the same observations from Kattegat or
Skagerrak are used at the lateral boundaries.

Bias Correction
To reduce biases, BSMs and LSMs might be forced by trends
calculated from the RCMs/GCMs rather than directly by biased
RCM/GCM climates (Rechid et al., 2016; Schrum et al., 2016).
However, this method cannot account for biases in wind
direction (in earlier studies only wind speed was corrected, e.g.,
Höglund et al., 2009;Meier et al., 2011c), whichmay be important
in the context of saltwater inflows to the Baltic Sea. Furthermore,
atmospheric boundary variables are not independent of each
other and their relationships are in most cases non-linear. Hence,
the bias corrected forcing variables are in most cases physically
not consistent. Further, in case of the Baltic Sea deep water one
has to consider that the high sensitivity of inflows to atmospheric
forcing (e.g., Schimanke et al., 2014) requires to force and
initialize the model with data as close as possible to the forcing
data set to which model parameters were originally tuned to.
These forcing data are usually various kinds of global (e.g.,
NCEP/NCAR, Kalnay et al., 1996; ERA-40, Uppala et al., 2005)
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or regional (e.g., UERRA5) atmospheric reanalysis data sets
(e.g., Omstedt et al., 2005), gridded observations (e.g., Meier
et al., 2003; Omstedt and Hansson, 2006a,b; Meier, 2007), and
reconstructions (e.g., Gustafsson et al., 2012; Meier et al., 2012c;
Meier et al., 2018b).

On the other hand, bias correction will facilitate the
comparison of large ensembles applying multiple driving GCMs
(as it removes the individual GCM biases, which must be
expected to differ among GCMs) and allows starting the model
from conditions as realistic as possible (e.g., Meier et al., 2006;
Pushpadas et al., 2015; Holt et al., 2016).

Different Responses/Sensitivity in Baltic Sea Models

and Processes
Uncertainties are introduced by both the LSM and the BSM.
Since the physical basics of the hydrodynamic modeling are well
known, differences in model results emerge merely from the
applied numerical approximation of the differential equations
and the parameterization of sub-grid scale processes (e.g.,
Myrberg et al., 2010) or from the atmospheric forcing (Placke
et al., 2018). In addition, the model setup like the bathymetry,
the open boundary conditions or the treatment of runoff
may introduce different model results. Owing to their nature,
biogeochemical models are flawed due to the complexity of
processes involved and knowledge gaps in their details and
parameterizations. The uncertainties in the representation of
biogeochemical processes in BSMs were discussed by Eilola et al.
(2011). They concluded from the analysis of hindcast simulations
of three different BSMs that the largest uncertainties are related
to the initial conditions in the early 1960s (the start period of
their simulations), the bioavailability of nutrients in land runoff
(see section discussion above), the parameterization of sediment
fluxes and the turnover of nutrients in the sediments, and the
nutrient cycling in the Gulf of Bothnia.

Despite simplification, implemented sediment
parameterizations produce biogeochemical fluxes that are
reasonably comparable in hindcast simulations to available
measurements. However, the integral amounts of sediment
nutrients differ between models manifold, which greatly affects
the carrying capacity of sediments as ecosystem’s memory and
makes the response time in projections rather uncertain (Eilola
et al., 2011).

Usually in BSMs the response of benthic communities to
changing environmental conditions is neglected (e.g., Neumann
et al., 2002; Savchuk, 2002; Eilola et al., 2009). Timmermann
et al. (2012) showed that benthic fauna has an impact on nutrient
sediment fluxes and the feedback between eutrophication
and hypoxia. However, Timmermann et al. (2012) concluded
that quantitative studies how benthic fauna would affect the
system over large spatial and temporal scales are still missing.
In particular, the benthic influence on algal blooms and
fish populations is quantitatively unknown. Recent simplified
simulations of invasive polychaeteMarenzelleria spp. in the Gulf
of Finland with the SPBEM model demonstrated that the effect

5http://www.uerra.eu/

would also be similar to a weakening of the “vicious circle”
(Isaev et al., 2017).

Models generally strongly underestimate phytoplankton
primary production in the Bothnia Bay. For instance, the spring-
to-summer reduction of surface nitrate concentration simulated
with BALTSEM (8 to 5 µmol L−1) is about a half of the one
estimated from measurements (8 to 2 µmol L−1) (Savchuk
et al., 2012a). Here, the unknown or poorly parameterized
biogeochemical processes might be related to large pools of
humic substances, poorer light climate, the relative distribution
of bacterial vs. phytoplankton-based production, and the severe
phosphorus limitation of the phytoplankton development (Eilola
et al., 2011). The assumption on variable phytoplankton
stoichiometry instead of the fixed Redfield ratio allowed to
somewhat reduce the selected model-data differences (Fransner
et al., 2018). However, the implemented parameterizations have
yet to be tested in the southern sub-basins of the Baltic Sea. On
the other hand, a southward export of nitrogen, underutilized
in the Bothnian Bay, is largely assimilated already in the
Bothnian Sea.

State-of-the-art models have been developed and evaluated
to the present eutrophic situation in the Baltic Sea (Eilola
et al., 2011). Evaluation of simulated model results from more
oligotrophic pre-industrial times to present (Gustafsson et al.,
2012) is therefore important for the assessment of model
performance and uncertainties. Historical observations, e.g.,
of harmful cyanobacteria blooms, are however scarce (Finni
et al., 2001) and from pelagic observations we mainly have an
understanding about the situation during the eutrophic period
in the Baltic Sea. Long records of Secchi depth and oxygen
concentrations give some support for historical reconstructions
from 1850 forward (Hansson and Gustafsson, 2011; Gustafsson
et al., 2012; Meier et al., 2012c, 2018b,c,d; HELCOM, 2013c;
Carstensen et al., 2014), but no information about the nutrient
cycling or the occurrence of cyanobacteria blooms. Thus, it is
difficult to assess the model performance under different forcing
conditions like oligotrophic nutrient loads or different climate.

Further, the link to top-down ecosystem pressures and bio-
economic scenarios in state-of-the-art BSMs is usually missing.
In the recent review by Nielsen et al. (2017), a big number of bio-
economic models operating in scenario mode in the Baltic Sea
was reviewed. However, these models did not contain a coupled
physical-biogeochemical component. Although the approach of
end-to-end ecosystem models was already developed many years
ago (Fulton, 2010), only a few studies about bottom-up linkages
are available for the Baltic Sea (Niiranen et al., 2013; Bauer et al.,
2018, in press; Bossier et al., 2018). Usually, state-of-the-art BSMs
do not consider higher trophic levels (e.g., Neumann et al., 2002;
Savchuk, 2002; Eilola et al., 2009).

Concerning model biases, temperature and salinity
dependencies of some key biogeochemical and food web
processes are not well understood. For instance, higher
temperatures accelerate bacterial mineralization of phosphorus
in the bottom sediments, but the overall rate is unknown.
Furthermore, Meier et al. (2011b) showed by comparison of
scenario simulations with three BSMs, that sensitivities of the
ecosystem response to nutrient load changes differ considerably

Frontiers in Marine Science | www.frontiersin.org 18 March 2019 | Volume 6 | Article 46

http://www.uerra.eu/
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Meier et al. Review of Uncertainties

among the models. For instance, they found large differences in
bottom oxygen concentration changes. For a given nutrient load
scenario the discrepancies are largest in regions along the slopes
of the Baltic proper and Gulf of Finland that are affected by the
varying position and strength of the halocline. The reasons are
runoff and wind speed changes that differ among the climate
projections. In addition, the sensitivity of the halocline depth
to changes in runoff and wind speed differs among the various
BSMs. Further, the sensitivity to changes in nutrient loads (BSAP,
REF, and BAU) varies considerably among the models. Despite
these uncertainties, all three models agree astonishingly well in
their overall response of the ecosystem to changes in the external
nutrient supply because the response to nutrient load changes
is even larger than the spread of the projections. For instance,
Meier et al. (2011b) found that in future climate the BSAP is
very likely not as efficient as in present climate and perhaps
will not lead to any improvement at all under the prescribed
experimental setup. In this respect, all three models agreed.

Carbon Cycle Uncertainties
State-of-the-art marine biogeochemical models are often
expanded to include the carbon cycle explicitly (e.g., Omstedt
et al., 2009; Edman and Omstedt, 2013; Kuznetsov and
Neumann, 2013; Gustafsson et al., 2014a,b).

Measurements of carbonate system parameters in the Baltic
Sea cover more than one hundred years. As demonstrated
by Müller et al. (2016), total alkalinity (AT) measurements
from 1995 and onwards are particularly consistent (in terms
of precision), while measurements, e.g., during the 1965–1995
period, are generally less certain. There are also cases where
the handling of sulfidic water samples may have resulted in a
considerable underestimation of AT concentrations (Ulfsbo et al.,
2011). These issues have implications for hindcast modeling
studies as well as model validation.

Another source of uncertainty is the influence of organic
alkalinity. The Baltic Sea is heavily influenced by riverborne loads
of organic material. If the alteration of the acid-base balance
caused by organic acids is not taken into account in carbonate
system calculations, the calculations are unreliable. A bulk
dissociation constant and average DOC fraction that contributes
to the organic alkalinity have been defined for Baltic Sea waters
(Kulinski et al., 2014; Ulfsbo et al., 2015), but spatial differences
and temporal changes are as yet not described in detail. Riverine
AT as well as dissolved inorganic carbon concentrations and
loads are in addition expected to change in the future as a result
of both changes in weathering induced by rising air temperatures,
and changes in precipitation patterns (Omstedt et al., 2012).

Omstedt et al. (2015) estimated that the acidification due
to the atmospheric deposition of acids peaked around 1980,
with a cumulative pH decrease of approximately 0.01 in surface
waters and a cumulative reduction of AT of approximately 30
µmol kg−1. The effect on pH is approximately one order of
magnitude less than the cumulative acidification due to increased
atmospheric CO2 concentrations.

The CO2 exchange between air and sea depends directly
on the difference between CO2 partial pressure (pCO2) in air
and surface water respectively. To reproduce observed pCO2 by

means of model simulations has however proven to be a difficult
task. Particularly themainmechanism behind the observed pCO2

drawdown in surface waters during the productive season has
been discussed quite extensively. Processes that could contribute
include (1) cold nitrogen fixation by cyanobacteria as well as
nutrient replenishment in sunlit layers by migrating plankton
organisms (Eggert and Schneider, 2015); (2) efficient utilization
of dissolved organic nutrients by phytoplankton (Edman and
Anderson, 2014); (3) excessive CO2 consumption and DOC
exudation by phytoplankton, as well as (4) flexible phytoplankton
cell stoichiometry (Kreus et al., 2015; Fransner et al., 2018). In
addition, the calculated air-sea CO2 flux is sensitive to the choice
of exchange parameterization (Norman et al., 2013; Gustafsson
et al., 2015). Fransner et al. (2018) showed for the northern
Baltic Sea that beyond non-Redfield stoichiometry an extensive
extracellular DOC production contributes to the low observed
surface pCO2 during the vegetation period.

In several modeling studies (e.g., Omstedt et al., 2009; Edman
and Omstedt, 2013; Gustafsson et al., 2014a) the riverine AT

concentrations were calibrated (based on Hjalmarsson et al.
(2008)) so that observed AT in different sub-basins could be
reproduced by themodels. These calibrated values are however in
many cases considerably higher than the concentrations obtained
from measurements (Gustafsson et al., 2014b). This implies
either that the quality of measured riverine concentrations is
questionable, or that there are other AT sources in the Baltic Sea
that are not accounted for in the model calculations. None of
the system-scale physical-biogeochemical BSMs is for example
capable of explicitly simulating the coupled phosphorus-iron-
sulfur cycling and related AT production and consumption
in sediments. Potentially, AT generation coupled to anaerobic
mineralization processes in sediments (e.g., pyrite burial) could
be a significant missing link (Gustafsson et al., 2014b). It is
reasonable to assume that this AT production/consumption
depends largely on both sedimentation rate and the expansion
of hypoxic and anoxic sediment areas (cf. Reed et al., 2016).
Sedimentation rates and hypoxic areas ultimately depend on
the magnitude of external nutrient loads, and these loads differ
largely in the different future scenarios. The potential impact of
changing climate on future AT concentrations is unknown.

Weighting
Weightingmay add another level of uncertainty to the generation
of ensemble-based climate projections because the choice and
combination of applied metrics is subjective (Christensen et al.
(2010). Weigel et al. (2010) discussed the generic risks if weights
do not appropriately represent the true underlying uncertainties,
e.g., due to large internal variability. However, weightingmay also
narrow uncertainty by removing outliers as discussed below.

Meier et al. (2018a) analyzed weighted and unweighted
changes from an “ensemble of opportunity”, i.e., from an
ensemble of uncoordinated experiments from various projects.
They found that the skills of the scenario simulations during the
historical climate (1980–2005) differ considerably between the
models and that the variances of mean changes between historical
and future (2072–2097) climates are relatively large depending
on the location and variable. Here, skill (or performance of the
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simulation) is defined as any measure of the agreement between
the predictand, i.e., the climatemodel results during the historical
period, and a set of observations, i.e. monitoring data from
selected stations of temperature, salinity and phosphate, nitrate,
ammonium, oxygen and hydrogen sulfide concentrations. Meier
et al. (2018a) evaluated the skills of 29 climate simulations of
six BSMs driven by various GCMs and RCMs and by various
land surface or hydrological models. The skill was represented
in terms of two metrics, the annual or seasonal mean absolute
error and the Pearson correlation coefficient measuring the
similarity in the shape of mean profiles. As the results of several
tested metrics do not differ considerably, Meier et al. (2018a)
concluded that weighting may reduce the uncertainties of the
projections in the northern Baltic Sea where the discrepancies
between weighted and unweighted ensembles are larger and
where the skills of the models are lower than in the southern
Baltic Sea (Eilola et al., 2011). In the southern Baltic Sea,
projections in weighted and unweighted ensembles are rather
similar. Hence, Meier et al. (2018a) concluded that the rigorous
implementation of the BSAP would result in a significantly
improved environmental status in the southern Baltic Sea despite
the counteracting impact of changing climate and despite the
large uncertainties. However, the relationship between spread
and skill is still unknown and deserves further research (Hawkins
and Sutton, 2009).

DISCUSSIONS

In the following, we discuss methods to estimate uncertainty
ranges and to reduce uncertainties in projections based on
ensemble modeling and weighting of ensemble members.

Estimating Uncertainties
The first attempt by Saraiva et al. (2019) to estimate ranges of
uncertainty in projections for the Baltic Sea was based upon
the analysis of variances of 30-year mean changes of selected
variables between future and historical climates. They found
that the response of biogeochemical fluxes, such as primary
production and nitrogen fixation, and deep water oxygen
conditions, to changing climate depend mainly on the nutrient
load scenario. In the case of high nutrient loads (the so-called
“fossil-fueled” scenario), the impact of the changing climate on
biogeochemical cycles would be considerable whereas in the
case of low loads (the BSAP scenario) the impact of changing
climate would be negligible (cf. Saraiva et al., 2018). Hence,
the dominant source of uncertainty is very likely related to
the nutrient load scenario. For primary production, the second
largest source of uncertainty was the unknown greenhouse gas
concentration scenario and, for nitrogen fixation and hypoxic
area, the second largest source originated from the climate model
uncertainties, i.e., from model deficiencies affecting inter alia
projected stratification changes (Saraiva et al., 2019). Finally,
also the large spread in GMSL rise of one meter affected the
uncertainties of nitrogen fixation and hypoxic area in agreement
with the results by Meier et al. (2017).

In the study by Meier et al. (2018a), the ensemble spread was
significantly larger than by Saraiva et al. (2019), as qualitatively

illustrated by hypoxic area in the Supplementary Material,
because the “ensemble of opportunity” contained both
response and scenario uncertainties (Parker, 2013) whereas
the ensemble by Saraiva et al. (2019) only partly reflected these
uncertainties. According to Parker (2013) response uncertainty
is the insufficiently known model sensitivity under a specified
scenario and scenario uncertainty refers to the unknown GHG
emissions and other external forcings such as nutrient loads.
However, in all available ensemble studies of the Baltic Sea
the response uncertainty might be underestimated because
the models have the same NPZD (Nutrients-Phytoplankton-
Zooplankton-Detritus) structure and were not independently
developed. Hence, Parker (2013) recommended working
more on structural uncertainty, i.e., the uncertainty about
the form of the model equations and how they should be
solved computationally.

Since Saraiva et al. (2019) underestimated uncertainties in
their quantitative assessment by neglecting natural variability and
BSM biases, ways forward toward more complete, quantitative
assessment of uncertainties would be to apply the method by
Hawkins and Sutton (2009) to newly designed, coordinated
multi-model ensemble simulations for the Baltic Sea for 1850–
2100 (including a suitable spin up). Hawkins and Sutton (2009)
defined the internal variability for each model as the variance
of the residuals from a smoothed fit of the projection, estimated
independently of scenario and lead time. Since the importance of
internal variability increases at smaller spatial scales and shorter
time scales, it would be interesting to calculate not only the
partitioning of uncertainty with time but also the growth of
uncertainty from global to regional scales by comparing the
variances of GCMs, RCMs, and BSMs.

Potentials to Narrow Uncertainties
As the quality of scenario simulations differs considerably, a
strategy might be to reduce the spread in projections (i.e., the
uncertainty) by weighting the ensemble members according to
their skill during the historical period. The calculated skills
might also be used to exclude members with insufficient quality
from the ensemble by defining a certain threshold for the
applied metric. However, the choice of an appropriate skill
metric is subjective as mentioned above. Hence, the calculated
weights would depend on the metric and consequently on the
specific application. In the northern Baltic Sea, weighting has
probably a larger impact on projections of the biogeochemical
cycles than in the southern Baltic Sea because of the large
impact of the physics. Climate sensitivity depends on feedback
mechanisms that differ in different climate states. Hence,
skill is at least a necessary (but not a sufficient) condition
for the correct climate sensitivity and higher skill reduces
uncertainty (Hawkins and Sutton, 2009). Highly sensitive sub-
basins are more affected by model deficiencies than other sub-
basins. In the northern Baltic Sea, the ice-albedo feedback
affects temperature changes, which in turn affect biogeochemical
processes (e.g., growth rates, remineralization rates). Further, in
present climate the northern sub-basins are weakly stratified.
Hence, increased runoff may further reduce the stratification,
e.g., in the Gulf of Finland and Bothnian Bay, and consequently
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enhance the vertical flux of oxygen with the result of improved
bottom oxygen concentrations (Meier et al., 2011b). Thus,
the large spread in runoff projections causes large uncertainty
in oxygen concentrations and biogeochemical cycling because
many processes are highly redox-dependent. Due to these
feedback mechanisms, weighting may reduce uncertainties by
removing outliers. In summary, results of the few available Baltic
Sea studies confirm that equally weighted multi-model ensemble
means outperform the results of the single ensemble members
supporting the multi-model ensemble approach (e.g., Eilola et al.,
2011) and that optimal weighting may in principle further reduce
the response uncertainty.

Further research on structural uncertainties identified by
this review may potentially lead to a reduction of the overall
uncertainty in projections. Taking the specific characteristics
of the Baltic Sea into account and focusing on the regional
scale, the latter might be possible by improving process
descriptions in BSMs in particular in the northern Baltic Sea
but also elsewhere (see the unknown small-scale processes
with impact on the entire system such as sediment-water
fluxes and nutrient retention in the sediments under no. 12
and 13, Table 2); by performing sufficiently long model spin
ups without switching the atmospheric forcing from historical
reconstructions to climate model results during the simulation
(no. 8, see Supplementary Material); by improved calculation
of bioavailable loads or by accounting for the entire total loads
by modeling dissolved organic nutrients as separate variables
(Gustafsson et al., 2014a; Vladimirova et al., 2018) (no. 6); by
investigating the filter capacity of the coastal zone in the Baltic
Sea as in Edman et al. (2018) under different climates (no.
6); by improving the water cycle in RCMs and its response
to changing climate (no. 4); and by consideration of GMSL
at the lateral boundary of the BSMs (no. 9). As an effort of
the scientific community, rigorous statistical and process-based
quality controls of models implemented for projections by using
available long-term observations (e.g., Eilola et al., 2011; Placke
et al., 2018) may lead, extending the discussion on weighting,
to a reduction of uncertainties (such as no. 3, 12, 13). For this
purpose, more research on the relationship between skill and
spread would be needed. Consequently, bias corrections, which
are inherent sources of uncertainty in projections (no. 11), are
not recommended and should be avoided whenever possible
because they may change the models’ sensitivity to changes
in the forcing.

How Does Uncertainty Affect the Use of
Scenarios in Decision-Making and Future
Research?
With 43% of the European Union (EU) population living
in coastal regions, it is recognized, e.g., in EU Blue Growth
strategies that marine areas offer many opportunities for
further exploitation to enhance citizens’ health, wellbeing and
prosperity. However, as these benefits co-exist alongside hazards
and risks that may be exacerbated by climate change and
other anthropogenic pressures, these opportunities need to be
addressed collectively in a science based integrated management

approach to ensure a sustainable exploitation of the sea affected
by climate change (Jutterström et al., 2014). The way forward
is to climate-proof the ongoing implementation of policies,
conventions and frameworks for protection of the marine
environment, such as HELCOM’s BSAP, The Marine Strategy
Framework Directive and The Water Framework directives.
Hence, projections will be needed even if their uncertainties are
considerable. For the implementation of the BSAP, it will have
large economic consequences if additional measures are required
to reach good environmental status in future climate. Hence, for
research it is of utmost importance to quantify uncertainty, to
understand the sources of uncertainty and to narrow uncertainty.

How Can We Deal With Uncertainties in
Scenario Simulations?
To quantify uncertainty, largemulti-model ensembles of scenario
simulations are needed. All projections should be presented
together with uncertainty ranges. To raise the credibility of
models we suggest to perform regular assessments of models
and scenario simulations. Regular information about current
knowledge on climate change, e.g., presented in publicly available
assessments and fact sheets, and a regular dialog on uncertainty
between science and policy makers, e.g., within an expert
network on climate change, may help to discuss the usage of
models and their uncertainties and to weigh the resources spent
for mitigation.

CONCLUSIONS

We discussed various sources of uncertainties in projections.
Although quantitative estimates are lacking, we estimate based on
expert judgment of the authors that the biggest uncertainties are
caused by (1) unknown current and future bioavailable nutrient
loads from land and atmosphere, (2) the experimental setup of
the dynamical downscaling (including the spin up strategy), (3)
differences between the projections of the GCMs and RCMs,
in particular, with respect to GMSL rise and regional water
cycle, (4) differing model-specific responses of the simulated
biogeochemical cycles to long-term changes in external nutrient
loads and climate of the Baltic Sea region, and (5) unknown
future greenhouse gas emissions.

Despite considerable uncertainties in scenario simulations of
biogeochemical cycles, a list of potentials to narrow uncertainties
was identified. As already during the historical period differences
between applied bioavailable nutrient loads and the various
experimental setups cause large model biases compared to
observations, improvements in spin up, atmospheric forcing,
bioavailable nutrient load data set, and model calibration may
lead to reduced model biases and reduced spread in projections.

We conclude that assessments of scenario simulations and
knowledge syntheses such as this review have the potential to
narrow uncertainty ranges. Analyses of state-of-the-art multi-
model ensemble scenario simulations, thorough assessments
of the results and common workshops will result in research
proposals for improving models, experimental strategies and
weighting procedures to narrow uncertainties.
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