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The ichthyotoxic dinoflagellate Karlodinium veneficum has a worldwide distribution
and produces highly potent lytic toxins (karlotoxins) that have been associated with
massive fish kill events in coastal environments. The capacity of K. veneficum to gain
energy from photosynthesis as well as phagotrophy enables cellular maintenance,
growth and dispersal under a broad range of environmental conditions. Coastal
ecosystems are highly dynamic in light of the prevailing physicochemical conditions,
such as seawater carbonate speciation (CO2, HCO3

−, and CO3
2−) and pH. Here,

we monitored the growth rate and ichthyotoxicity of K. veneficum in response to a
seawater pH gradient. K. veneficum exhibited a significant linear reduction in growth
rate with elevated seawater acidity [pH(totalscale) from 8.05 to 7.50]. Ichthyotoxicity
was assessed by exposing fish gill cells to K. veneficum extracts and subsequent
quantification of gill cell viability via resorufin fluorescence. Extracts of K. veneficum
indicated increased toxicity when derived from elevated pH treatments. The variation in
growth rate and toxin production per cell in regard to seawater pH implies that (1) future
alteration of seawater carbonate speciation, due to anthropogenic ocean acidification,
may negatively influence physiological performance and ecosystem interactions of
K. veneficum and (2) elevated seawater pH values (>8.0) represent favorable conditions
for K. veneficum growth and toxicity. This suggests that prey of K. veneficum may
be exposed to increased karlotoxin concentrations at conditions when nutrients are
scarce and seawater pH has been elevated due to high photosynthetic activity from
prior autotrophic phytoplankton blooms.

Keywords: Harmful dinoflagellate, ocean acidification, seawater carbonate chemistry, toxin production,
Karlodinium veneficum, ichthyotoxicity

INTRODUCTION

The accumulation of anthropogenic carbon dioxide in the atmosphere and its concomitant
absorption by the ocean surface causes distinct chemical changes, known as ocean acidification
(reduction of pH and increase of CO2). Ocean acidification has been recorded over the past decades
at long-term monitoring stations (Dore et al., 2009) and has the potential to affect phytoplankton
physiology and community structure (Dutkiewicz et al., 2015). In comparison to the open ocean,
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coastal areas are subject to multiple environmental drivers, such
as riverine fresh water input, eutrophication, aquaculture fish
farming, deep-water upwelling and high biological productivity.
These factors result in highly fluctuating pH regimes with
seasonal and daily changes of up to 0.6 pH units (Duarte et al.,
2013; Melzner et al., 2013; Carstensen et al., 2018). For example,
upwelling waters with pH values < 7.7 have been reported for
the continental shelfs of California and Chile (Feely et al., 2008;
Torres et al., 2011). Less buffered waters of marine aquaculture
facilities can even reach acidic pH levels corresponding to pCO2
values > 10,000 µatm, associated with high respiration rates and
organismal densities (Ellis et al., 2017).

The marine dinoflagellate Karlodinium veneficum has a
global distribution and produces powerful lytic karlotoxins
that have been associated with extensive fish kills (Mooney
et al., 2010; Place et al., 2012; Adolf et al., 2015; Escobar-
Morales and Hernández-Becerril, 2015). Emerging evidence
suggests that these toxins are primarily produced to facilitate
feeding by prey immobilization (Sheng et al., 2010). Strain
specific variability of K. veneficum has been demonstrated
in regard to trophic growth mode (auto- and mixotrophy),
toxin production and DNA content which suggests the
existence of different ecotypes (Place et al., 2012). Nutrient
availability and other environmental drivers, such as
seawater carbonate chemistry, have the potential to alter
growth and cellular toxicity of K. veneficum (Fu et al.,
2010). Here, we present controlled laboratory experiments
investigating the autotrophic growth and ichthyotoxicity
of one K. veneficum strain in response to an extended
seawater pH gradient.

MATERIALS AND METHODS

Culture Conditions
Monospecific cultures of K. veneficum (strain KVSR01, obtained
from the Algae Culture Collection at the Institute for Marine
and Antarctic Studies of the University of Tasmania, Australia)
were maintained in filter-sterilized (0.2 µm) natural seawater
with a salinity of 35, at 20◦C under a light:dark cycle of 12:12 h
with a photon flux density of 110 µmol photons m−2 s−1

provided by full spectrum cool white fluorescent tubes. Nutrients
for autotrophic growth were added according to the GSe/2
medium recipe (Blackburn et al., 2001) and supplemented with
5 ml l−1 of soil extract, yielding in improved growth (Sweeney,
1951; Provasoli et al., 1957). Experimental cultures were kept in
exponential growth by regular transfer to fresh media to avoid
nutrient limitation.

Experimental Set-Up
Experimental incubations were carried out in duplicates
under dilute batch culture conditions in 300 ml sterile
polystyrene Falcon R© culture flasks with minimal headspace.
Carbonate chemistry speciation was adjusted by the addition
of calculated amounts of HCl, NaOH, and NaHCO3, resulting
in a gradient of pCO2 from 445 to 1703 µatm (Table 1).
Exponentially growing cultures were acclimated to the

experimental conditions for three generations (5 days).
Acclimated cultures were transferred to the experimental
treatments to match a starting density of 100 cells ml−1 and
were allowed to grow exponentially for 5 to 6 generations
over the course of the experiment, corresponding to a
maximal dissolved inorganic carbon (CT) consumption
of 3%. The low biomass build up during the experiments
ensured (1) nutrient replete conditions and (2) minor
changes in the seawater carbonate chemistry due to biological
activity (see also Riebesell et al., 2011). Samples for CT
and total alkalinity (AT) were taken at the beginning and
the end of the experimental incubations. Samples for cell
density and ichthyotoxicity tests were taken at the end
of the experiment.

Carbonate Chemistry
The carbonate system was monitored via triplicate CT and
AT measurements applying the infrared detection method after
Goyet and Snover (1993) with an Apollo SciTech DIC-Analyzer
(Model AS-C3, Apollo SciTech, Newark, DE, United States)
and the potentiometric titration method (Dickson et al., 2003),
respectively. Data were corrected to repeated analyses of Certified
Reference Materials (CRM, Scripps Institution of Oceanography,
La Jolla, CA, United States) following the recommendations for
ocean acidification research (Riebesell et al., 2011). Consecutive
measurements of the CRM resulted in an average precision of
>99.8% for both CT and AT. Carbonate system parameters,
such as pH(total scale), were calculated from temperature, salinity,
CT and AT using CO2SYS (version 2.1 by E. Lewis and D. W.
R. Wallace), with the stoichiometric equilibrium constants for
carbonic acid given in Roy et al. (1993).

Cell Density and Growth Rate
Samples for cell density were measured in triplicate directly
after sampling using a Coulter MultisizerTM 4 (Beckman Coulter
Life Sciences, Indianapolis, IN, United States) equipped with
a 100 µm aperture. Prior to each measurement, samples of
K. veneficum were incubated at 4◦C for 10 min in order
to reduce cellular metabolism, avoiding undesired swimming
motions during analysis. Equipment settings were calibrated
using standard latex particles (Beckman Coulter Life Sciences)
with a nominal size of 10 µm. The mean cell densities were used
to calculate the growth rate, µ (days−1) as:

µ = (lnc1 − lnc0)/(t1 − t0), (1)

where c0 and c1 are the cell densities at the beginning (t0) and end
of the incubation period (t1), expressed in days. Estimates of cell
densities were associated with a random error of<3%, which was
determined by repeated measurements of identical K. veneficum
culture material (n = 10).

Ichthyotoxicity Assessment
Toxin Extraction
The remaining K. veneficum cultures were pooled for each
treatment (total of 400 ml) and centrifuged at 2000 × g
for 10 min (Sigma 3–16P). The supernatant was discarded
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TABLE 1 | Carbonate chemistry speciation (±1 SD), averaged from the start and end values of the experimental incubations, with the corresponding growth rates (µ) of
Karlodinium veneficum and the estimated LD50 values, representing the lethal dose of K. veneficum cells for 50% of gill cell mortality.

Treatment CT AT pCO2 pH µ LD50

(µmol kg−1) (µatm) (total scale) (days−1) (cells ml−1)

1 2113 ± 7 2389 ± 59 445 ± 84 8.03 ± 0.08 0.47 31,793

2 2180 ± 12 2396 ± 49 603 ± 91 7.92 ± 0.07 0.46 38,458

3 2273 ± 22 2383 ± 53 1112 ± 170 7.68 ± 0.07 0.45 45,722

4 2320 ± 27 2386 ± 60 1515 ± 274 7.56 ± 0.09 0.43 145,594

5 2342 ± 34 2388 ± 29 1703 ± 83 x 7.51 ± 0.01 0.42 108,757

T = 20◦C, salinity = 35, light intensity = 110 µmol photons m−2 s−1.

FIGURE 1 | Cellular growth rate response to changes in seawater pH (A) and gill cell mortality when exposed to dilution gradients of K. veneficum cell extracts with
standard deviation derived from repeated fluorescent measurements (B). Black line in (A) represents linear regression fit with 95% prediction intervals (dashed line).
LD50 values (cells ml-1) were estimated from idealized Michaelis-Menten-like fits to the treatment specific gill cell mortalities and plotted against seawater hydrogen
concentration (C). Linear regression fit in (C) resulted in LD50 = 4.59x1012 [H+] – 1.86x104 (r2 = 0.74, p = 0.062).

and cell pellets resuspended in methanol (0.3 – 0.5 ml;
based on cell densities of each treatment) to yield a constant
final extract concentration equivalent to 5.7 × 106 cells
ml−1. Resuspended pellets were sonicated with a probe type
sonicator (Measuring and Scientific Equipment Ltd., London,
United Kingdom) with tubes maintained in ice for 10 min
at an amplitude of 7 µm peak to peak, which describes the
longitudinally expansion and contraction of the tip. Samples

were kept on ice to counteract potential heating due to
prolonged (>1 min) sonication. The applied settings were
tested and resulted in a 99% lysis of K. veneficum cells
which was verified via Coulter MultisizerTM 4 analyses. After
sonication the sample was centrifuged at 1400 × g for
10 min, the resulting supernatant was collected and stored at
−20◦C for a maximum of 24 h before testing the toxicity on
gill cell lines.
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Gill Cell Line Assay
The fish gill cell line RTgill-W1 was maintained and used
for the experiments following the protocol described by
Dorantes-Aranda et al. (2011). Gill cells grown in L-15
medium (L1518, Sigma) were seeded into 96-well plates
(Greiner 655180) at 2 × 105 cells ml−1 and allowed to attach
for 48 h. Confluence of the adherent gill cell monolayer
was confirmed by light microscopy, and L-15 medium was
replaced with L-15/ex medium (Schirmer et al., 1997) 12 h
before the experimental exposures. K. veneficum extracts were
diluted to 0.1–10% in L-15/ex medium. The final methanol
concentration for all experimental treatments, including
the non-toxic control (L-15/ex), was 10%. Immediately
prior to exposures, the L-15/ex medium was discarded and
100 µL of each treatment was added to quadruplicate wells,
and plates were incubated for 2 h at experimental light
conditions. After this period, individual plates were rinsed
twice with 100 µL phosphate buffer saline to subsequently
receive 100 µL of 5% resazurin in L-15/ex. Plates were
incubated for a further 2 h in the dark. The gill cell
metabolic reduction of resazurin to fluorescent resorufin
was quantified using a microplate reader (Fluostar Optima,
BMG Labtech), with excitation and emission wavelengths
of 540 and 590 nm, respectively. Fluorescence values were
blank corrected (resazurin only, no gill cells) and results
were expressed as percentage of mortality compared to the
non-toxic control.

RESULTS AND DISCUSSION

The experimental protocol applied to alter the seawater carbonate
chemistry mimics the process of ocean acidification and resulted
in elevated total dissolved inorganic carbon concentrations at
constant total alkalinity (Table 1). Growth rates of K. veneficum
were positively correlated with seawater pH (Figure 1A),
resulting in a maximum observed growth rate of 0.47 days−1 at a
pH of 8.03. Certain variables of the seawater carbonate system
(i.e., CO2, HCO3

−, CO3
2−, and H+) are directly associated

with cellular processes, such as photosynthesis, growth and
enzyme reactions. An increase of aquatic CO2 and HCO3

−

concentrations at constant pH results commonly in enhanced
growth and photosynthetic rates (McMinn et al., 2014, 2017). On
the other hand, increased H+ concentrations can disturb cellular
homeostasis of cytosol pH (Suffrian et al., 2011) with generally
negative consequences for phytoplankton growth (McMinn et al.,
2014; Müller et al., 2015). These two general mechanisms
jointly result in an optimum growth curve response over
extended pH/CO2 gradients and have been demonstrated for
coccolithophore and dinoflagellate species (e.g., McMinn et al.,
2014; Müller et al., 2017). The fertilizing effect of CO2 on
growth rates of the dinoflagellate Alexandrium catenella has
been observed in laboratory experiments at pH levels between
8.7 and 8.1 (Mardones et al., 2017). A further pH reduction
(<8.1) had the adverse effect and resulted in reduced growth
of A. catenella, similar to the here observed growth response
of K. veneficum (Figure 1A). The linear decrease in growth

rate of K. veneficum, when pH is reduced from 8.03 to 7.51
(Figure 1), indicates that the optimum pH condition is located at
a pH of ≥8.03. Indeed, autotrophic growth rates of K. veneficum
have been reported with rates up to 0.53 days−1 at ambient pH
of ∼8.2 under similar temperature, salinity and light settings
(Calbet et al., 2011).

Gill cell mortality was enhanced with exposure to increasing
densities of K. veneficum in all tested pH treatments (Figure 1B),
and reached mortality of 99% at densities >5.7 × 105 cells
ml−1. Idealized Michaelis-Menten-like kinetics were fitted to
the treatment specific gill cell mortalities and the number of
K. veneficum cells responsible for a 50% lethal dose for gill cells
(LD50) indicated a positive linear trend with increasing seawater
hydrogen concentrations (r2 = 0.74, p = 0.062, Figure 1C).
An increased toxin content and production may facilitate prey
paralysation and ingestion (Sheng et al., 2007, 2010) and, as
suggested by our results, can be partly related to seawater
pH. The altered toxicity of K. veneficum (Figure 1) with
varying pH levels can theoretically be induced by higher cellular
toxin content or by elevated toxin potency under elevated
pH. However, the applied gill cell protocol to measure the
toxicity excludes the latter possibility because toxin effects
were tested under identical pH conditions. Thus, the here
observed mechanism of increased toxicity at elevated seawater
pH represents elevated cellular karlotoxins content compared to
low pH conditions. Fu et al. (2010) documented no change in
Karlodinium toxicity (measured as saponin equivalent) within
a pH range from 8.37 to 7.94 under nutrient replete culture
conditions. This is in good agreement with our results that
indicate no substantial change in toxicity between the 8.03
and the 7.92 treatments (Figure 1). Under phosphate limited
growth, however, Fu et al. (2010) observed an increased toxicity
with decreasing pH (from 8.37 to 7.94). Phosphate limitation
reduces cellular division rates in phytoplankton to ensure
accurate DNA syntheses while the biosynthesis of carbon and
nitrogen rich compounds proceeds, leading to organic compound
accumulations inside the cell (Müller et al., 2008; Li et al.,
2016). This could explain the increased toxicity under phosphate
limitation with increased CO2 availability for biosynthesis (Fu
et al., 2010), while, at the same time, [H+] concentration
were not high enough to induce a negative effect on the
cellular metabolism and toxin production. However, it should
be stressed that K. veneficum demonstrates a high inter-strain
physiological plasticity (Place et al., 2012) which hampers
an overall generalization of results derived from laboratory
experiments testing a single strain.

Aquaculture ponds with extensive farming activities can
experience highly elevated pCO2 values reaching concentrations
>10,000 µatm (Ellis et al., 2017) and it certainly would
be of interest to test the physiological performance and
ichthyotoxicity of K. veneficum under these extreme conditions.
The amplitudes of oscillating pH regimes in aquaculture ponds
and coastal environments are projected to expand due to ocean
acidification and the associated increasing Revelle factor (Schulz
and Riebesell, 2013). In the coming years, it will be essential
to monitor and register the seawater carbonate chemistry as a
basic environmental and experimental parameter in line with
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temperature, salinity, and nutrient concentrations to improve our
understanding of HAB bloom dynamics.
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