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Indicators are effective tools for summarizing and communicating key aspects of
ecosystem state and have a long record of use in marine pollution and fisheries
management. The application of biodiversity indicators to assess the status of species,
habitats, and functional diversity in marine conservation and policy, however, is still
developing and multiple indicator roles and features are emerging. For example, some
operational biodiversity indicators trigger management action when a threshold is
reached, while others play an interpretive, or surveillance, role in informing management.
Links between biodiversity indicators and the pressures affecting them are frequently
unclear as links can be obscured by environmental change, data limitations, food web
dynamics, or the cumulative effects of multiple pressures. In practice, the application of
biodiversity indicators to meet marine conservation policy and management demands
is developing rapidly in the management realm, with a lag before academic publication
detailing indicator development. Making best use of biodiversity indicators depends
on sharing and synthesizing cutting-edge knowledge and experience. Using lessons
learned from the application of biodiversity indicators in policy and management from
around the globe, we define the concept of ‘biodiversity indicators,’ explore barriers to
their use and potential solutions, and outline strategies for their effective communication
to decision-makers.
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INTRODUCTION

Threats to marine biodiversity, from human activities such as
fishing, shipping, coastal development, and energy production
and from indirect pressures, like climate change, are increasing
(Halpern et al., 2015), with only 13% of the world ocean
still considered unimpacted by humans, or ‘wild’ (Jones et al.,
2018). The loss of marine biodiversity impacts the resilience
of ecosystems and the ability to maintain essential ecosystem
services that support human life, such as food provision
and water quality maintenance (Worm et al., 2006). The
vulnerable state of global marine ecosystems and the need to
sustainably monitor, assess, and manage habitats and species is
increasingly recognized (Addison et al., 2017). Consequently, the
assessment of the state of marine biodiversity, with associated
biodiversity management and conservation measures, is now
explicitly articulated in national (Department of Environmental
Affairs and Tourism, 2004; Natural Resource Management
Ministerial Council, 2010; Defra, 2018), regional (Cartagena
Convention, 1983; European Commission, 2008b, 2011), and
international (United Nations, 2010; United Nations General
Assembly, 2015) legislative mechanisms. These mechanisms
address both marine policy (the setting of regulation through
legislation) and management (implementation of management
plans, monitoring, evaluation and reporting on the status of the
marine environment).

‘Biodiversity’ is “the variability among living organisms, from
all sources, including, inter alia, terrestrial, marine and other
aquatic ecosystems and the ecological complexes of which they
are part; this includes diversity within species, between species
and of ecosystems” [Convention on Biological Diversity (CBD);
United Nations, 1992]. In other words, ‘biodiversity’ refers
broadly to all species and habitats in an ecosystem, rather
than simply the number of taxa. This definition is broad,
encompassing all marine and coastal species and habitats. It is
impossible to monitor and assess the state of all aspects of marine
biodiversity, so the complexity of biodiversity is typically reduced
in dimension by using indicators to summarize its key aspects.
Indicators are therefore frequently used in marine policy and
management to assess and communicate change in ecosystem
state. They are the primary tool for assessing progress toward
the CBD Aichi targets, which aim to halt global biodiversity
decline (Balmford et al., 2005; Tittensor et al., 2014; United
Nations General Assembly, 2015). Indicators as a concept have
been used for decades in marine fisheries management [e.g.,
commercial fish stock management in South Africa and Europe
(Plagányi et al., 2007; ICES, 2018), ecosystem-based fisheries
management in Australia, New Zealand, the United States, and
Canada (Sainsbury et al., 2000; Link et al., 2002; Methratta and
Link, 2006; Fu et al., 2015)], in marine pollution regulation [e.g.,
assessment and management of marine sediment pollution in
the North Sea (OSPAR, 2017k), and pollution assessment of fish,
crustaceans, and molluscs in the Baltic Sea (HELCOM, 2018)].

Unlike more established indicators in marine fisheries and
pollution regulation, which are measurable against a clear
objective or target, techniques to develop indicators and targets
and to assess the status of marine biodiversity to inform

biodiversity management more widely, however, are new but
rapidly developing (e.g., Tam et al., 2017). In Europe, for
example, the Marine Strategy Framework Directive (MSFD) uses
biodiversity indicators to assess the state of marine habitats
and species, with the overarching objective of achieving ‘Good
Environmental Status’ (GES) (European Commission, 2008b).
Similarly in South Africa, the National Biodiversity Strategy
and Action Plan aims to achieve ‘Good Ecological Condition’
which refers to ecosystems that are intact or largely intact with
minimal modification from a natural condition (Department of
Environmental Affairs, 2015). In the United States, implementing
the ecosystem-based approach to management has moved to the
forefront of efforts, including the development of quantitative
indicators and criteria that can be used to assess overall ecosystem
status (Leslie and McLeod, 2007). Where ecological data are
lacking, such as in South Africa, expert judgment is often used
to set targets for marine biodiversity indicators (e.g., Driver
et al., 2011; Department of Environmental Affairs, 2015). Under
the MSFD, while some biodiversity indicators already have
agreed quantitative targets for individual regions (Defra, 2012;
HELCOM, 2018), targets for other regions or indicators are
still in development. Approaches to indicator development and
target setting for effective management require not only a clear
understanding of the system in question, which might need
substantial amounts of data in some cases, but also explicit
policy goals or objectives. These attributes may inhibit indicator
development and policy uptake.

In June 2018, international developers and users of marine
biodiversity indicators participated in a symposium and
focus group entitled “From science to evidence – innovative
uses of biodiversity indicators for effective marine policy
and conservation” as part of the 5th International Marine
Conservation Congress (IMCC5) in Kuching, Malaysia. The
mission of the symposium and focus group was to form
a community of practice for both users and developers of
biodiversity indicators for marine policy and conservation, and
to provide a forum to share successes and failures in developing
and applying these indicators. Themes emerged which are
common across geographic regions and political scales. This
paper uses lessons learned from the application of biodiversity
indicators in policy from around the globe to define the concept
of biodiversity indicators, explore and discuss barriers and
solutions to their use, and outline strategies for their effective
communication to policy-makers.

CONCEPT, USE, AND SUITABILITY OF
BIODIVERSITY INDICATORS

The wide definition of the terms ‘indicator’ and ‘biodiversity,’
as well as their broad applicability, can lead to confusion
regarding the function of a biodiversity indicator. For instance,
indicators can be defined simply as a “quantitative or qualitative
variable that provides reliable means to measure a particular
phenomenon or attribute” (USAID, 2009) or, using a process-
oriented definition, as a “quantitative or qualitative factor or
variable that provides a simple and reliable means to measure
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achievement, to reflect changes connected to an intervention,
or to help assess the performance of a development actor”
(OECD, 2002). In a marine context, indicators have been defined
as a tool “to monitor and assess the state of the marine
environment and to manage human activities having an impact
upon it” (European Commission, 2008b). Under the Convention
of Biological Diversity (CBD), indicators are defined as tools “for
assessing progress toward, and communicating the 2010s target
at the global level” (United Nations Environment Programme,
2004), which hereby further extends their application and allows
a broader use of terminology.

A bibliographic analysis of >2500 abstracts queried from the
Web of Science database revealed a difference in treatment of the
term ‘biodiversity indicator’ between academic scientists, marine
policy-makers and managers (Figure 1). In publications on
marine systems, ‘ecosystem indicator’ is used more commonly
and synonymously with ‘biodiversity indicator,’ though the use of
the ‘biodiversity indicator’ is increasing (see Figure 1A). Overall,
we found that depending on the purpose, region, or policy
context, indicator terminologies can differ despite representing
similar ecosystem/biodiversity components. Nevertheless,
biodiversity indicators are still often represented by conventional
diversity indices such as species richness or evenness. These
indices can be highly useful for summarizing and assessing
community structures such as biogenic reefs or infaunal
communities and linking them to anthropogenic pressures
such as trawling (Cook et al., 2013; Fariñas-Franco et al.,
2014; Van Loon et al., 2018). To provide sufficient information
on ecosystem dynamics and processes for sound policy and
management, however, other components such as biological
trait diversity and ecosystem functioning can be similarly

useful (Diaz and Cabido, 2001; Juan et al., 2007; Bremner, 2008;
Pacheco et al., 2011).

The implementation of regional and international legislative
frameworks has triggered a big rise in developing biodiversity
indicators to determine the state of the ecosystem and its
components in the last two decades. Publications on ‘ecological,’
‘ecosystem,’ or ‘biodiversity’ indicators started to increase in the
early 1990s after the United Nations Conference on Environment
and Development with the resulting ratification of the CBD
(Figure 1A) (United Nations, 1992) and the publication of
the Organization for Economic Co-operation and Development
(OECD) core set of indicators for environmental performance
reviews (OECD, 1993). Publications addressing marine systems,
however, started much later, in the mid-2000s, and so represent
only 18% of all articles on biodiversity indicators, covering
predominantly the temperate northern Atlantic ecoregion
(see Figure 1B).

While the term ‘biodiversity’ may refer strictly to the diversity
of biological components in an ecosystem, ‘biodiversity’ is
increasingly used to reflect a much broader ecosystem view.
This broader definition includes trophic interactions, network
structure and system stability or resilience (e.g., Samhouri et al.,
2009; Dakos et al., 2011), which is in line with the Convention
on Biodiversity’s definition of ‘biodiversity,’ above, and is often
used by applied scientists, policy-makers, and managers. It is this
second definition of ‘biodiversity’ that is used throughout this
paper, due to its frequency of use in conservation. While we do
not want to ignite a discussion on terminology superiority, we
want to highlight the importance of understanding biodiversity in
a wider context and propose a more flexible approach to the term
‘biodiversity indicator’ that includes multiple concepts such as

FIGURE 1 | Bibliographic analysis of publications on biodiversity, ecological, or ecosystem indicators in general and for marine systems specifically. (A) The number
of publications using one of the indicator terms [biodiversity (green shading), ecosystem (blue shading), or ecological (gray shading) indicator(s)] between 1975 and
2017 (total of 2502), and the number of publications using these terms in relation to marine systems only (white trend line; total of 457), shown in relation to the years
when three significant international or regional legislative frameworks were implemented. (B) The geographic distribution of a subset of 1430 publications across
marine ecoregions (Spalding et al., 2007), extracted from publication abstracts and keywords. The bibliographic data were queried from the Web of Science
database (accessed last Sept 18th, 2018).
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TABLE 1 | Applications of biodiversity indicators relevant to marine environments
and global marine conservation policy and management.

Indicators used for
assessments

Examples of
application

Spatial scale of
application
(presented in order of
cited publications)

Status of, or changes in,
species, habitats, or
ecosystems

Beaugrand, 2005;
Rochet et al., 2005;
Blanchard et al., 2010;
Shin et al., 2010;
Shephard et al., 2014;
Probst and
Stelzenmüller, 2015

North Atlantic Ocean;
France; Global; Global;
Celtic Seas and Greater
North Sea; North Sea

Track and communicate
trends in quantity and
quality of ecosystem
services

van Oudenhoven et al.,
2018

European seas

Signals prior to or after
trending or oscillating
changes

Lindegren et al., 2012;
Cline et al., 2014

Baltic Sea; Global
(lakes);

Impact of an
anthropogenic pressure
on the ecosystem

Shannon et al., 2010;
Henriques et al., 2014;
Coll et al., 2016

Global; Portugal; Global

Ecosystem stability or
resilience

Samhouri et al., 2009;
Vasilakopoulos et al.,
2017

Global; Mediterranean
Sea

Oceans at different
spatial scales

Blanchard et al., 2010;
Halpern et al., 2012;
Coll et al., 2016;
Uusitalo et al., 2016;
Torres et al., 2017

Global; global; global;
regional (European);
single ecosystem
(Baltic Sea)

Ocean biological
indicators at different
organizational levels
(single species, individual
guilds, entire food webs
and trophic interactions)

Teixeira et al., 2016;
McQuatters-Gollop
et al., 2017

Global with European
focus; European

Citations preceded by “e.g.,” reflect one example of many.

ecosystem structure and functioning (as outlined by the Essential
Biodiversity Variables for policy; Pereira et al., 2013).

In recent decades, a variety of approaches for the use of
indicators in the marine environment have emerged, particularly
in the temperate northern Atlantic ecoregion, which is largely
triggered by the implementation of regional and international
legislative frameworks (Figure 1). Table 1 illustrates some
examples of the applied versatility of biodiversity indicators,
providing a wide-range of evidence types, at different ecological
and spatial scales, for the assessment and management of
marine biodiversity within the context of the policy questions
they aim to address.

Despite the wide range of applications of biodiversity
indicators observed during recent decades, specific selection
criteria have been commonly accepted within the scientific
community to determine indicator suitability for operational use.
These include measurability, scientific basis, interpretability, and
ease of communication, but also sensitivity and responsiveness to
environmental changes, specificity, robustness with well-known
pressure-state relationships, and links to identified targets and
thresholds (e.g., OECD, 1993; FAO, 1997; Rice and Rochet, 2005;

Heink and Kowarik, 2010; Kershner et al., 2011; Queirós et al.,
2016; Otto et al., 2018a). Biodiversity indicators that address
policy and management goals are likely to be most effective if
the relevant stakeholders and decision-makers also perceive them
to be credible, salient, and legitimate (Cash et al., 2003; van
Oudenhoven et al., 2018). Linking indicators to environmental
conditions and ideally to management measures requires a
good understanding of indicator responses to pressures and a
sound testing of indicator performance, which is often lacking
for biodiversity indicators (Rossberg et al., 2017). Thus, new
modeling approaches and decision support tools are emerging to
tackle the performance evaluation of indicators for assessing the
health status of marine ecosystem and biodiversity components
(Hayes et al., 2015; Lynam et al., 2016; Otto et al., 2018a;
Shin et al., 2018) (see also section Linking biodiversity indicators
to ecosystem change). To complement assessments of state,
additional pressure indicators can be useful, particularly to
measure the impacts of human activities on the system when
there can be a long time-lag before natural processes can be
expected to respond (Rossberg et al., 2017).

Indicators that lack a clear link to a defined pressure, however,
can still contribute effectively to the assessment and management
of biodiversity. These indicators without clear links to defined
pressures, known as ‘surveillance indicators’ (Shephard et al.,
2015), may not be able to be assessed against quantitative
thresholds, but can still provide contextual information on
either wider ecosystem impacts of pressures or underlying
environmental change (Bedford et al., 2018). Critically, indicators
used in a ‘surveillance’ context should still increase the knowledge
base from which to make management decisions. For example, a
suite of ‘Essential Ocean Variables’ for biodiversity and ecosystem
change has been identified by Miloslavich et al. (2018) to
effectively reduce the complexity of ecosystem processes for a
summary of ecosystem state. Although not linked to specific
defined pressures, the impacts of both direct anthropogenic
pressures and climate change on these ecosystem processes
can be monitored and assessed, providing holistic surveillance
information to support management.

BIODIVERSITY INDICATORS IN POLICY
AND MANAGEMENT: NEEDS,
BARRIERS, AND SOLUTIONS

Indicator development is challenged by the need to establish
associated targets, political acceptance, and evaluation of
confidence to support widespread use for management of
biodiversity (Table 2).

Biodiversity Indicators Linked to Policy
and Management
Often, scientists develop biodiversity indicators in academia,
usually to address a scientific problem but also to assess the
ecosystem status within the context of specific policies, and then
publish their results in the scientific literature. A recent review
by Bal et al. (2018) showed that indicators (in this case, those
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TABLE 2 | Needs, barriers, and solutions to the development and use of marine
biodiversity indicators.

Need Barrier Solution

Biodiversity indicators
linked to policy and
management.

Siloed development
of indicators,
resulting in
indicators that do
not meet the needs
of decision-makers.

Co-production of
indicators by scientists
and decision-makers
(Lemos and
Morehouse, 2005).

Appropriate biodiversity
data are required to
inform indicators.

Insufficient data to
capture spatial and
temporal variability
of marine
ecosystems due to:
- High costs of
data collection.
- Vast scales
(spatial and
temporal) over
which ecological
processes and
patterns occur.
- Non-policy
oriented focus of
historic data
collection.
- Lack of capacity
for marine
management
infrastructure.

Pragmatic approach to
indicator design that
supports the
combination and
repurposing of existing
data sets
(OSPAR, 2017a,b,g,h).
Risk-based approach
to target intensive
monitoring in order to
answer specific and
clear policy question
(Elliott et al., 2018;
Turrell, 2018). Use of
earth observation and
models to supplement
in situ data (Elith et al.,
2006; Butchart et al.,
2010; Bean et al.,
2017; Strong and
Elliott, 2017; Pettorelli
et al., 2018). Use of
human impact
(pressure) data where
biodiversity monitoring
data are unavailable
(Halpern et al., 2012).
Use of citizen science
programs for data
collection (Hodgson,
2000; Goffredo et al.,
2010; Gillett et al.,
2012; Bull et al., 2013;
ICES, 2017;
Stuart-Smith et al.,
2017).

Linking biodiversity
indicators to ecosystem
change.

Biodiversity
indicators may
respond to multiple
pressures,
including climate
change, making it
difficult to identify
causes of change.

Systems may
respond
non-linearly to
pressures,
obscuring indicator
interpretation.

Integration of
biodiversity indicators
during assessments
increases confidence in
identify causes of
change (Smith et al.,
2016). Ecosystem
modeling to identify the
important
pressure-state
pathways (Fulton et al.,
2005; Lynam et al.,
2016; Shin et al.,
2018). A range of
modeling tools can
examine non-linear
indicator-pressure
relationships (e.g.,
Hyder et al., 2015;
Otto et al., 2018a,b).

(Continued)

TABLE 2 | Continued

Need Barrier Solution

Using biodiversity
indicators to measure
progress toward policy
goals

Setting targets for
biodiversity
indicators is
challenging due to:
- Difficulty in
identifying reference
conditions.

Political resistance
to targets.

Reference conditions can
be constructed based on
spatial or time-series data
or using models (Borja and
Tunberg, 2011; Borja et al.,
2012; OSPAR, 2017c,f,i,j;
Rossberg et al., 2017)
allowing targets to be set at
an acceptable distance
from the reference
conditions. Trend based
approaches do not require
indicators to reach a
specified endpoint or target
point (Butchart et al.,
2010). Close science-policy
collaboration can produce
evidence-based SMART
targets (Heritier, 2002;
Cvitanovic and Hobday,
2018). Decision triggers
may be used instead of
targets to trigger
management action
(Addison et al., 2016).

based on species traits) developed in academia and reported
in the scientific literature typically fail to address decision-
making requirements for biodiversity management, with only
21% of studies detailing how indicators explicitly address policy
objectives. This review clearly demonstrates the broad use
of the term ‘indicator,’ but it also shows that the academic
approach to indicator development is often driven by scientific
questions rather than a response to policy needs, or if policy-
focused takes place outside the policy process. In such cases
indicators are frequently not formally incorporated into the
assessment of management objectives and targets (Bal et al.,
2018). Regardless of the scientific soundness of an indicator,
or even the appropriateness for a specific policy, the lack of
involvement of end-users (e.g., marine managers, policy-makers,
and stakeholders) during the development of indicators may
result in unsuccessful implementation of the outputs or even the
application and use of the indicator itself.

A solution resulting in fit-for-purpose biodiversity indicators
is to co-produce indicators, with scientists providing the
scientific input and decision-makers providing the policy steer
(Lemos and Morehouse, 2005; Hayes et al., 2015; Bolman
et al., 2018; Cvitanovic and Hobday, 2018; De Juan et al.,
2018). Co-production spans the science-policy interface and
is an iterative process, with each party relying on the other’s
experience and expertise to gain a deeper understanding of
the current science and policy landscapes, opportunities, and
limitations (Lemos and Morehouse, 2005). The co-production
of biodiversity indicators has resulted in their successful
use in marine policy and management (e.g., in Australia
and Europe; Pocklington et al., 2012; OSPAR, 2017d). For
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example, biodiversity indicators developed for the 2017 OSPAR
Intermediate Assessment followed this process (OSPAR, 2017d).
The indicators were developed by scientists with significant and
consistent input from policy-makers to ensure the indicators
fulfill policy obligations. As a result, the regional biodiversity
assessments can be used by EU member states for the fulfillment
of the MSFD (OSPAR, 2017d).

Data Requirements for Biodiversity
Indicators
A basic requirement when developing a biodiversity indicator
is an understanding of the types of data available and a
critical evaluation of the temporal and spatial scales that are
appropriate for the ecological processes being assessed and
the pressures on the marine ecosystem. Large-scale monitoring
programs collecting time-series data are very rare, particularly
in offshore areas, mainly due to the costs of data collection
(Koslow and Couture, 2013). Marine monitoring needs to be well
governed, cost-effective, organized, transparent, open, designed
on a scientific basis, and “fit for purpose” (Turrell, 2018).
Furthermore, data collection for biodiversity indicators ideally
should be tailored to the policy questions the indicator is trying to
address, for example by developing relevant sampling strategies
and power analyses to establish the level of sampling effort
required to detect community change at a particular scale.

However, data-intensive indicators, even if they are high in
confidence and accuracy, are not always practical for large scale
biodiversity assessments, such as required for management of
regional marine environments, especially for those ecosystem
components for which monitoring is expensive. This lack of
practicality is a particular challenge for evaluating ecological
processes or distributional patterns of habitats or species which
require monitoring surveys over a large spatial area as compared
to verifying the presence of, for example, a sensitive species in an
MPA (Barrio Froján, 2016).

The costs of data collection can pose a barrier to indicator
development, particularly for low income countries, which
contain some of the world’s most diverse species and
habitats (Tittensor et al., 2010; Ramírez et al., 2017), but
are generally poorly monitored due to economic challenges
and lack of infrastructure and scientific experts (Danielsen
et al., 2000). While high-income countries tend to pose
more threats to marine ecosystems (Beck et al., 2011;
Thurstan et al., 2013; Halpern et al., 2015; Fariñas-Franco
et al., 2018), a lack of fundamental biodiversity research,
capacity and coordination of information in low-income
countries makes them highly vulnerable, particularly
to climate change (Bellard et al., 2014). Many marine
and coastal ecosystems are highly diverse, yet there is
a lack of fundamental biodiversity research required to
understand processes and species distributions in the marine
environment (Griffiths et al., 2010). This lack of investment
also extends to the capacity and coordination of marine
biodiversity information within and outside of the scientific
community which can prevent its use within decision-making
(Atkinson et al., 2016).

A solution to overcome data shortages or limitations to
access, involves a pragmatic approach to indicator construction,
together with good use of existing ecological datasets for the
relatively new purpose of informing biodiversity indicators for
policy and management. Data limitations often can be overcome
by constructing indicators with the flexibility to use data from
multiple sources (e.g., OSPAR, 2017a,b,g,h) or by using a risk
based approach to identify areas where targeted, more intensive
monitoring should be concentrated (Elliott et al., 2018).

Additional solutions include setting clear monitoring
objectives and clearly articulating the decision context that
defines the temporal and spatial requirements for management
decisions. This will ensure that the data required to inform
biodiversity indicators are collected in a cost efficient manner
(Turrell, 2018). In cases where extensive monitoring data
are needed but not practical to collect, the use of alternative
data sources, such as Earth observation, rather than data
solely collected via in situ monitoring, can facilitate regional
biodiversity assessments (Bean et al., 2017; Strong and Elliott,
2017; Pettorelli et al., 2018). For example, models combining
physical, geological and biological parameters are currently being
used to evaluate the extent and distribution of benthic habitat
types at regional scale (OSPAR, 2017b). Furthermore, modeled
species distributions can provide data to develop indicators
such as the presence/absence of species and biotopes based on
their environmental preferences for areas where survey data are
missing or limited in extent (Elith et al., 2006; Butchart et al.,
2010). They can also help in identifying impact hot spots and
evaluating management actions (Guisan et al., 2013).

South African practice presents a possible solution to the
challenges of monitoring marine biodiversity (Atkinson et al.,
2016). Broad scale assessments of the state of South African
marine ecosystems have been based on the Ocean Health Index
method (Halpern et al., 2008, 2009) which uses cumulative
human impacts in the absence of spatially extensive biodiversity
monitoring data. This method can enable low income countries
and other regions with limited biodiversity data to arrive at an
indicative national scale assessment of biodiversity. The Ocean
Health Index assumes that areas of high human pressure are in
poor ecological condition. While useful, the method may not
capture fine-scale natural variability, and can fail to identify areas
of high resilience as well as the presence of unique or vulnerable
ecosystems. Nevertheless, South African policy-makers have so
far accepted this method of assessment, acknowledging the
challenges and limitations to assessing the condition of the
marine environment for the entire exclusive economic zone
of South Africa using impact, or pressure, information in the
absence of biodiversity data (Driver et al., 2011; Department
of Environmental Affairs, 2015). To evaluate the outcomes of
this practice, these methods should be verified with empirical
evidence at varying scales using ecological monitoring data where
available (Sink et al., 2012).

Involving the public in monitoring may be another cost-
effective solution to the labor-intensive data collection required to
inform biodiversity indicators (Thiel et al., 2014; Freiwald et al.,
2018). Limitations on data collection are common, such as lack
of standardization and spatio-temporal coverage, particularly in

Frontiers in Marine Science | www.frontiersin.org 6 March 2019 | Volume 6 | Article 109

https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-06-00109 March 12, 2019 Time: 10:2 # 7

McQuatters-Gollop et al. Marine Biodiversity Indicators for Effective Conservation

geographical areas which are greatly impacted but less accessible
to the public. Despite these challenges, there are some notable
regional and global citizen science programs that are increasing
data coverage for some aspects of the marine environment
for use in policy and management such as: Seasearch, which
uses volunteer scuba divers to collect species data around the
coast of Britain and Ireland1; Reef Check and Reef Life Survey,
which are global programs that monitor the health of temperate
and tropical reefs (Hodgson, 2000; Stuart-Smith et al., 2017);
public monitoring of European seabirds (ICES, 2017); and a
series of national citizen science programs for temperate rocky
reefs in California (Gillett et al., 2012), subtidal habitats in the
United Kingdom (Bull et al., 2013), and marine biodiversity
health in northern Italy (Goffredo et al., 2010).

Linking Biodiversity Indicators to
Ecosystem Change
Developing biodiversity indicators that are responsive to a
defined anthropogenic pressure or linking biodiversity indicator
change to a single manageable pressure is often desired by
policy-makers but is scientifically challenging to achieve. Micheli
et al. (2013) found that ∼60–99% of the territorial waters
of EU member states were heavily impacted as a result of
multiple pressures, rather than one individual stressor. These
multiple pressures, which include climate change, can have
cumulative and synergistic effects on biodiversity components,
reflected by indicator state (Côté et al., 2016). For example,
warming temperatures have been shown to interact with fishing
pressure on temperate fish stocks (Kirby et al., 2009) and with
multiple stressors including pathogens on coral reef ecosystems
(Ban et al., 2014). Furthermore, biodiversity components are
fundamentally linked through trophic interactions, affecting
biodiversity indicators. Torres et al. (2017) showed that no
pressure-state relationships for fish indicators in the Central
Baltic Sea could be found unless predator-prey feedback or
density dependence was accounted for. These complex and
interacting drivers obscure the interpretation of change in
biodiversity indicators. For example, the limited understanding
of the effects of environmental drivers on the variation of Porifera
and Anthozoa assemblages across the North of Scotland and
Celtic Sea is hindering the ability to accurately measure ecological
responses of benthic rocky reef indicators to direct anthropogenic
pressures (Haynes et al., 2014).

Multiple biodiversity indicators may respond to the same
anthropogenic pressure. Integrating information from a range
of biodiversity indicators is a solution that can help to provide
an overall assessment of the ecosystem (Elliott et al., 2018)
and clarify the main drivers of change affecting a system
(Smith et al., 2016). Although significant development is often
required, ecosystem modeling can provide a comprehensive
means to detect change in multiple biodiversity components
and identify the important pathways by which impacts from
pressures can cascade through an ecosystem (Lynam et al.,
2016). Thus embedding indicators within a model framework
can demonstrate key pressure-state linkages (Fulton et al., 2005;

1http://seasearch.org.uk/

Shin et al., 2018), although it must be noted that data quality
may impact model performance. Such models can then be used
to examine the effects on biodiversity indicators of potential
management measures or climate change through scenario
testing (e.g., Mackinson et al., 2018; Queirós et al., 2018).

Another factor to consider when linking indicators to
pressures is the non-linearity in marine ecological systems. For
some marine ecosystems abrupt community shifts have been
reported (e.g., Hare and Mantua, 2000; Frank et al., 2005)
that can only be explained by non-linear state responses to
abrupt changes in pressures (Scheffer and Carpenter, 2003). Non-
stationarity, i.e., spatio-temporal change in the state-pressure
relationship (Hunsicker et al., 2016), impedes the development
of robust indicators that behave in a consistent and predictable
way. A new tool, the R package ‘INDperform’ (Otto et al.,
2018b) accounts for these dynamics and allows the user to
explicitly test for non-linear and non-additive indicator-pressure
relationships. The package builds on a quantitative framework
for selecting and validating the performance of indicators
tailored to specific management needs (Otto et al., 2018a)
and offers additional functions to quantify the robustness of
these models, identify temporal indicator changes, test for
indicator redundancy, and visualize performances. While single
indicator-pressure models, such as offered in INDperform,
can easily be applied to any number of indicators and
pressures they cannot account for synergistic or counteracting
effects of multiple pressures or estimate trade-offs between
individual indicators. For this, more complex modeling tools
are required, which in turn can be difficult to communicate,
may require many assumptions, and take longer to build
(Hyder et al., 2015).

Using Biodiversity Indicators to Measure
Progress Toward Policy Goals
Policy goals are often definitive, moving beyond broad-scale
visions, and instead specifying a target condition that needs
to be reached to meet the goal. An example of this is
“. . .the abundance/extent, distribution and condition of marine
species and habitats are in line with prevailing environmental
conditions” from Descriptor 1 Biological Diversity of the
EU’s Marine Strategy Framework Directive (2008/56/EC). Such
an approach has long been used to assess indicators of
environmental quality, including concentration of contaminants
in water bodies (e.g., mercury, PCBs, nitrates) and of harmful
gasses in the air (e.g., carbon monoxide, sulfur dioxide). For these
indicators, laboratory tests establish safe limits which can then be
used to define desirable target levels for environmental conditions
(European Commission, 2008a). Setting quantitative targets that
define a good or favorable condition for biodiversity indicators,
however, is much more challenging, as our understanding
of ecological processes influencing the recovery of species or
habitats and the associated ecosystems functions is more limited.
Consequently, many biodiversity indicators currently still lack
associated defined targets (Teixeira et al., 2016).

The most common first step to defining targets for biodiversity
indicators is to establish a baseline against which future change
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FIGURE 2 | Establishing baselines and setting targets under two scenarios of biodiversity data availability. (A) The relative condition of the indicator is known, with
data available representing unimpacted conditions (reference conditions). In this case, an indicator target can be set as a range of indicator values within a specified
distance from the baseline reference conditions. (B) The relative condition of the indicator is not known, and no data representing reference conditions are available.
In this case, time-series data are used to establish baseline conditions and set targets. Baselines can be set using (1) historical data, such as from an alternative data
source or model, (2) the earliest time-series data available, or (3) data representing current conditions. Targets can then be set as a range or as an ‘improving’ trend
from baseline state.

in condition can be measured (Figure 2). The most robust
approach to baseline setting is to first establish a ‘reference
condition’ (Borja et al., 2012; Greenstreet et al., 2012; OSPAR,
2012; Probst et al., 2013) or “natural range” (Rossberg et al.,
2017) which will enable the full effects and changes caused by
anthropogenic pressures to be evaluated (Van Loon et al., 2018).
Reference conditions can be derived from information on species
and habitats from areas where human pressure is considered
negligible or non-existent but that information must be shown to
be applicable to other areas (Borja and Tunberg, 2011). Reference
conditions for marine biodiversity indicators, however, can be
difficult to identify as areas of the marine environment that have
been unimpacted by human pressures are increasingly scarce
(Jones et al., 2018). Furthermore, time-series for most indicators
are not long enough to include a time when human impacts
were absent or negligible (Butchart et al., 2010; Dornelas et al.,
2018). Unimpacted conditions are particularly difficult to identify
for mobile species such as birds, marine mammals, fish and
turtles because they move between impacted and unimpacted
areas (OSPAR, 2012). Modeling, however, can be used to predict
reference conditions, based on knowledge of human pressures

and their impact on the state of the indicator (Borja et al., 2012;
Rossberg et al., 2017). Once reference conditions are established,
targets can then be set that are within a specified distance from
them (OSPAR, 2012), where the acceptable target range for this
distance is dependent on the rate of recovery of the state in
question (Rossberg et al., 2017).

In the absence of empirical or modeled reference conditions,
recent assessments of birds, seals, and fish in the NE Atlantic
have used the start of time-series to define baselines for indicators
(Figure 2) (OSPAR, 2017c,f,i,j). The risk with this approach is
that the baseline is set at a value that represents a degraded
condition which may or may not be within the acceptable target
range of the ecosystem state. If targets are then set close to
the baseline condition, this may jeopardize any improvement
or recovery beyond that observed recently. This concept is
referred to as Shifting Baseline Syndrome (Pauly, 1995; Pinnegar
and Engelhard, 2008; Papworth et al., 2009) and can result in
targets lacking in ambition (Plumeridge and Roberts, 2017) or
worse, ‘locking in loss’ (Maron et al., 2015). Objective baselines
and targets can be set once we improve our understanding of
pressure-state relationships and the influence of the environment
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on them. Duarte et al. (2009) caution that it might not be
possible for an indicator to return to a historic state because of
fundamental alterations to the ecosystem caused by long-term or
chronic effects of pressures or similarly changes in environmental
conditions (Möllmann et al., 2009). In such cases, baselines that
denote reference conditions would need to be set at a theoretical
natural state, which could be achieved in the future if all current
human impacts were removed (Rossberg et al., 2017). If the
policy goal is sustainable use, the indicator targets should allow
components of the ecosystem to achieve the theoretical natural
state in a societally acceptable period of time (such as within a
human generation) if all current human activities were to cease
(Rossberg et al., 2017). To ensure the highest probability of such a
recovery, impacts by human activities on structure, productivity,
function and biological diversity of the ecosystem should be
minimized (Garcia et al., 2003).

Where indicators are required to measure progress toward
broad-level policy goals and visions, trend-based targets provide
an appropriate solution. Trend-based assessment approaches are
relatively simple to apply and communicate and are useful to
inform on the progress of management in helping to recover
degraded habitats or ecosystems or depleted species populations.
For example, the Convention on Biological Diversity Aichi Target
12 is a broad-level vision stating that “By 2020 the extinction
of known threatened species has been prevented and their
conservation status, particularly of those most in decline, has
been improved and sustained” and is used to assess progress
toward Strategic Goal C “to improve the status of biodiversity by
safeguarding ecosystems, species and genetic diversity” (United
Nations, 2010). Measuring progress toward this goal, however,
does not require indicators to reach a specified endpoint or target
point, but instead assessment is based on indicator trend.

An additional barrier to setting targets for biodiversity
indicators is that political resistance can be generated by a lack
of agreement on the level of ambition by different parties, for
example, across different countries sharing the same sea area.
This can stem from a lack of understanding of what the indicator
values signify and/or uncertainty around the implications or
consequences of missing a target. Failure to meet targets may
carry reputational risks or could lead to costly remedial measures
such as changes in regulation or management, which may create
resistance to targets from industry. Some of these political
sensitivities can be alleviated through scientists working closely
with policy leads to co-produce SMART targets that make the
most of the available evidence (Cvitanovic and Hobday, 2018).
For international targets, fora involving national representatives
from science and policy can help to achieve international
consensus and ensure targets are adopted by countries rather
than imposed upon them (Heritier, 2002; OSPAR, 2017c,f,i,j).

Decision triggers are less contentious than firm targets and
can provide a useful link from monitoring data to management
decisions. Decision triggers are becoming an appealing tool
for conservation managers to help support decision-making
by providing clarity about when and how to act; improving
transparency of organizational decisions; removing the need
for guess work; guarding against the paralyzing effects of
uncertainty; and preventing negative conservation outcomes

(Addison et al., 2016). Decision triggers represent a point or
zone in the status of a monitored variable indicating when
management intervention is required to address undesirable
ecosystem changes (Cook et al., 2016). Decision triggers
can be set using a number of methods, depending on
the availability of scientific data and expertise, the number
of objectives for management and the resources available
(Bie et al., 2018).

STRATEGIES FOR COMMUNICATING
BIODIVERSITY INDICATORS TO POLICY

Effective communication of biodiversity indicators and
assessments is integral to their uptake by policy-makers
and managers. Critically, the target audience must be identified
so indicator communication can be tailored appropriately.
The group ‘policy-makers’ is often used as a generic term for
decision-makers at multiple levels, including local councilors,
environmental managers, civil servants, congress people,
Members of Parliament (MPs), and ministers, among others.
These subgroups use biodiversity indicators in different ways to
make decisions and therefore require information in different
formats with varying levels of associated detail and specificity.

Regardless of the audience, biodiversity indicator
communication must be clear, transparent and easy to
understand to support their legitimate use in decision-making.
There are different ways to present indicator results and
assessments, each of which involves trade-offs between the
complexity of biodiversity information and the simplicity of
the product required for clear communication (Figure 3).
The simplest methods of indicator communication use traffic
lights summaries (United Kingdom Marine Monitoring and
Assessment Strategy, 2010; Driver et al., 2011; Karnauskas et al.,
2017) or trend lines (WWF, 2016), which are simple visual
illustrations of indicator change and are easily understood
by non-scientists. These approaches often include composite
indicators that are constructed by integrating numerous
indicators to provide a single value (e.g., the Ocean Health
Index, 2017) or trend (e.g., the Living Planet Index; WWF
and ZSL, 2016). These products can deliver a simple
but powerful, attention-grabbing message to a wide and
diverse policy- and decision-making audience. However,
the simplicity of these approaches, and lack of associated
written narrative, also brings a risk that the audience may
misinterpret the message conveyed by the indicator results.
It is therefore the responsibility of scientists and managers
to communicate results unambiguously, in a way that
effectively takes account of any uncertainty in the results
(Fischhoff and Davis, 2014).

Conversely, more complex communication methods
such as summary report cards (e.g., Carey et al., 2017;
European Environment Agency, 2017; Marine Climate
Change Impacts Partnership, 2017) and narrative reports
(e.g., Conservation of Arctic Flora and Fauna, 2017; Evans
et al., 2017; OSPAR, 2017d) can provide a strong written
narrative and contextual information, reducing the likelihood of
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FIGURE 3 | Indicator communication formats should vary in level of technical detail depending on the policy audience.

misinterpretation by policy-makers. Protocol documents (e.g.,
Ehler and Douvere, 2009) are even more detailed, acting as a
‘user guide’ for indicators.

For all policy audiences, confidence in indicator assessments
must also be clearly communicated. Addison et al. (2017) suggest
that confidence in indicator assessments can be communicated
through a variety of ways. For example, relatively simple
categorical estimates of confidence in scientific robustness and/or
supporting data informing indicator assessments can be applied.
Some examples from Australia and Europe include reporting
simple ‘high, medium, and low’ confidence designations (e.g.,
Carey et al., 2017; OSPAR, 2017e), measuring comparability
with previous assessments [e.g., designating current indicator
assessments as ‘comparable,’ ‘somewhat comparable,’ or ‘not
comparable’ with previous assessments (e.g., Evans et al., 2017)],
and making the evidence (data, metadata, reports, and papers)
used in assessment transparent and accessible (e.g., Ocean Health
Index, 2017; OSPAR, 2017d).

Progress toward achieving any associated targets may also
be appropriate to communicate to policy-makers, including
some measure of distance from the associated target as
well as an indication of management interventions needed
to achieve the target in the future (Andersen et al., 2014;
HELCOM, 2018). Emphasizing socioeconomic needs linked to
biodiversity indicators and assessment, such as ecosystem service
provision, can help articulate policy relevance and increase
usefulness of biodiversity indicators and assessments. Delivering

the right indicator information in the right communication
format for the right audience is therefore key to successful
use of biodiversity indicators and assessments. For example,
environmental managers who must make rapid management
decisions require a higher level of detail about indicator
implementation and interpretation than a national minister, who
may only need to understand high-level information (Figure 3).

The co-development of indicators by scientists working
closely with policy-makers can facilitate feedback on product
communication format to ensure that the final indicators or
assessment products are useful for policy-makers. Furthermore,
indicator co-production allows the articulation of scientific
confidence limits and risks, enabling agreement on a way
to consider and express these limitations in assessments
(Addison et al., 2017; Bolman et al., 2018). This is a
critical, and often iterative, step in biodiversity indicator
and assessment utility. Recent examples of this collaborative
approach to indicator development are the OSPAR Intermediate
Assessment of the Northeast Atlantic (OSPAR, 2017d) and the
HELCOM Holistic Assessment of the Baltic Sea (HELCOM,
2018) where scientists worked closely with policy-makers to
develop a suite of marine biodiversity indicators. The science-
policy working groups co-developed communication products
tailored to the requirements of two levels of decision-makers.
Firstly, a detailed assessment report containing information
about indicator development, assessment methods, and the
interpretation of indicator results was developed for government
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civil servants to use for reporting. Secondly, a two-page
report card for elected officials, containing simple figures,
provided a high-level overview of assessment results. Close
working across the science-policy interface therefore resulted in
biodiversity assessment products which meet the needs of both
policy audiences.

Lastly, evidence-based decision making is essential for
effective biodiversity management in the marine environment
and in that sense promotes the use of user friendly mathematical
or statistical models, such as decision-support tools that
can translate science into policy (Pınarbaşı et al., 2017).
Multifunctional decision support tools have been developed for
a wide range of components in marine management, some
of which may be useful to communicate results to decision-
makers or to identify trade-offs and perform scenario analyses.
These types of DSTs are particularly useful for detecting changes
in marine ecosystems by performing scenario analyses on key
drivers or biodiversity indicators within marine systems.

Although the scientific process in developing a set of
indicators may be complex, the outputs should be simplified
such that the outputs are connected to the human or social
context in which they will be used. Technical DSTs or
complex indicators may result in a disconnection between
the objective of the indicator and its utilization in the decision-
making process (Bolman et al., 2018). Therefore, simplifying
complexity should rather focus on the communication of the
scientific outputs rather than on the actual development
of the indictors or tools. Communicating biodiversity
indicators should include emphasizing key trends or sensitive
parameters to communicate the dynamics within complex
marine systems, in the format most useful to different
decision-makers (e.g., decision support tools, report cards,
or web-based interfaces).

CONCLUSION

As we enter the UN Decade of Ocean Science for Sustainable
Development (UNESCO, 2018) a concerted effort will be
required to develop strategies to meet the UN global goal
to “Conserve and sustainably use the oceans, seas and
marine resources for sustainable development” [Sustainable
Development Goal 14 (United Nations General Assembly, 2015)].
Marine biodiversity indicators are likely to be critical to meeting
the targets associated with this ambitious goal.

In the context of marine management, we highlight a holistic
approach to understanding the term ‘biodiversity indicator’
to include ecosystem structure and functioning. Several
challenges around biodiversity indicator development limit
the widespread implementation in biodiversity management.
Firstly, the policy application of marine biodiversity indicators
varies across geographical regions and is currently most
common in, but not limited to, high income countries
with established monitoring programs. Where marine
biodiversity indicators are in use for policy assessments,
these indicators often use region-specific terminologies and
data requirements, and were created for specific policy

drivers. Additionally, marine ecosystems are complex, non-
linear systems and links between internal interactions and
exogenous pressures frequently distort human intuition
of the marine system and hence management approaches.
Marine management, and the development of biodiversity
indicators to support management, thus require methods of
analysis and decision-support tools that recognize multiple
forms of complexity.

Formation of a community of practice was a key aim of
this IMCC symposium and focus group, and these sessions
revealed that the concept of biodiversity indicators is most
useful when kept broad and flexible in both definition and
application. A community of practice will facilitate knowledge
exchange between indicator users to find alternative solutions
for the common challenges outlined in this paper. Solutions to
many of the challenges facing the policy application of marine
biodiversity indicators were discussed and further developed
and are now described in this paper. Some solutions require
advanced numerical expertise while others address barriers by
adopting innovative solutions involving citizen science data
collection, combining multiple datasets to populate indicators,
communicating assessment results in audience-specific formats,
and enhancing collaborations within the international scientific
community. The key to overcoming many barriers to biodiversity
indicator uptake is to include policy-makers from the start of
indicator development to ensure that implementation needs
are met. It is our hope that the solutions outlined here will
support the use of biodiversity indicators for marine policy,
management, and conservation, helping us to meet the UN
aspiration of the sustainable use of our oceans, seas, and
marine resources.
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