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Remote regions across Alaska are challenging environments for obtaining real-time,
operational observations due to lack of power, easy road access, and robust
communications. The Alaska Ocean Observing System partners with government
agencies, universities, tribes and industry to evaluate innovative observing technologies,
infrastructure and applications that address these challenges. These approaches
support acquisition of ocean observing data necessary for forecasting and reporting
conditions for safe navigation and response to emergencies and coastal hazards. Three
applications are now delivering real-time surface current, sea ice, and water level data in
areas not possible a mere 10 years ago. One particular challenge in Alaska is providing
robust alternative power solutions for shore-based observing. Remote power options
have been evolving alongside resilient technologies and are being designed for freeze-up
conditions, making it possible to keep remotely deployed operational systems running
and easy to maintain year-round. In this paper, three remote observing approaches
are reviewed, including use of off-grid power to operate high-frequency (HF) radars
for measuring surface currents, a real-time ice detection buoy that remains deployed
throughout the freeze-up cycle, and a high-quality water level observing alternative to
NOAA’s National Water Level Observing Network (NWLON) installations. These efforts
are highly collaborative and require working partnerships and combined funding from
other interested groups to make them a reality. Though they respond to Alaska’s needs
including Arctic observing, these approaches also have broader applications to other
remote coastal regions.
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INTRODUCTION

Alaska has been experiencing dramatic changes in the past decade, especially in
the Arctic. March 2015 and 2016 Arctic sea ice extents set new record lows in the
winter sea ice extent maximum for the entire satellite record starting in 1979 (Viñas,
2016; NASA, 2016). December 2017 continued this trend and experienced the second
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lowest ice extent in the satellite record (NSIDC, 2018; Walsh,
2018). Later freeze-up dates in the fall and earlier break-up
dates in the spring are occurring for both the Bering Strait and
Chukchi Sea regions (Mahoney et al., 2014; Johnson and Eicken,
2016; DeMarban, 2018a,b; Samenow, 2018). Sea ice coverage
has decreased to the point that existing northern shipping lanes
around the world are open for longer periods of time (Masters,
2013) and are projected to experience a continued increase in
marine vessel traffic (Arctic Council, 2009). This heightens the
likelihood of ship groundings and the potential for oil spills in
the region (Roelevan et al., 1995; Merrick et al., 2002). Already,
the United States and nations including Russia, China, Korea,
and Japan are eyeing increased access and use of this new Arctic
Marine Highway for shipping, offshore oil, gas and mining
activities, and fishing (Arctic Council, 2009; Zysk, 2014; Pan and
Huntington, 2016; Tonami, 2016; Quillérou et al., 2017). To this
end, the United States Arctic, comprised of the Beaufort, Chukchi
and Bering Seas, needs a robust marine and coastal observing
infrastructure providing real-time maritime observations to
support national interests in this region, including navigation
safety, hazard risk planning, and incident response (U.S. Navy
Dept, 2009; U.S. Coast Guard, 2013). However, to date, the
United States Arctic has been significantly under-observed,
especially compared to other United States coasts.

Alaska is a challenging environment for obtaining real-time
observations due to the lack of coastal infrastructure including
grid-tied-power, easy road access and robust communication
systems. During the past decade, the Alaska Ocean Observing
System (AOOS) has partnered with government agencies,
universities, tribes, and private industry to evaluate and
demonstrate creative solutions to filling information gaps by
establishing observing networks and using technologies and
infrastructure that circumvent some of these challenges. In this
review, we highlight three of these solutions and provide the
motivation, application and a brief evaluation on successes that
demonstrate the viability of these technologies for Alaska and
other remote maritime observing needs.

METHODS AND APPROACH

The Alaska Ocean Observing System
and Regional Collaborations
The sheer size of the Alaska region requires extensive
collaboration and leveraging of other programs to accomplish the
AOOS mission, which is to increase observing and forecasting
capacity in all regions of the state, especially in the Arctic and
the Gulf of Alaska. AOOS supports key observational assets while
identifying and working to fill information gaps.

The Alaska Ocean Observing System is guided by a
governing board made up of state and federal agencies, the
University of Alaska and other Alaska research institutions,
and representatives of the private sector including marine
navigation, fisheries, oil and gas industries, and tribes.
Strong stakeholder relationships and active engagement
and outreach programs ensure the most urgent observing needs
are prioritized as described in the AOOS Strategic Operations

Plan (Alaska Ocean Observing System [AOOS], 2016). To
enlist stakeholder input used to prioritize observing initiatives,
AOOS hosts multiple observing network consortiums. The
Alaska Water Level Watch (AWLW) is a collaborative group
working to improve the quality, coverage, and accessibility to
water level observations in Alaska’s coastal zone1,2. The Alaska
Ocean Acidification Network3 and the Alaska Harmful Algae
Bloom Network4 are two other examples of AOOS lead, topical
working groups. These networks provide forums for stakeholder
participation, collaboration and input to observing priorities, and
they support and host workshops, pursue funding opportunities
and proposals, as well as conduct outreach activities.

Alaska Ocean Observing System also actively supports and
provides public access to regional real-time and historical data
through the largest collection of regional and Arctic data, models,
and visualization tools, powered by a state-of-the-art high-
performance computing center. Through data portal tracking,
user feedback and data requests, AOOS identifies where users
need more information. All of these efforts provide valuable
feedback on the need for specific data and information across
the region, and through AOOS, informs the national IOOS
program on critical observational data gaps and infrastructural
and technology needs required to fill these gaps.

Operating High Frequency (HF) Radars in
Remote Regions Off the Grid
High frequency (HF) radar systems are shore-based installations
that measure high-resolution speed and direction of surface
currents across large areas of the coastal ocean at hourly intervals
in real-time. The present state of the United States national
HF radar network for measuring surface current has resulted
from nearly 40 years of research, development and application
(Stewart and Joy, 1974; Teague et al., 1975; Holbrook and Frisch,
1981; Janopaul et al., 1982; Fernandez et al., 1995; Chapman and
Graber, 1997; Graber et al., 1997; Essen et al., 2000; Paduan et al.,
2001). HF radars are highly suitable for remote monitoring as
they can operate autonomously under any weather condition.
The spatial-map time series of HF radar surface currents provide
enough detail for important applications including ecosystem
research and management, numerical modeling and prediction,
search and rescue, hazardous materials spill response, and overall
increased marine domain awareness. HF radar signals have also
been evaluated as a tool for vessel detection in areas lacking
Automated Information System (AIS) capability (Roarty et al.,
2013a,b), increasing their potential utility for remote observing.

Challenges With HF Radar Implementation in Alaska
Changes occurring in the Arctic, the expected increase in vessel
traffic and need for predictive capabilities in ocean and ice
forecasting are just a few of the motivations to increase HF
radar observing in Alaska, especially along the Bering Sea and
Bering Strait and the north slope in the Beaufort Sea. Though

1https://aoos.org/alaska-water-level-watch/
2https://www.facebook.com/AlaskaWaterLevelWatch/
3https://aoos.org/alaska-ocean-acidification-network/
4https://aoos.org/alaska-hab-network/
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there is an extensive HF radar network operating continuously
along much of the contiguous United States coastline5, Alaska
currently has only three HF radar stations, which operate along
the northwest coast on the Chukchi and western Beaufort Seas.
Alaska lacks adequate HF radar installations, due in part to the
limited available power and transportation infrastructure across
much of the Alaska coastline.

A 5 MHz HF “long-range radar” are most common as
they provide the best coverage and can transmit over radar
distances up to 200 km using on the order of 7.5 kWh/day.
Most HFR systems in the United States obtain power from
the onshore power grid, and it is this dependency that has
severely limited HF radar application in Alaska. Where power
is available, namely in remote coastal communities that struggle
with generating their own power needs, site location may not
yield the optimal radar mask for sampling ocean currents.
Remote installations of HF radar in Arctic and sub-Arctic Alaska
must also consider difficult and costly logistics, demanding
environmental conditions such as high winds, sub-freezing
temperatures, salt-laden maritime air and icing, inquisitive, and
potentially disruptive, wildlife (rodents, foxes, and bears), and site
permit requirements.

HF Radar Power Solution – The Remote Power
Module (RPM)
To solve the power problem with HF radar installations in Alaska,
engineers and scientists from the University of Alaska, Fairbanks
(UAF) College of Fisheries and Ocean Sciences developed an
HF radar remote power module (RPM) (Statscewich et al., 2011,
2014). The RPM (Figure 1) is a stand-alone device for long-
term deployments that minimizes permit issues associated with
diesel generators and logistical costs associated with refueling
and maintenance. The RPM design facilitates setup and transport
to remote sites using small vehicles, and contains subsystems

5http://hfradar.ndbc.noaa.gov

FIGURE 1 | Picture of an Arctic HF radar installation to the left and its
corresponding remote power module (RPM) shown to the right. (Photo credit:
Hank Statscewich, UAF, AK).

for power generation, satellite communications, and power
performance monitoring. A battery bank with a 5-day power
reserve is charged primarily by wind and solar, and secondarily
by a biodiesel generator. The current system used in Alaska
is specifically designed for high latitudes, but can be modified
for remote coasts elsewhere. Two of the three Alaska HF radar
stations are currently powered by RPMs. The UAF team has also
successfully operated three HF radars in Antarctica, two of which
were powered exclusively by RPMs. In 2019, AOOS and UAF will
install two additional HF radars in the Bering Strait region with
one system utilizing an RPM.

Lessons Learned
The RPM design has proven reliable for the “High Arctic” and the
Antarctic summer, but has several critical flaws, namely in the
ability to keep electronics warm in deep winter. Engineers have
since developed an insulated, thermo-regulated enclosure for the
sensitive HFR electronics. Fortunately, heavy snow has not been
an issue, as the foundation keeps the instrument enclosure and
the bottom of the solar array nearly 1.5 m above the ground.
Solar panels are kept at a fairly steep angle of 65 degrees,
so snow tends to slide off, keeping them exposed to sunlight.
To ensure real-time data delivery, an add-on iridium satellite-
based data telemetry system will be implemented to provide a
reliable data back-haul as a fail-over should the Hughes Net
telemetry system go down. The three RPMs currently in the
Arctic have produced nearly 90% of their total power from the
wind, and similar performance at the new Bering Strait location
is expected, but with periodic bursts of much higher winds
than are typically seen on the north slope. To accommodate
the higher winds, the wind turbine masts have been reinforced
with a grade 80 stainless steel insert and deployed wind turbines
will have a smaller rotor diameter to avoid excessive blade
deflection and mast strikes. The power delivery sub-panel for
the RPM has also undergone a major revision and will be much
more compact, modular and integrated. The net result of these
modifications will reduce total cost to build and purchase the
RPM, enable quicker installation in harsh environments and
provide additional system health monitoring, expediting a more
thorough remote troubleshooting capability.

Real-Time Ice Detection Buoys for
Maritime Domain Awareness and Ice
Forecasting
In the United States Arctic, federal agencies, shipping and
the oil and gas industries require an accurate method of
predicting sea ice formation for offshore operations and maritime
safety. One aim is to avoid costly, premature or delayed
cessation of marine operations caused by inaccuracies in
model predictions or satellite detection of sea ice formation.
Despite the exceptional ability to forecast the onset of sea-ice
formation, sea ice models remain challenged by the lack of
information about how the vertical density gradient (induced
by both temperature and salinity) over the shelf evolves as
a function of air-sea heat fluxes. This information is limited
as real-time water column observations are typically restricted
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to seasonal mooring operations that can only be conducted
with vessel support during ice-free conditions. However, it is
precisely during the breakup and freeze-up transitions when
these observations are most needed for accurate ice modeling and
forecasting efforts.

A Real-Time Ice Detection Buoy System (IDB)
The IOOS Ocean Technology Transition (OTT) program,
sponsoring the transfer of emerging marine observing
technologies into operational-ready platforms, supported
the University of Alaska (UAF), industry partner Pacific
Gyre and AOOS to fully develop and deploy an ice detection
buoy (IDB) system that inexpensively and accurately reports
the seasonal evolution of the thermohaline structure in the
water column through the freeze-up cycle. Data from the
IDB are needed by models to determine when the onset of
offshore sea ice formation begins, while providing guidance for
improving remote sensing algorithms for frazil ice detection,
a notoriously difficult process for remote sensing ice satellites.
The IDB itself is designed to transmit data real-time via iridium
satellite through the onset of ice formation, at which time an
expendable surface buoy is remotely detached by an operator
to prevent loss of the subsurface mooring just before ice
moves in or freeze-up commences. The subsurface mooring
and sensor array remain in the water below ice keel-depth,
recording data through the following breakup cycle and
planned recovery.

Alaska IDB Sea Trials
The first IDB was deployed in 2015 on the Chukchi Shelf in 40
m water depth. The mooring was equipped with a sea surface
thermistor, five subsurface SBE 37 IMM Microcat Conductivity
and Temperature sensors (8,10, 20, 30, and 40 m), subsurface
floatation below the expected ice keel-depth, an acoustic release
and an expendable surface float equipped with iridium antennae
for data transmission6. The IDB successfully reported the vertical
temperature and salinity structure of the Chukchi Sea shelf
in real-time prior to and during the 2015 freeze-up cycle.
Operators released the expendable surface buoy when the vertical
density gradient eroded in early November and satellite imagery
indicated the main ice pack was less than a day from over-riding
the mooring (Hauri et al., 2018).

The success of this trial buoy lead to the deployment of an
identical system in 2017, with support from the NOAA National
Weather Service (NWS). 2017 data were displayed real-time on
the AOOS data portal as well as shared through the GTS (Global
Telecommunications System), which enabled real-time access to
the IDB data for use in the NWS Alaska Sea Ice Program (ASIP)
forecasting activities. Data were used in the daily ice analysis, 5-
day sea ice forecasts, and the 3-month sea ice outlook products.
The NWS analyzed the IDB data alongside current satellite
imagery in the vicinity of the buoy for a better informed and more
complete view of the coupled atmosphere/ice/ocean system. The
2017 IDB was successfully recovered in the late summer of 2018
and the overwintering data are currently being analyzed.

6https://aoos.org/ice-detection-buoy/

Lessons Learned
The 2015 subsurface mooring was never recovered, either
because the acoustic release failed, or more likely because ice
keels moved the mooring by hooking the subsurface floatation.
In 2018, a third IDB deployment only reported data for 1 day
before going off-transmission due to ice. A passing research
vessel recovered the intact mooring, which had moved south
from its original deployment position and sustained damage to
the antenna. The IDB surface and subsurface floatation clearly
puts it at risk of mobile ice any time of year, and the IDB
sea-trials have informed several needed modifications for future
IDBs, including safeguarding against ice rafts and reinforcing
the surface float communications antenna. Despite these risks,
the value of capturing the real-time water column density
stratification conditions during freeze-up was demonstrated
and the success has captured the attention of the NWS
and other stakeholders interested in ice freeze-up prediction
and forecasting.

A Tiered Data Quality Approach for
Observing Water Levels
Accurate water level observations are fundamental for safe
navigation, mapping and charting, storm-surge forecasting,
informed emergency response, and ecosystem management.
Alaska’s extensive and remote shorelines are especially under-
instrumented with respect to basic water level observations,
due in part to regional obstacles including the formation of
seasonal ice, the lack of coastal infrastructure needed to install
observing platforms and rapid coastal erosion that render
conventional water level sensing technologies impractical.
Approved NOAA Center for Operational Oceanographic
Products (CO-OPS) National Water Level Observation Network
(NWLON) technologies primarily consist of in-water sensors
in stilling wells or down-looking microwave systems, and
station siting is heavily reliant on ice-free conditions and local
infrastructure, making annual operations and maintenance of a
more widespread series of NWLONs cost prohibitive for most of
the low infrastructure coastline in Alaska. Currently, the entire
west and north coasts of Alaska have only five NWLON tide
gauges. Though NWLON installations are always desirable as
they provide the best solution for all water level data applications,
a tiered water level data policy allows for observations with lesser
accuracies (Edwing, 2015). The policy stipulates water level data
quality tiers A (e.g., NWLON), B and C, matching data accuracy
to specific applications (Table 1).

The Alaska Water Level Watch (AWLW) partnership
is working to augment the existing Alaska NWLON with
tiered coastal water level observation products (e.g., real
time stations, short-term time series, and high-water mark
measurements). The ultimate goal is to make these additional
data products public through a robust data management system
that parallels the NOAA CO-OPS Tides and Currents online
system7, as this system only hosts Tier A data. AOOS is
supporting the initial development of the tiered data portal,
and IOOS and NOAA CO-OPs plan to advance development

7https://tidesandcurrents.noaa.gov/
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TABLE 1 | Minimum criteria for tiered data within NOAA CO-OPS water level program.

Tier A B C

Minimum accuracy (on datum
for tier A and B)

10 cm 30 cm 30 cm or accuracy not determined, or
minimum benchmarks not installed

Benchmarks 5 3 Not required

Leveling order Annual 2nd order class 1 better Biannual 3rd order or GPS derived
ellipsoid based

Not applicable

Applications • Real-time navigation for coasts and
Great Lakes

• Marine Boundaries
• Sea Level Anomalies
• Vdatum
• Hydrodynamic model forcing and

skill assessment
• CO-OPS MAPTITE applications

• Hydrographic surveys
• Shoreline mapping
• General marsh restoration

applications
• Storm surge
• Exceedance
• Inundation dashboard

• Academic research
• Background oceanographic

information
• Tsunami

Harmonic constants and
predictions

Official NOS product – unrestricted use Official – use only for Tier B and C
applications. Predictions not used in
tide tables or NOAA tides

Unofficial – use only for tier C
applications. Predictions not used in
tide tables or NOAA tides

Benchmark Sheets Official NOS product – unrestricted use Official – use only for Tier B and C
applications

Not published

Datums Official NOS product – unrestricted use Official – use only for Tier B and C
applications

Not published

Sea level trends Official NOS product – unrestricted use Cannot be used Cannot be used

Dissemination Real time or non-real time (determined
by AGREEMENT)

Real time or non-real time (determined
by agreement)

Non-real time (minimum latency – 24 h),
except for tsunami data

(Adapted from Edwing, 2015).

of this capability and make it nationwide through the IOOS
Regional Associations.

Remote, Real-Time Water Level Observing Using
GNSS Reflectometry
Alaska Ocean Observing System is testing alternative methods
that provide Tier B water level information, the minimum
accuracy sufficient for computing datums, resolving tidal and
subtidal water levels within 10 s of cm, also adequate for
understanding flooding events and validating storm surge models
and forecasts. Global Navigation Satellite Systems (GNSS)
receivers have been demonstrated to provide a quality alternative
method for directly measuring water level without a tide
gauge, referred to as GNSS-Reflectometry (GNSS-R) (Martin-
Neira, 1993; Löfgren et al., 2011; Larson et al., 2012, 2013,
2017; Dawidowicz, 2014; Strandberg et al., 2016; Williams
and Nienvinski, 2016). GNSS-R receivers measure water level
changes at an oblique angle, and can be installed on existing
infrastructure, such as a pier or a building, or directly on
land where a clear view of the water surface exists with no
obstructions. The basic approach uses reflected GPS satellite
signals to determine the height of a reflecting surface, such
as the ocean, relative to a stable GPS antenna of fixed local
height. The total received GPS signal measured by the antenna
is the sum of the direct signal and the reflected signal. The
interference between these two signals depends on the satellite
altitude in the sky and on the receiver height above the ground.
Given the satellite altitude is known, the observed interference
pattern as the satellite rises/sets is used to extract the receiver
height, after which the antenna height is subtracted to determine

the true water level. GNSS-R can be installed and maintained
more easily and at significantly lower cost than a traditional
NWLON tide gauge while providing high quality Tier B water
level information (e.g., Larson et al., 2013). GNSS-R systems
do not require much power, and can operate off remotely
rechargeable power supplies, such as small solar panels with
rechargeable batteries, making them suitable for remote coastal
installations. GNSS-R receivers also do not need to be removed
prior to freeze-up, hence are especially well-suited for year-round
Arctic installations. Real-time (or near real-time) data can be
transmitted either by cell phone (if in a community with service),
or via an iridium satellite link.

Alaska GNSS-R Pilot Study
Since 2017, AOOS and partners have been exploring GNSS-R
water level measuring techniques to determine the efficacy of
these systems for use in remote Alaska, and to determine some
of the limitations in various environmental settings, such as
mountainous fjords commonly found along the Southeast Alaska
coast, and low-rise topography coastal areas with large tidal
excursions common along the western Alaska coastline and north
slope. The NWS is supporting AOOS in testing GNSS-R systems
from both a non-profit geoscience consortium UNAVCO8, and a
private industry partner ASTRA, LLC.

Alaska Ocean Observing System and UNAVCO have just
started their collaboration, but AOOS and ASTRA, LLC
completed their first GNSS-R sea trial in 2018 using ASTRA’s
commercialized dual frequency GPS system that was initially

8https://www.unavco.org/about/about.html
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developed for space weather monitoring. These space weather
systems have operated in Alaska, including the Arctic, for
over 10 years. A year-long pilot study conducted in Seward,
Alaska enabled the performance of the ASTRA GPS receiver
to be evaluated against water level measurements from a
NOAA-operated NWLON station 2 km away. The water level
data comparisons between the two methods showed acceptable
agreement with the GNSS-R major tidal constituents (M2, S2,
N2, K1, and O1) measuring within 5 cm of the NWLON
estimates, easily meeting the Tier B water level criteria objective
(Janzen et al., 2018).

Lessons Learned
The Seward sea trials using GNSS-R for water level observing
have provided valuable logistical installation information for
future remote deployments. Seward GNSS-R data indicated
that deployment near mountainous regions can block satellite
coverage and reduce the data rate during certain times of
the day. GPS receivers provide high frequency data rates for
water level observing, and fortunately, the reduced data rate
did not prevent tidal harmonic and subtidal analyses of the
data. However, a period of time when a ship was moored near
the GPS receiver caused interference in the data quality, and
illustrated the importance of locating installations away from
areas frequented by boats.

DISCUSSION

All observing activities in Alaska depend on substantial
partnerships and leveraging of resources, as well as enhanced
coordination with Alaska coastal communities and tribes.
AOOS, as the Integrated Ocean Observing System (IOOS)
Regional Association (RA) responsible for coordinating statewide
monitoring for Alaska’s nearly 44,000 miles of coastline and
offshore environments, is not the only entity working in this
realm. However, it is the only entity representing state and
federal agencies, research institutions and the private sector
whose primary mission is to enhance ocean observations to meet
a broad range of end user needs. Many of these activities depend
on the collaboration among all 17 federal agencies within the
NOAA managed national IOOS Program, as well as links to
the Global Ocean Observing System (GOOS) and the Group
on Earth Observations (GEO). These collaborations should be
fostered and enhanced with training and technical support, as
well as additional mechanisms for transferring and sharing of
funds among federal agencies and with the private sector. As
the Arctic continues to become more accessible and receive
greater attention and use, a modest investment in additional
observing assets in the region – linked to pan-Arctic assets and
those in other Arctic regions, will enhance the United States
marine domain awareness in the Arctic as well as national and
international security.
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