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Previous modeling studies have shown that observed micro-scale (mm) variability

of nutrients and phytoplankton biomass can strongly impact the large-scale mean

growth response of phytoplankton in ways that cannot be represented by typical

models based on the mean field approximation. Also, models accounting for the

flexible eco-physiology of phytoplankton predict quite different responses to changing

environmental conditions compared to most current (inflexible) models. Combining

these two ideas for nutrient-phytoplankton systems we have developed a new “Flexible

NP closure model” to represent competition among the three typically observed

phytoplankton size classes: pico-, nano-, and micro-phytoplankton. Both micro-scale

variability and flexible eco-physiology are expected to impact the competition among

these size classes. With this work we begin to address how both these factors determine

the size structure and size diversity of phytoplankton in the ocean. Under eutrophic

conditions, variability does not impact the modeled growth rate of any size class. On

the other hand, under oligotrophic conditions, variability preferentially enhances the

biomass of the largest typically observed micro-size class, and reduces the biomass

of the smallest nano- and intermediate pico-size classes.

Keywords: plankton, nutrient, intermittency, closure model, eco-physiologyl

INTRODUCTION

Nearly all plankton ecosystemmodels have been developed based on the mean field approximation,
i.e., ignoring intermittency in the distributions of biomass and nutrients by averaging over spatio-
temporal scales much greater than those relevant to planktonic organisms (Mandal et al., 2014;
Foloni-Neto et al., 2015). Micro-scale intermittency has long been known to affect the dynamics
of aquatic microbes, nutrients, and carbon, because aggregates constitute “hotspots” of biological
activity (Azam et al., 1994). More recent research has clarified how interactions between biotic and
abiotic factors (Blackburn et al., 1998; Young et al., 2001) generate micro-scale (< 1mm) aggregates
of phytoplankton, bacteria, and organic matter (Franks and Jaffe, 2001; Waters andMitchell, 2002).
Although many laboratory and field studies have verified the importance of physiological flexibility
(acclimation) for phytoplankton growth dynamics (Flynn et al., 2015), and recent field observations
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have revealed ubiquitous micro-scale variability of
phytoplankton in both oceanic and estuarine waters
(Mandal et al., 2014), we are not aware of any previous
study examining their combined impact on phytoplankton
ecology and biodiversity.

Recent modeling studies have predicted that observed levels
of micro-scale variability affect the growth of phytoplankton
(Mandal et al., 2014, 2016) and enhance tropic transfer
(Priyadarshi et al., 2017), but have not accounted for the well-
known acclimation response, which enhances phytoplankton
growth under resource limitation (Smith et al., 2011, 2016a; Chen
et al., 2019). Given that such acclimation response is the result
of natural selection operating in the aquatic environment (Smith
et al., 2011), it seems necessary to account for both factors in
order to fully understand the growth response of phytoplankton.

Size-scaling of plankton traits has been incorporated into
models in order to examine the effects of environmental
change on the size composition and ecological response of
plankton communities (e.g., Baird and Suthers, 2007; Baird,
2010; Banas, 2011; Roy et al., 2011; Ward et al., 2013; Chen
and Smith, 2018). However, such studies have not considered
how micro-scale variability may impact the size and species
composition of plankton communities. Furthermore, most
such studies have not accounted for the flexible response
of phytoplankton).

The level of micro-scale variability in observed fluorescence
profiles increases with the resolution of the method (Figure 1A).
Vertical profiles (down to 120m depth) of fluorescence were
observed at the mouth of Tokyo Bay, Japan, in 2011, using
four sampling methods: Niskin bottles, Seapoint fluorometer,
light emitting diode (LED) sensor, and laser sensor (Mandal
et al., 2014). Although the observed variability increased
substantially with the resolution of the method, the 1-m
averaged fluorescence levels (spatial mean) are consistent
for all four devices. High-resolution data show high spatial
variability of phytoplankton near the ocean surface, and
decreases in both mean and variability with increasing depth.
These and other observations motivated development of
the closure modeling approach (Mandal et al., 2014) in
order to investigate the impact of micro-scale variability on
plankton dynamics.

We present a new modeling framework (Flexible-closure) to
account for the combined effects of micro-scale environmental
variability (Figure 1A) and flexible eco-physiological response
on size-based phytoplankton communities (Figure 1B). We also
present new model predictions about how different levels of
micro-scale variability and nutrient levels impact phytoplankton
of different size.

MATERIALS AND METHODS

Flexible Model With Different Size-Scaled
Phytoplankton
We first developed a simple model of three phytoplankton size
classes in competition for nutrient. Typical sizes for pico-, nano-
, and micro- plankton are considered as 1, 5, and 25 µm,

respectively (Marañón et al., 2012). The model Equations are:

dPp

dt
=

[

Gp (I, N)−MPp
]

Pp (1)

dPn

dt
=

[

Gn (I, N)−MPn
]

Pn (2)

dPm

dt
=

[

Gm (I, N)−MPm
]

Pm (3)

dN

dt
= −

∑

i=p,n,m

[

Gi (I, N)−MPi
]

Pi (4)

For each size class quadratic mortality is assumed (Edwards
and Yool, 2000) representing both natural and grazing related
mortality, because this allows co-existence of the three modeled
size classes. Growth, G, is a function of irradiation (I) and free
nutrient (N) as Smith et al. (2016a),

Gi(I,N) = µ̂I
[

1+ 2
(

Zi(N, I)−
√

Zi(N, I) [1+ Zi(N, I)]
) ]

with

Zi(I,N) = Qs



ζN + µ̂I





1

Â0 N
+ 2

√

V̂0 Â0 N

+ 1

V̂0







 (5)

Model parameters:

Qs: Structural cell quota
ζN : Energetic respiratory cost of assimilating inorganic N
A0: Potential maximum values of affinity
V0: Maximum uptake rate
µ̂I : Potential maximum growth rate of phytoplankton
M: Mortality rate coefficient for phytoplankton.

Pp, Pn, and Pm represent phytoplankton biomass for pico-, nano-
and micro- size scale, respectively.

In order to simplify the expressions, the following terms
are defined,
Pp = x, Pn = y, Pz = z, N = n, Gp (N, I) = µ̂

I gp (n, I),

Gn (N, I) = µ̂
I gn (n, I), Gm (N, I) = µ̂

I gm (n, I),M =m

Then the Equations 1–4 are expressed as follows:

dx

dt
= (µ̂I gp (n, I)−m x)x (6)

dy

dt
= (µ̂I gn(n, I)−m y)y (7)

dz

dt
= (µ̂I gm(n, I)−m z)z (8)

dn

dt
= −

[(

µ̂I gp (n, I) −m x
)

x+
(

µ̂I gn (n, I) −m y
)

y

+ (µ̂I gm(n, I)−m z)z
]

(9)

Size Scaling of Traits
We define size-scaling for the traits (i.e., model parameters)
following, Wirtz (2013) in terms of l, the log of the equivalent
spherical diameter (ESD):

l = loge(ESD) (10)
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FIGURE 1 | (A) Compared to the typical mean-field assumption, the closure modeling approach (Mandal et al., 2014) accounts for the statistical distribution of

chlorophyll in aggregates within each modeled grid-cell (green squares with internal variability), providing a more realistic representation than the typical assumption of

uniformity within each grid cell (solid green squares), and predicting substantially different spatio-temporal patterns of growth response (Mandal et al., 2016). (B) The

FlexPFT model (Smith et al., 2016a) reproduces more realistic growth response and different biodiversity patterns, compared to typical inflexible models. Here we

combine these two approaches to develop the first Flexible Closure model.

Then the size scaling of the relevant model parameters are, e.g.,
for the potential maximum growth rate:

µ̂I
(

l
)

= µ̂I∗eαµl (11)

where αµ is the size-scaling exponent (positive for an increase of
the relevant trait value with increasing l and the constant µ̂I∗ is
the size independent growth value.

Other trait values are similarly scaled (parameter values in
Table S1, Supplementary). Here size is taken as the “master
trait,” and the above size-scaling relationships translate the size
distribution into a distribution of functional (i.e., trait) diversity
(Smith et al., 2016a).

Flexible Closure Model With Different Size
Scales of Phytoplankton
Reynolds decomposition is applied to the above model equations
to obtain a mass balance equation for each prognostic variable,
considered as a randomly fluctuating quantity in time and space.
Any fluctuating variable A is decomposed into an ensemble-
averaged quantity < A > and a fluctuating quantity A′, such that
total A=<A>+A′ with<A′ >= 0. Applying this to variables
x, y, z, and n from above, we obtain x = x0 + x′, y = y0 + y′,
z = z0 + z′, and n = n0 + n′. Substituting these expressions into
Equations (6–9) and applying the Reynolds averaging method
in space (see Supplementary Material for details), yields the
following equations for our Flexible NP closure model:

Mean equations:

dx0

dt
= µ gp x0 + µ ġp

〈

n′x′
〉

+ µ

2
g̈p x0

〈

n′2
〉

−m x0
2 −m

〈

x′2
〉

(12)

dy0

dt
= µ gn y0 + µ ġn

〈

n′y′
〉

+ µ

2
g̈n y0

〈

n′2
〉

−m y0
2 −m

〈

y′2
〉

(13)

dz0

dt
= µ gm z0 + µ ġm

〈

n′z′
〉

+ µ

2
g̈m z0

〈

n′2
〉

−m z0
2 −m

〈

z′2
〉

(14)

dn0

dt
= −µ

[

gp x0 + gn y0 + gm z0 + ġp
〈

n′x′
〉

+ ġn
〈

n′y′
〉

+ ġm
〈

n′z′
〉

+ 1

2
g̈p x0

〈

n′2
〉

+ 1

2
g̈n y0

〈

n′2
〉

+ 1

2
g̈m z0

〈

n′2
〉

]

+ m
(

x0
2 + y0

2 + z0
2
)

+m(
〈

x′2
〉

+
〈

y′2
〉

+
〈

z′2
〉

) (15)

Variance equations:

d
〈

x′2
〉

dt
= 2 µ gp

〈

x′2
〉

+ 2 µ ġpx0
〈

n′x′
〉

− 4m x0
〈

x′2
〉

(16)

d
〈

y′2
〉

dt
= 2 µ gn

〈

y′2
〉

+ 2 µ ġny0
〈

n′y′
〉

− 4m y0
〈

y′2
〉

(17)

d
〈

z′2
〉

dt
= 2 µ gm

〈

z′2
〉

+ 2 µ ġm z0
〈

n′z′
〉

− 4m z0
〈

z′2
〉

(18)

d
〈

n′2
〉

dt
= −2 µ

[

gp
〈

n′x′
〉

+ gn
〈

n′y′
〉

+ gm
〈

n′z′
〉]

− 2 µ
[

ġp x0 + ġn y0 + ġm z0
] 〈

n′2
〉

+ 4m
[

x0
〈

n′x′
〉

+ y0
〈

n′y′
〉

+ z0
〈

n′z′
〉]

(19)

Co-variance equations:

d
〈

n′x′
〉

dt
= µ

[

gp
(〈

n′x′
〉

−
〈

x′2
〉)

+ ġp x0
(〈

n′2
〉

−
〈

n′x′
〉)]

− µ
[

gn
〈

x′y′
〉

+ ġn y0
〈

n′x′
〉

+ gm
〈

z′x′
〉

+ ġm z0
〈

n′x′
〉]

+ 2m
[

y0
〈

x′y′
〉

+ z0
〈

z′x′
〉

+ x0
〈

x′2
〉

− x0
〈

n′x′
〉]

(20)

d
〈

n′y′
〉

dt
= µ

[

gn
(〈

n′y′
〉

−
〈

y′2
〉)

+ ġn y0
(〈

n′2
〉

−
〈

n′y′
〉)]

− µ
[

gp + ġp x0
〈

n′y′
〉

+ gm
〈

y′z′
〉

+ ġm z0
〈

n′y′
〉]

+ 2m
[

x0
〈

x′y′
〉

+ z0
〈

y′z′
〉

+ y0
〈

y′2
〉

− y0
〈

n′y′
〉]

(21)

d
〈

n′z′
〉

dt
= µ

[

gm
(〈

n′z′
〉

−
〈

z′2
〉)

+ ġm z0
(〈

n′2
〉

−
〈

n′z′
〉)]
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− µ
[

gp
〈

z′x′
〉

+ ġp x0
〈

n′z′
〉

+ gn
〈

y′z′
〉

+ ġn y0
〈

n′z′
〉]

+ 2m
[

x0
〈

z′x′
〉

+ y0
〈

y′z′
〉

+ z0
〈

z′2
〉

− z0
〈

n′z′
〉]

(22)

d
〈

x′y′
〉

dt
=

[

µ (gp + gn)− 2m (x0 + y0)
] 〈

x′y′
〉

+ µ
[

ġp x0
〈

n′y′
〉

+ ġn y0
〈

n′x′
〉]

(23)

d
〈

y′z′
〉

dt
=

[

µ (gn + gm)− 2m (y0 + z0)
] 〈

y′z′
〉

+ µ
[

ġn y0
〈

n′z′
〉

+ ġm z0
〈

n′y′
〉]

(24)

d
〈

z′x′
〉

dt
=

[

µ (gp + gm)− 2m(x0 + z0)
] 〈

z′x′
〉

+ µ
[

ġp x0
〈

n′z′
〉

+ ġm z0
〈

n′x′
〉]

(25)

Where,

gi(n) = 1+ 2
(

Zi(n, I)−
√

Zi(n, I) [1+ Zi(n, I)]
)

i = p, n,m.

The single derivative of gi(n) with respect to n is then,

ġi (n) =
Q0 µI

n2

[(

1

A0
+

√

n

A0 V0

) (

0.5+ Zi√
Zi(1+ Zi)

− 1

)]

and its double derivative with respect to n is,

g̈i (n) =
Q0 µI

16 n6

[

X1 + X2 −
2 n2√

Zi(1+ Zi)
(X3 + X4)

]

with,

X1 = 8

(

4

A0
+ 3

√

n

A0 V0

)

n3

X2 = 2 Q0 µI

(

n

A0
+ n

√

n

A0 V0

)2
(1+ 2 Zi)

2

[Zi (1+ Zi)]
3
2

X3 = (1+ Q0 ξ )

(

8

A0
+ 6

√

n

A0 V0

)

n

and,

X4 = 6 Q0 µI

[

2

A0
2
+ 4 n

A0 V0
+

(

5

A0
+ n

V0

) √

n

A0 V0

]

The sum N + Pp + Pn + Pm remains constant (total
N is conserved), and both x0 + y0 + z0 + n0 and

< x′2 > + < y′2 > + < z′2 > + < n′2 >

+ 2
(

< n′x′ > + < n′y′ > + < n′z′ > + < x′y′ > + < y′z′ >

+ < z′x′ >
)

are temporally conserved quantities.
Therefore, we define x0 + y0 + z0 + n0 = A and

< x′2 > + < y′2 > + < z′2 > + < n′2 >

+ 2
(

< n′x′ > + < n′y′ > + < n′z′ > + < x′y′ > + < y′z′ >

+ < z′x′ >
)

= B, which reflects the overall strength of the
fluctuating components.

RESULTS

Micro-scale variability impacts the modeled biomass of a single
size class of phytoplankton (Figures 2A,B) and the outcome of
competition between different size classes (Figures 2C,D). For
parameter values (see Table S1 in Supplementary Material).

Micro-scale variability impacts the mean phytoplankton
biomass under low nutrient conditions, but not under high
nutrient conditions. Qualitatively both the in-flexible closure and
flexible closure models respond similarly with the variation of B
for any single size class (Figures 2A,B).

These results show that in oligotrophic environments
where physiological flexibility is already known to impact
phytoplankton growth (Smith et al., 2009, 2016a; Chen et al.,
2019), micro-scale variability also impacts their growth. In
the absence of micro-scale variability, i.e., B = 0, micro-
size phytoplankton dominates under eutrophic conditions
(Figure 2C), whereas pico- size dominates under oligotrophic
conditions (Figure 2D). Micro-scale variability has no impact
on any size class of phytoplankton when the environment
is eutrophic, but changes the outcome of competition under
oligotrophic conditions. With increase in B the modeled biomass
of pico- and nano-size phytoplankton decreases as that of the
micro-scale variability increases (Figure 2D).

DISCUSSION AND CONCLUSIONS

Application of a similar Reynolds’ decomposition for plankton
ecosystem modeling (Woodson and Litvin, 2015), although
at the much larger scale of oceanic fronts, revealed that
patchiness of plankton distributions substantially enhances
trophic transfer via predator-prey overlap. Typical models
based on the mean-field approximation (ignoring sub-grid scale
patchiness), may therefore greatly underestimate the growth of
predators (Woodson and Litvin, 2015; Greer and Woodson,
2016). Similarly, our previous NP closure modeling (Mandal
et al., 2016) revealed that co-variance terms, representing overlap
between nutrients and phytoplankton, enhanced the growth
of a single phytoplankton class, compared to the mean-field
assumption. Here we have extended this approach to examine the
differential effects of micro-scale NP variability on different size
classes of phytoplankton. Our Flexible NP closure model, which
is to our knowledge the first to account for both acclimation
response and micro-scale variability, predicts that the latter has
the greatest impact on phytoplankton growth in the oligotrophic
ocean, where it preferentially enhances the growth of micro-
size phytoplankton at the expense of smaller phytoplankton.
This suggests that micro-scale variability may be important for
sustaining phytoplankton size diversity across vast low nutrient
ocean areas.

Many important phytoplankton traits scale with size
(Litchman et al., 2007; Edwards et al., 2012; Marañón et al., 2013),
and size diversity can be taken as a proxy for phytoplankton
functional diversity (Marañón, 2015). Our results herein
may therefore have important implications for modeling and
understanding biogeochemistry and Biodiversity-Ecosystem
Function (BEF) relationships (Ward et al., 2013; Smith et al.,
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FIGURE 2 | Variation of phytoplankton biomass with micro-scale variability using (A) In-flexible model and (B) Flexible closure model in eutrophic (A = 10) and

oligotrophic conditions (A = 2) as obtained for single size class of phytoplankton. Variation of different size classes of phytoplankton biomass (considering competition

between them) with micro-scale variability in (C) eutrophic and (D) oligotrophic condition.

2016b; Vallina et al., 2017; Acevedo-Trejos et al., 2018; Chen
et al., 2019) across environmental gradients. Specifically, our
model predicts that the diversity-sustaining effects of heretofore
ignored micro-scale variability increase with decreasing ambient
nutrient concentration.

If micro-scale variability is indeed an important determinant
of phytoplankton size diversity, even recent cutting-edge
modeling studies of ocean biogeography and BEF relationships
(e.g., Acevedo-Trejos et al., 2018; Chen et al., 2019), which
ignored micro-scale variability, may have underestimated the
size diversity of phytoplankton in the oligotrophic ocean
and mis-interpreted the mechanisms underlying large-
scale diversity gradients. Given that in general biodiversity
tends to enhance productivity (Tilman et al., 2012, 2014;
Grace et al., 2016; Vallina et al., 2017), this may have in
turn resulted in underestimates of productivity, particularly
for oligotrophic regions. Recent studies have clarified
some relationships between environmental conditions, trait
distributions, and BEF relationships (e.g., Vallina et al., 2017;
Chen et al., 2019), but none have yet accounted for micro-scale

variability, which our results suggest is likely to impact
those relationships.

Assimilation of data from satellite observations into a
plankton ecosystem model has revealed complex, cyclical
relationships between chlorophyll and the slope of the
phytoplankton size distribution (Figure 4 of Roy et al.,
2011), which the authors could not explain. Our model results
suggest that both seasonal and spatial differences in the ambient
level of micro-scale variability could be one as yet unexplored
reason for such complex patterns. Different phytoplankton size
classes also contribute differentially to detrital sinking rates
and hence to determining carbon and nutrient export, and
this has been incorporated into various models of plankton
ecosystems and biogeochemistry (e.g., Ward et al., 2013; Yool
et al., 2013). Micro-scale variability may modulate these effects
and specifically enhance export fluxes of carbon and nutrients
from the upper ocean in oligotrophic regions by enhancing the
growth of micro-size phytoplankton, which produce more large,
fast-sinking particles than smaller phytoplankton. Future studies
that incorporate effects of micro-scale variability therefore have
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the potential to give new perspectives on the mechanistic links
between plankton ecosystems and biogeochemistry.
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