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Integration of observations of the coastal ocean continuum, from regional oceans to
shelf seas and estuaries/deltas with models, can substantially increase the value of
observations and enable a wealth of applications. In particular, models can play a critical
role at connecting sparse observations, synthesizing them, and assisting the design of
observational networks; in turn, whenever available, observations can guide coastal
model development. Coastal observations should sample the two-way interactions
between nearshore, estuarine and shelf processes and open ocean processes, while
accounting for the different pace of circulation drivers, such as the fast atmospheric,
hydrological and tidal processes and the slower general ocean circulation and climate
scales. Because of these challenges, high-resolution models can serve as connectors
and integrators of coastal continuum observations. Data assimilation approaches
can provide quantitative, validated estimates of Essential Ocean Variables in the
coastal continuum, adding scientific and socioeconomic value to observations through
applications (e.g., sea-level rise monitoring, coastal management under a sustainable
ecosystem approach, aquaculture, dredging, transport and fate of pollutants, maritime
safety, hazards under natural variability or climate change). We strongly recommend
an internationally coordinated approach in support of the proper integration of global
and coastal continuum scales, as well as for critical tasks such as community-agreed
bathymetry and coastline products.
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INTRODUCTION

The main interface between humans and the ocean occurs
in the coastal seas. Major marine industries thrive in this
area while citizens make daily use of the coastal ocean for
recreation. OceanPredict (formerly GODAE OceanView;
Davidson et al., 2019) promotes the proper integration of
all ocean scales under an international, operational, data-
assimilative, multi-nested modeling framework. A Coastal
Ocean Forecasting System (COFS), often targeted toward
operational use, involves a combination of appropriate
coastal observing and modeling systems (e.g., Kourafalou
et al., 2015a; De Mey et al., 2017). The resulting value
chain comprises observations made at sea, satellite data,
ocean forecasts and analyses providing specific products and
services for end users.

Observing systems tend to be spatiotemporally sparse in
coastal regions, in comparison to the small scales of ecosystem
variability found there. A crucial observational challenge is
addressing the variety of important spatial and temporal scales
of the coastal continuum, i.e., the seamless transition from
the deep ocean to estuaries, through the shelf: observations
should sample the multiscale, two-way interactions of estuarine,
nearshore, and shelf processes with open ocean processes,
while accounting for the different pace of circulation drivers,
such as the fast atmospheric and tidal processes and the
slower general ocean circulation and climate scales, and for
gradients of biological production, from mesotrophic estuaries to
oligotrophic oceans.

To fully realize the benefits of coastal observing
systems, observations and models must be better integrated
within COFS. Observations can be used to guide coastal
model development and assessment (see section “Using
Observations to Guide Coastal Model Development and
Assessment”). In turn, models can be used to connect
and interpret sparse coastal observations (see section
“Using Models to Connect and Interpret Sparse Coastal
Observations”). Data assimilation (DA) and machine
learning (ML) can provide quantitative, validated estimates
of Essential Ocean Variables and parameters in the coastal
continuum (see section “Using Coastal Models to Synthesize
Observations”). Models and DA can also be used to design
and optimize existing and future observational arrays, with
implications on sampling technology and networks (see
section “Using Models to Design and Optimize Coastal
Observing Systems”).

Integration of observations with models can add value to
coastal observations and enable a wealth of applications, e.g.,
monitoring coastal sea-level rise (Ponte et al., 2019), decision-
making support, marine search and rescue, coastal management
under a sustainable ecosystem approach, aquaculture, dredging,
transport and fate of pollutants, port operations, maritime
and coastal populations safety, hazard analysis under natural
variability and climate change. This paper focusses on how
science can support coastal operational monitoring and
forecasting to that end.

USING OBSERVATIONS TO GUIDE
COASTAL MODEL DEVELOPMENT AND
ASSESSMENT

Coupling models are a commonly used path when addressing
the complex interactions between different components of the
Earth System, but its assessment is challenging. One such example
is illustrated by Staneva et al. (2016a,b, 2017) with a focus on
the nonlinear feedback between strong tidal currents and wind-
waves, which can no longer be ignored, in particular in the coastal
zone where its role seems to be dominant. The inclusion of
wave coupling appears to decrease strong winds through wave-
dependent surface roughness (Wahle et al., 2017), and changes
sea surface temperature, mixing and ocean circulation (Alari
et al., 2016), leading to better agreement with in situ and satellite
measurements. Comparisons with available atmospheric and
oceanic observations also show that the use of the coupled system
reduces the prediction errors in the coastal ocean especially under
severe storm conditions.

Significant progress has occurred in operational model skill
assessment in recent years (e.g., Hernandez et al., 2015). Sotillo
et al. (2016) and Pascual et al. (2017) demonstrate the utility
of using Lagrangian and multiplatform observations from a
single extensive campaign to assess regional and coastal high-
resolution models in the Alboran Sea. However, many coastal
areas remain under-validated due to the shortage of observations.
This affects variables such as surface currents, highly demanded
by end-users for a widespread number of applications, while
observational sources for currents are generally scarce and
limited to High-Frequency (HF) radar-covered areas and some
mooring stations. Wherever available, HF radars have been
shown to be very beneficial for validating high-resolution
regional ocean models (Oke et al., 2002; Liu et al., 2009; Wilkin
and Hunter, 2013; Lorente et al., 2016a,b; Soto-Navarro et al.,
2016; Mourre et al., 2018; Rodrigues, unpublished, 2015). In
addition, reliable wave parameters can be inferred from the
weaker second-order Doppler spectrum measured by the HF
radar (Lorente et al., 2018).

To improve predictions in coastal regions, it is desirable to
reduce biases in the models. However, the lack of both sub-
surface observations and flux data in coastal regions severely
hinders progress. An example of this problem is given by the
shelf-seas model around the United Kingdom. Graham et al.
(2018) demonstrated that increasing the horizontal resolution
from 7 to 1.5 km led to improvements in off-shelf regions,
but biases remained largely unchanged over the shelf region. In
the North Sea, biases in both surface and bottom temperatures
(Figures 1A,B) suggest that stratification errors are linked either
to errors in surface forcing or to vertical processes. Experiments
with vertical mixing schemes (Luneva et al., 2019) and light
attenuation schemes (Figures 1C,D) suggest that changing these
would reduce biases in bottom temperatures. However, there
are no flux moorings in the North Sea to evaluate the surface
forcing and very few (and infrequent) subsurface observations
(Figure 1E) to evaluate the full depth seasonal cycle.
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FIGURE 1 | Observed vs. modeled sea surface (A) and sea bottom temperature (B) from profile observations for the current configuration of the Met Office AMM15
shelf seas forecasting system and with proposed changes to the vertical mixing and light attenuation schemes (C,D). Also shown (E) is a map of the location of all
temperature profiles for spring 2014 available from EN4.

How valid are direct model-data comparisons? Small spatial
scales and HF motions are a major challenge when comparing
high-resolution model outputs to observations. Even when a
model is deemed realistic, small phase errors can happen, with
large consequences if strong gradients (e.g., fronts) are present.
High-sampling rate time series are very valuable observations
for model assessment or DA, but their representativeness
when compared to model outputs remains questionable.
This issue has been raised for coastal model assessment
(e.g., Sandvik et al., 2016) and methods to overcome such a
problem have been developed (e.g., “fuzzy” verification; Ebert,
2008). This may also call for specific strategies for the design of
coastal observing networks.

USING MODELS TO CONNECT AND
INTERPRET SPARSE COASTAL
OBSERVATIONS

COFS must address the full spectrum of spatial and temporal
scales in the coastal continuum. COFS must thus resolve
interactions between nearshore, estuarine and shelf processes
(target resolution: 10–100 m) and open ocean processes (target
resolution: 1 km), preferably in a two-way mode. Approaches
include downscaling and multi-nesting (e.g., Debreu et al., 2012;
Kourafalou et al., 2015b; Trotta et al., 2017), upscaling (Schulz-
Stellenfleth and Stanev, 2016), and unstructured-grid models
(e.g., Zhang et al., 2016a,b; Federico et al., 2017; Stanev et al.,
2017; Ferrarin et al., 2018; Maicu et al., 2018), and coupling with
watersheds (Campuzano et al., 2016, 2018). These features make

those COFS more relevant to the interpolation and interpretation
of sparse observations.

An example is given in Figure 2, off the northern coast of
Cuba, an area of scarce availability in ocean data and the site
of an eddy field which was found to play an important role on
the broader regional mesoscale processes in the Gulf of Mexico.
Kourafalou et al. (2017) describe the related processes using
a high-resolution nested model (Kourafalou and Kang, 2012),
satellite and in situ data. A series of cyclonic and anticyclonic
eddies were identified along the Cuban coast in the Straits of
Florida and were traced in model and observational data fields.
The anticyclonic eddies were released from the Loop Current
and progressed eastward, affecting the overall variability of the
Loop Current/Florida Current system, a component of the Gulf
Stream. The synthesis of model and observational data has
led to a new understanding of the Gulf of Mexico’s mesoscale
processes, with implications on the predictability of a major
western boundary current.

The SAMOA Initiative (Alvarez Fanjul et al., 2018) uses
such a synthesis of observation and model products to provide
operational products and customized services for port operations
in Spain. A suite of increasing-resolution models (down to
∼100 m), involving wave modeling and improved metocean
products, as well as dedicated observational field campaigns
and near-real-time networks, is used to downscale CMEMS1

products to coastal and port waters, providing enhanced
products to end users.

1CMEMS: Copernicus Marine Environment Monitoring Service, http://marine.
copernicus.eu/.
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FIGURE 2 | Horizontal distribution of (A) Sea Surface Height (SSH) and near-surface currents and Mixed Layer Depth (MLD) derived from the FKEYS-HYCOM
1/1000 model simulation on September 1, 2016. Horizontal distribution of satellite observations: (B) SST (GHRSST) and (C) satellite ocean color in mid-August 2016
(middle panels) and the respective (D) SST and (E) ocean color in early September 2016 (lower panels). A drifter trajectory along the Straits of Florida is marked on
(A), circle colors denoting drifter speed (in ms−1, values in the box insert); speeds over 1 ms−1 (red and white) are marked by larger circles; white cross symbols in
panels (A) and (B) indicate the drifter’s position on the particular date. The loop current (LC), the cyclonic eddies C1, C2, the anticyclonic eddies CA1, CA2 and the
upwelling area along the northern Cuban coast are also marked. “Upwelling” marked over the Cuba land mass indicates upwelling area near the coast (marked by
cooler/blue color waters in GHRSST data and more productive/green color waters in ocean color data). We use GHRSST Level 4 SST fields produced by GHRSST
daily Level 2 data Donlon et al. (2009), https://podaac.jpl.nasa.gov/dataset/JPL-L4UHfnd-GLOB-MUR, with horizontal resolution of 1–2 km (adapted from
Kourafalou et al., 2017).

USING COASTAL MODELS TO
SYNTHESIZE OBSERVATIONS

Let us now turn to DA and ML approaches where models
and observations are combined. DA (e.g., Moore and Martin,
2019) is traditionally complex and frustrating in coastal regions
because of the multiple scales involved, and also because the
data forcing is competing with open-boundary, riverine, and
atmospheric forcings (the latter a DA product), which are often
imperfectly known.

The value of assimilating HF radar observations to improve
the coastal ocean state estimation (Oke et al., 2002; Wilkin et al.,
2005; Barth et al., 2008; Shulman and Paduan, 2009; Stanev
et al., 2015, 2016) or optimize boundary or surface forcings
(Barth et al., 2011) has been demonstrated. Access to original
radial radar measurements is important for assimilation (above
references; Kurapov et al., 2003; Sperrevik et al., 2015). Reliable
error variances and information on the spatially and temporally
correlated error structure are very valuable (Vandenbulcke et al.,
2016), but are unfortunately often unavailable.

Frontiers in Marine Science | www.frontiersin.org 4 July 2019 | Volume 6 | Article 436

https://podaac.jpl.nasa.gov/dataset/JPL-L4UHfnd-GLOB-MUR
https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-06-00436 July 26, 2019 Time: 14:49 # 5

De Mey-Frémaux et al. Model-Observations Synergy in the Coastal Ocean

Altimetry observations have recently been assimilated
in shelf-sea systems, including operational systems (e.g.,
Sotillo et al., 2015; King et al., 2018). Although at an early
stage compared with altimetry assimilation in global non-tidal
models, use of these observations has the potential to better
constrain the coastal mesoscale and the subsurface density
structure. However, to derive the maximum benefit from these
measurements, sub-surface temperature and salinity fields must
already be reasonably well-constrained. The sparseness of profile
observations in the shelf seas therefore adds to the challenge.
With the upcoming launch of the SWOT wide-swath altimeter
mission there will be a step-change in our ability to resolve
the ocean mesoscale, but again challenges remain in making
use of these low-temporal resolution observations, especially
in dynamic shelf regions (cf. Gaultier et al., 2016; Bonaduce
et al., 2018). For both nadir altimetry (e.g., Dibarboure et al.,
2014) and future wide-swath missions, the complex budget of
correlated errors at small scales (<∼30 km) is certainly the main
difficulty to overcome.

High-frequency measurements are found to be
complementary to altimetry (Pascual et al., 2015); together
they provide a strong dynamical control for ocean models (Yu
et al., 2012). Other studies also assimilate SST in addition to
altimetry (e.g., Vervatis et al., 2016).

Ocean-color is affected by terrestrial organic matter
and sediments in case II coastal waters, besides by
phytoplankton pigments (IOCCG, 2000). The increased
uncertainty of chlorophyll products needs to be accounted
in assimilative shelf-sea ecosystem models (Ciavatta
et al., 2016) or assimilation of alternative remotely
sensed optical data could be considered to constrain
biogeochemical simulations, e.g., light attenuation coefficients
(Ciavatta et al., 2014) and remote sensing reflectance
(Jones et al., 2016).

An important research area where observations and forecasts
can be better integrated is related to the development of
ML techniques. For instance, Chapman and Charantonis
(2017) using iterative self-organizing maps managed to
reconstruct the deep ocean currents of the Southern Ocean
based on surface information provided by satellites. The
algorithm was trained using satellite observations of surface
velocity, sea-surface height and sea-surface temperature,
as well as observations of the deep current velocity from
autonomous Argo floats. ML techniques can also be used
in conjunction with numerical models to improve the
forecasts. For instance, Kalinic et al. (2017) presented an
ocean forecasting system for ocean surface currents for the
northern Adriatic coastal area based on self-organizing maps
trained by a high-resolution numerical weather prediction
model and HF radar data. O’Donncha et al. (2018) in a
case-study site in Monterey Bay (California) integrated
physics-based models to resolve wave conditions together
with a ML algorithm that combines forecasts from multiple,
independent models into a single “best-estimate” prediction
of the true state. In another example, Wahle et al. (2015)
applied a novel approach of DA based on Neural Networks to
wave modeling in the German Bight; French et al. (2017)

combined artificial neural network with computational
hydrodynamics for tidal surge inundation at estuarine
ports in the United Kingdom to show that a short-term
forecast of extreme water levels can achieve an accuracy that
is comparable or better than the United Kingdom national
tidal surge model.

USING MODELS TO DESIGN AND
OPTIMIZE COASTAL OBSERVING
SYSTEMS

Validated models can contribute to the efficient design and
optimization of observing systems for science and operational
uses (e.g., Fujii et al., 2019). Approaches include Observing
System Simulation Experiments (OSSE), Observing System
Experiments (OSE), and Objective Array Design (OAD)
are able to handle heterogeneous, multi-platform observing
systems: satellite-based, HF radars, buoys with low-cost
sensors, autonomous vehicles, etc., OSSE and OSE need an
assimilative system, while OAD does not (e.g., Le Hénaff
et al., 2009; Charria et al., 2016; Lamouroux et al., 2016).
Such approaches can be adopted in coastal regions to
identify gaps in an existing observing network, to study
operational failure scenarios, and to assess the potential of future
observation types.

OSSE have been conducted in the last decade in the regional
ocean (e.g., Halliwell et al., 2014, Halliwell et al., 2015; Aydoğdu
et al., 2018). One particular challenge is to develop a rigorous
OSSE approach for the interaction of open-sea and coastal scales
(with particular focus on coastal scales where observations are
sparser and scales shorter) adopting multi-scale models as Nature
Runs to back up synthetic observations (e.g., Oke et al., 2015;
Fujii et al., 2019).

Using an OSE-type approach, Pein et al. (2016) investigated
how salinity measurements in the Ems Estuary affect the
reconstruction of the salinity field. Indeed, estuarine and strait
dynamics (Stanev et al., 2018), largely dominated by tides and
their interaction with buoyancy forcing, provide a new challenge
to amalgamating observations and modeling. The approach
helped to identify observation locations which are more suitable
for model-data synthesis.

Based on existing observing technologies, the use of
autonomous platforms (e.g., gliders) or systems deployed
on ships of opportunity [e.g., FerryBox, Fishery Observing
Systems (FOS)] is worth investigating. The impact of those
solutions, identified in previous strategy plans (Morin et al.,
2015), has been illustrated in several OSSE, OSE or OAD
experiments. It has been shown that assimilating glider
observations (hydrology but also velocity) in ocean models
does improve modeling systems (e.g., Dobricic et al., 2010;
Pan et al., 2011; Jones et al., 2012; Melet et al., 2012;
Hernandez-Lasheras and Mourre, 2018). Deploying gliders
in coordinated network configurations will further enhance
the capacity of the modeling system to reproduce targeted
dynamical features (Alvarez and Mourre, 2014). Moreover,
long-term repeated glider missions along endurance lines were
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shown to provide a new view of the ocean variability in
narrow channels (Heslop et al., 2012) and in the transition
zone between coastal and the open ocean (Rudnick et al.,
2017). The HF sampling of surface coastal waters by FerryBox
systems also delivers observations that improve assimilated
model simulations (Korres et al., 2014; Stanev et al., 2016;
Aydoğdu et al., 2018). Particularly, in waters where the
ocean dynamics are tidally driven, the assimilating FerryBox
will be more efficient than slower glider platforms (Charria
et al., 2016). To fill gaps between glider tracks and FerryBox
commercial lines, FOS appear as a valuable add-on to sample the
water column and potentially improve operational predictions
(Lamouroux et al., 2016). Aydoğdu et al. (2016) showed that
those systems remain efficient even with a limited number
of equipped ships if the spatial coverage is adapted to the
region dynamics.

Due to the high spatial and temporal variability of the
coastal patterns, the observations at the coastal scale may
be deployed following an adaptive and relocatable strategy
(e.g., autonomous vehicles: Ramp et al., 2009; Mourre
and Alvarez, 2012). The effort spent in the recent years
to build relocatable model platforms (e.g., De Dominicis
et al., 2014; Rowley and Mask, 2014; Trotta et al., 2016)
can guide the optimization of this adaptive observing
strategy. A recently successful autonomous vessel is the
Offshore Sensing SailBuoy2, which was used for directional
wave measurements in the North Sea (Hole et al., 2016).
Being 100% wind propelled, the SailBuoy has two-way
communication via the Iridium network. It has been
used for validation of ocean models and remote sensing
observations, deployed both in the Arctic and the Gulf of Mexico
(Ghani et al., 2014).

CONCLUDING REMARKS

Models can play a critical role in relation with
coastal observations, at connecting sparse observations,
synthesizing them, and assisting the design of observational
networks. In turn, whenever available, observations
can guide coastal model development for research and
operational use.

To adequately represent the bidirectional interactions between
the open ocean and small-scale processes, a better integration
and coordination of coastal and large-scale observation
systems would be beneficial. A promising combination would
involve HF radars and reprocessed coastal altimetry data
(Gommenginger et al., 2011).

Progress must be made in the next decade on coastal
observations, in particular regarding surface currents,
subsurface observations and flux data, and strategies must
be developed to assess the smallest scales (plumes, fronts,
plankton blooms, etc.). Likely upcoming breakthroughs will
be Sentinel-3A wind, wave and optical measurements (Heslop
et al., 2017; Pahlevan et al., 2017; Schulz-Stellenfleth and

2www.sailbuoy.no

Staneva, 2018; Wiese et al., 2018), synthetic aperture radar
(SAR)-based wide-swath altimetry (SWOT), the WaCM
mission (Rodriguez et al., 2019), and the SKIM3 mission, if
approved. The availability of accurate, community-agreed
bathymetry, reference levels and coastline products are also
critical, since without them one cannot get HF processes right
nor ensure consistency of coastal models with basin-scale
models (e.g., Toublanc et al., 2018). The situation regarding
freshwater fluxes and the monitoring of rivers is contrasted
(Mishra and Coulibaly, 2009); neither river climatologies
nor watershed models are fully satisfactory (Campuzano
et al., 2016). Validated observational error estimates must
also be a priority.

One of the challenges of coastal ocean observing systems in
the next decades is the integration of new and conventional
technologies to monitor the variability at small scales
and through integration into multiplatform observing and
forecasting systems (Tintoré et al., 2013). The establishment
of coastal ocean observing systems is being implemented as
an important component of marine strategy. These coastal
observatories, such as the Integrated Marine Observing
System (IMOS) in Australia, the Ocean Observing Initiative
(OOI), and the Integrated Ocean Observing System (IOOS)
in the United States, Neptune and Venus in Canada, the
Coastal Observing System for Northern and Arctic Seas
(COSYNA) Project in Germany, Poseidon in Greece,
and SOCIB in Spain are today providing new quality
controlled observational datasets following standard and
international protocols.

New insights on coastal processes can be gained
from the measurements of trace elements and isotopes.
For instance, radium isotopes (Moore, 2000; Charette
et al., 2016) have proven capable of tracing continental
waters into the ocean from rivers, estuaries or submarine
groundwater discharge.

Finally, coastal areas are ideal in engaging the public in
current scientific challenges and raise their awareness on global
environmental concerns of immense importance, including
global warming and plastic pollution (Cigliano et al., 2015).
Citizen science data collected in coastal areas have reached
the quality appropriate for exploitation in marine policy
(Hyder et al., 2015), coastal area monitoring (Brewin et al.,
2015, 2017b) and scientific studies (e.g., for the evaluation of
satellite data in coastal regions, Brewin et al., 2017a; Yang
et al., 2018). Citizen science data can cover areas that are
typically under-sampled by traditional monitoring networks
(e.g., intertidal zone) and may offer new opportunities for
a quantitative evaluation or assimilation into coastal models.
Citizen feedback can even be useful in guiding future observation
strategies and model development. Engaging citizens can
improve ocean literacy, providing support for future coastal
monitoring and modeling (Garcia-Soto et al., 2017). The
delivery of sector-focused operational products and services
(e.g., Heslop et al., 2019) will progressively allow exploiting
and help in developing the full potential of our present

3https://www.skim-ee9.org/
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coastal ocean observing and forecasting capabilities. This
will allow in turn receiving the necessary feedback from
the user communities to guide future observation and
evolution strategies.
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