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The stated aim of this perspective article is to present new developments and discuss
future directions on the applications of cryopreserved organisms to marine water quality
assessment. To facilitate this, the authors provide a background of essential knowledge
of cryopreservation when applied to ecotoxicology, as well as, practical examples
available in literature. An integrated approach with combined monitoring of chemical
status plus measurements of biological effects has been recommended extensively by
international institutions for the assessment of marine pollution. Among the available
techniques, bioassays have been considered as sufficiently robust to be incorporated
in marine pollution monitoring programs. However, the routine application of bioassays
has also allowed the identification of one of the factors that limits a more extensive use
of such biological methods: the availability of biological material throughout the year,
regardless of natural spawning periods. A solution to this limitation is the application
of cryopreservation techniques. Cryopreservation may, for instance, provide access to
stable quality biological material when test species are out of the reproductive season,
without the need for maintaining and conditioning organisms in the laboratory. It also
guarantees access to a large variety of species that might not be available at the
same time of the year and, on top of that, cryopreservation provides opportunities to
laboratories that might not have the facilities to keep all these organisms in culture.

Keywords: cryopreservation, water quality assessment, cryobiology, bioassay, model organisms

INTRODUCTION

Water quality assessment is crucial for achieving good chemical and biological status throughout
coastal waters and current approaches include the monitoring of responses at different levels of
biological organization to indicate effects on the ecosystem. Integrative approaches, intended for the
protection of the marine environment, are based mainly on the use of biological tools at different
trophic levels in combination with chemical measures, in order to establish environmental damage
thresholds (Lyons et al., 2010). In fact, the European Union Marine Strategy Framework Directive
(2008/56/EC), which has the objective of achieving and maintaining the Good Environmental
Status (GES) in European seas by 2020, emphasizes the need to evaluate and keep within acceptable
limits the biological effects of pollutants.
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Chemical analyses can identify many contaminants present
in the environment, whilst biological methods permit to
obtain ecologically relevant information. Among the biological
tools that have been considered sufficiently robust for marine
pollution assessment, ecotoxicological bioassays present several
advantages such as: the detection of new pollutants for
which analytical techniques have not yet been developed,
provide information about the bioavailability of the pollutants
(i.e., the fraction of pollutant that can be incorporated by
the organism); they allow to integrate the toxic effects of
the different substances present in the environment, and
present a good cost/effect ratio (e.g., Stebbing et al., 1980;
Calow, 1993).

As useful as they can be, the application of biological
techniques using bioassays in routine monitoring has allowed
to identify one of the factors that limit a more extensive use
of this tools: obtaining biological material of stable high quality
throughout the year, regardless of the natural spawning periods
(His et al., 1999a).

A great number of response variables can be measured
at different levels of biological organization and at different
trophic levels in order to determine the GES of the marine
environment (e.g., Lyons et al., 2010; Davies and Vethaak,
2012). A wide range of organisms have been considered
for marine pollution monitoring, including microorganisms
like marine bacteria (Gellert, 2000; Parvez et al., 2006),
microalgae (Debelius et al., 2009; Aylagas et al., 2014; Araujo
and Moreno-Garrido, 2015), marine invertebrates (Snell and
Persoone, 1989; His et al., 1999a; Bellas et al., 2005; Bellas,
2008; Laranjeiro et al., 2015; Perez Fernández et al., 2015)
or fish (Hutchinson et al., 1994; EPA, 2002), in all these
examples the endpoints are either hatching, growth or normal
development along time.

The cryopreservation and cryobanking of test organisms to be
used for marine quality assessment, could ensure the accessibility
to organisms or their reproductive material all year round
as an alternative to either conditioning adults or continuous
culture efforts for availability of biological material, which is
a very time consuming and expensive process. Biobanking
these test organisms in a stable manner (below −135◦C) is
possible, either using liquid nitrogen or ultrafreezers. At this
low temperature, no chemical reactions take place and cellular
metabolism is on hold. These stored cells are stopped in time and
their viability would only be affected by background radiation,
which at normal level will take 2000 years to become a hazard
to stored cells (Glenister et al., 1984). There are not many
marine cells biobanks apart from culture collections (usually
microalgae and/or bacteria), but this is beginning to change
(mainly at local level) as cryopreservation becomes a more
popular tool and many Marine Biological Research Stations
acquire biobanking equipment.

The aim of this perspective paper is to present new
developments and discuss future directions on the applications
of cryopreserved organisms to marine water quality assessment.
To facilitate this, the authors provide a background of essential
knowledge of cryopreservation when applied to ecotoxicology, as
well as, practical examples available in literature.

CRYOPRESERVATION AND MARINE
WATER QUALITY ASSESSMENT

The application of cryopreservation techniques to marine water
quality assessment requires the development and standardization
of specific cryopreservation protocols for different types of
organisms. The main question that needed to be answered
was if cryopreserved organisms would be sensitive enough to
detect gradual increases of toxic compounds in the water. If
so, they could be used to obtain dose-response curves. It was
also necessary to compare and establish the differences, or
lack thereof, in sensitivity when using fresh and cryopreserved
biological material. Regarding the first point, as listed below it has
been proved that cryopreserved organisms can be used to detect
gradual increases in the concentrations of chemical compounds
present in the water, both with single chemicals and with
complex natural samples. Cryopreserved organisms can therefore
be used to produce dose-response curves and to obtain the No
Observed Effect Concentration (NOEC), Lowest Observed Effect
Concentration (LOEC), or 10 and 50% Effective Concentrations
(EC10 or EC50), as well as their fresh counterparts. In this paper
we present a comprehensive list indicating examples of bioassays
that specifically reported the use of cryopreserved organisms
as an alternative to standard bioassays with fresh organisms
(methodological information is indicated in Table 1), each case
will be discussed in terms of their comparability with the standard
method (toxicological information is indicated in Table 2).

Cryopreserved Microalgae
Microalgae are an important part of the food chain in the ocean.
A disruption of the basis of the food chain would have deep
long lasting effects in the ecosystems and therefore they are of
high ecotoxicological relevance (Arensberg et al., 1995; Geis et al.,
2000). It has been shown that microalgae are more sensitive than
other test organisms to some compounds like metals (Wong and
Beaver, 1980; Satoh et al., 2005; Araújo et al., 2010) detergents
(Lewis, 1990) or herbicides (Pavlic et al., 2006).

Use of cryopreserved freshwater algae Selenastrum
capricornutum in ecotoxicity testing has been evaluated by
Benhra et al. (1997). Experiments compared the performance of
this method, named Cryoalgotox, versus the classic microplate
test using fresh algae. S. capricornutum was cryopreserved by
slow cooling (Table 1) using 10% (v/w) polyvinylpyrrolidone
(PVP) as a cryoprotecting agent (CPA) giving comparable
toxicity results. After 72 h incubation, Cryoalgotox produced
lower 50% effective concentrations (EC50s) for Cd2+, Cu2+,
Cr6+, and atrazine (i.e., higher sensitivity) than the classical
microplate tests, which was explained by the periodic renewal of
the test medium in the semistatic procedure. This test assay using
cryopreserved microalgae produced highly repeatable results
(low coefficients of variation).

Hundreds of cryopreservation protocols have been published
for both freshwater and marine microalgae that could potentially
be used to develop more bioassays with cryopreserved material.
Despite most of the microalgae currently held in culture
collections are kept cryopreserved and, therefore, most of the
microalgae toxicity test are probably carried out with algae

Frontiers in Marine Science | www.frontiersin.org 2 July 2019 | Volume 6 | Article 454

https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-06-00454 July 22, 2019 Time: 17:26 # 3

Paredes and Bellas Cryopreservation and Water Quality Assessment

TABLE 1 | Cryopreserved marine organisms that had been used as an alternative to fresh standard methods for evaluating marine water quality.

Species Viability Cryopreservation and conservation Advantages Comparison with
standard

S. capricornutum
(Benhra et al.,
1997)

Toxicity tests with
cryopreserved algae lead to
lower EC50s than standard
methods. High repeatability
and reliability.

Cryoprotectant used is 10 %PVP (w/v),
Addition (1:1) of the cryoprotectant to
the algae and allow to equilibrate for
30 min at 22◦C under light. Cells were
cooled at 1.5◦C min−1 until −30◦C and
faster at 10.5◦C/min until −80◦C.
Storage in a −80◦C freezer up to
90 days. Thawing by immersion in a
water bath 37◦C until ice melting. No
washing of the PVP needed prior
inoculation for culture.

Rapid method, no preculture
needed. Cost-effectiveness by
elimination of algal stock
cultures.

Ratio between EC50s
obtained by
classic/cryoalgotox rages
from 1.3 to 1.4

C. gigas and
T. philippinarum
(McFadzen, 1992)

They concluded that
cryopreserved D-veliger
larvae were sensitive to
environmentally realistic
levels of contaminants and
can be used for water
quality assessment.

Patent number PCT/GB90/01267 Filled
on 13/08/1990. Cooling from 20◦C to
−20◦C at 16◦C min−1 and then at
45◦C min−1 to −45◦C then stored in
liquid nitrogen preferably. Cryprotecting
agents used were 15% Me2SO
(v/v) + 1 M Trehalose and 0.5 mgml−1

crystallized cholesterol. Thawing in
water bath at 22–28◦C

Immediate access to biological
material all year-round.

N/A

P. lividus (Paredes
and Bellas, 2015)

Comparative bioassays
with fresh/cryopreserved
sea urchin embryos.
Cryopreserved embryos
usually yielded more
sensitive results. Can be
used for water quality
assessment.

Cryopreservation protocol using
Me2SO 1.5 M + 0.04 M Trehalose. One
milliliter of CPA solution was added in
15 equimolar steps 1 min apart. The
cooling ramp started with a hold at 4◦C
for 2 min, cooled at a rate of 1◦C min−1

to −12◦C, followed by cooling at 1◦C
min−1 to −80◦C and vials were
transferred to liquid nitrogen for
storage. Thawing was performed by
immersion into a 17◦C water bath until
the ice was melted. CPAs were then
removed in 12 equimolar steps.

Immediate access to biological
material all year-round.

Correlation between EC50s
obtained with
classic/cryopreserved sea
urchin embryos is
y = 0.68x+0.53, n = 4

S. aurata
(Fabbrocini et al.,
2013)

Toxicity tests with
cryopreserved sperm.
Analysis of motility
parameters visually and
sperm velocity with CASA.
Cryopreserved sperm can
be sufficiently sensitive to
be used for bioassays.

Cryopreservation protocol detailed in
Fabbrocini et al. (2000). The
Cryoprotecting agent used was 5%
Me2SO. Cooled in straws at 10–15◦C
min−1 to −150 and stored in liquid
nitrogen. Thawing at 15◦C min−1.

Rapid and easy method. Computer assisted analysis
of the samples lead to
significantly lower
NOEC/LOEC values than
visual examination of
motility. CASA parameters
produce a LOEC Coherent
with other fish sperm
samples.

Me2SO stands for Dimethyl sulfoxide.

that had been cryopreserved at some point, there are no other
published comparisons for cultured vs. cryopreserved marine
microalgae as far as the authors know.

Cryopreserved Molluscs
Molluscs have been extensively used for several ecotoxicological
tests, among which stands out the embryo-larval bioassay
(International Council for the Exploration of the Sea (ICES),
1991; His et al., 1999b). The high sensitivity of early-life stages
allows the detection of low pollution levels by the identification of
effects in the embryonic development (delays or morphological
abnormalities) after a short period of exposure/incubation in
the presence of a toxicant or a water sample of unknown
quality. Oysters, such as Crassostrea gigas (His et al., 1999b;
Leverett and Thain, 2013) and mussels, such as Mytilus edulis

(Nolan and Duke, 1983) or Mytilus galloprovincialis (His et al.,
1997; Beiras and Bellas, 2008), are the star test species for this
procedure for being well known and studies species but also for
their worldwide distribution.

Cryopreserved bivalve larvae (C. gigas and Tapes
philippinarum larvae) have been exposed to different water
samples and shown to be sensitive to environmentally realistic
levels of contaminants for field monitoring of water quality
(McFadzen, 1992). This was the first attempt to use cryopreserved
cells of any type for ecotoxicology studies proving that those cells
retain the sensitivity to chemicals and could be used for bioassays.

Larvae were cryopreserved at 24 h for C. gigas and 48 h for
T. philippinarum at the late trochophore/early D-veliger stages
(Table 1) and stored in liquid nitrogen at (−196◦C), while
using 15% dimethyl sulfoxide (v/v) with 1.0 M Trehalose and
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TABLE 2 | Available toxicological information for different contaminants using cryopreserved cells.

Organism Compound Standard method
(µgL−1)

Cryopreserved (µgL−1)

S. capricornutum Cd2+ 72 h
EC50 ± SD = 43.5 ± 3.4

72 h
EC50 ± SD = 31.8 ± 0.9

S. aurata N/A CASA Motility parameters
LOEC = 10

S. capricornutum Cu2+ 72 h
EC50 ± SD = 28.5 ± 2.8

72 h
EC50 ± SD = 21.7 ± 0.8

P. lividus 48 h EC50 95% c.i. = 34.1
(31.9–63.4)

96 h EC50 95% c.i. = 53.7
(51.9–55.5)

S. capricornutum Cr6+ 48 h
EC50 ± SD = 139.1 ± 31.1

96 h
EC50 ± SD = 74.3 ± 5

S. capricornutum Antrazine 48 h
EC50 ± SD = 164.3 ± 37

96 h
EC50 ± SD = 92.9 ± 2

P. lividus Pb2+ 48 h EC50 95% c.i. = 425
(236.8–590.1)

96 h EC50 95% c.i. = 81
(79.1–83.0)

P. lividus BP-3 48 h EC50 95%
c.i. = 4048.6
(1950.6–6218.7)

96 h EC50 95% c.i. = 1541
(1257.5–1824.5)

P. lividus 4-MBC 48 h EC50 95%
c.i. = 389.2 (254.8–523.6)

96 h EC50 95%
c.i. = 300.6 (141.2–460.0)

Heavy metals like Cadmium (Cd2+), Copper (Cu2+), Chrome (Cr6+), or Lead (Pb2+), pesticides like Antrazine or emerging pollutants like UV-filters like 4-
methylbenzylidene-camphor (4-MBC) and benzophenone-3 (BP-3). EC50 data provided with either the standard deviation or 95% confidence intervals (C.I.) for: microalgae
(S. capricornutum),fish sperm (S. aurata), and sea urchin embryos (P. lividus). References available in Table 1.

0.5 mg/ml cholesterol as CPAs. Survival was reported as highly
variable upon thawing. Despite no comparison between fresh and
cryopreserved cells was carried out at the time, cryopreserved
cells responded to toxicity and allowed for the calculation of
toxicological parameters.

The description of cryopreservation protocols for marine
invertebrates is also flourishing and protocols for molluscs like
the mussels M. galloprovincialis (Paredes et al., 2013) and Perna
canaliculus (Paredes et al., 2012) have been developed. Results
with bivalves are promising, since the cryopreservation methods
for these organisms have been proven to be reliable, repeatable
and sensitive, being on an advanced stage of development. A way
forward would be to test the comparison between the procedures
with cryopreserved organisms and standard tests, which have not
yet been performed.

Cryopreserved Echinoids
Sea urchins are other of the classic models (Bellas et al., 2005;
Durán and Beiras, 2010) for water quality testing. Paredes
and Bellas (2015) established for the first time a bioassay
using cryopreserved sea-urchin embryos (Paracentrotus lividus)
(Paredes et al., 2011) and provided a comparison with the already
standardized sea urchin embryo larval bioassay for standard
chemicals like copper and lead (Figure 1).

Sea urchin embryos (early blastula) were cryopreserved using
1.5 M dimethyl sulfoxide plus 0.04 M trehalose and cooled at
1◦C min−1 (protocol in Table 1). Samples were then stored in
liquid nitrogen. These experiments showed that there was no
significant loss in sensitivity when using early blastulas instead
of fresh fertilized oocytes. Paredes and Bellas (2015) did find
differences in sensitivity when using cryopreserved vs. fresh cells,

in some cases the differences were minimal, in other cases the
cryopreserved test was clearly more sensitive (Table 2). This
increased sensitivity may be because cryopreserved organisms are
going through a recovery process after thawing, and might be
more sensitive to additional stress, such as toxicant exposure.

Ribeiro et al. (2018) developed a cryopreservation protocol
for Echinometra lucunter sperm and they are studying the
cryopreservation of embryos for water quality assessment.
There is a cryopreservation protocol described for P. lividus
sperm (Fabbrocini et al., 2014) that yields good motility.
Cryopreservation protocols already exist or are under
development for different developmental stages for 10–14
different sea urchin species (embryos and sperm), and since sea
urchins are a highly demanded model, more applications will
probably be further developed soon using cryopreserved cells,
including toxicology (Paredes, 2015a).

Cryopreserved Fish Sperm
The case of fish cryopreservation (but also crustaceans) is
more complicated, since these organisms are very sensitive to
low temperatures and have proven exceptionally difficult to
cryopreserve, being fish sperm the only exception. There has
been exhaustive research on marine fish sperm cryopreservation
and protocols have been described for most farmed species
(Sparus aurata by Fabbrocini et al., 2012, 2016; Dicentrarchus
labrax by Fauvel et al., 1998; or Mugil cephalus by Balamurugan
and Munuswamy, 2017), any of which could be used as a
biomonitoring test organism.

The study by Fabbrocini et al. (2013) evaluated the feasibility
of using cryopreserved S. aurata spermatozoa to be used in
toxicity tests (Table 1). Sperm motility parameters were evaluated
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FIGURE 1 | Copper and lead toxicity tests. Larval growth inhibition at each concentration ± SD (n = 35). Light gray, dark gray, and black represent the standard
bioassay, the fresh embryo bioassay and cryopreserved embryo bioassay, respectively. Table attached shows EC50s (µg L−1) and 95% confidence intervals (in
brackets). Figures modified from Paredes and Bellas (2015).

after thawing by a computer-assisted analysis. The sensitivity of
the sperm (motility percentages and velocities) to a reference
toxicant (cadmium) was comparable to what has been recorded
for the fresh sperm of other aquatic species (Table 2). The test
was found to be sensitive, rapid, easy to perform and showed
good reliability.

DISCUSSION

Bioassays have been widely reported to provide a lot of
information and be very useful for water quality assessment but
in many cases there is either a need for maintaining breeding
animals in the lab for out of season use (if possible) or some tests
have a very marked seasonality (matching the spawning season
of the test species). Using cryopreserved biological material is a
good option to overcome this constraint, but it is crucial to be
able to compare the results of the procedure with cryopreserved
material to the standard tests.

According to Cairns and Pratt (1989) extrapolations
from bioassays on one species to another species are not
straightforward and results are only comparable in some cases.
From the studies reviewed here, the same principle can be
applied to the comparison between bioassays with cryopreserved
cells and standard bioassays. Cryopreservation is a very useful
add-on to an already developed testing methodology that could
help increasing the use of bioassays. On the other hand, until
an exhaustive comparison and compilation of data takes place
and a robust correspondence between bioassays with cultured vs.
cryopreserved organisms can be obtained with a reliable level of
certainty, these results should be taken with precaution.

The advantages of using cryopreserved biological material for
bioassays are many: from providing a reliable source of cells and

organisms that can be stored for out of season need, to provide
flexibility to the analyser. Making possible the simultaneous
testing with a battery of organisms that do not reproduce at
the same time of the year, without having to hold the animals
in the lab for out of season production, which is costly and
labor intensive. Last but not least, it also aligns with the 3R’s of
animal welfare principle of reduction, by allowing the storage
of unused material for other experiments therefore reducing the
number of animals used per trial. As more marine organisms
have been successfully cryopreserved, including different cells or
development stages, there is great potential for this to continue to
develop (Suquet et al., 2000; Paredes, 2015b).

Many of the microalgae currently held in culture collections
are kept cryopreserved, there are also available protocols for
different molluscs (Wang et al., 2011; Paredes et al., 2013) and
being mussels the most widely used organism for biomonitoring,
this is another potential candidate for the development of
a cryopreserved toxicity test in the near future. Regarding
sea urchins, right now there are cryopreservation protocols
developed or under development for different cells for 10–14
different sea urchin species, and being sea urchins a highly
demanded model soon more applications will be developed,
including toxicology (Paredes, 2015b).

Crustaceans are, as of today, not on the table as they have
no reliable cryopreservation protocol. Fish are very sensitive
to low temperatures and had proven exceptionally difficult to
cryopreserve, being the only exception fish sperm. There has
been exhaustive research on marine fish sperm cryopreservation
and protocols have been described for the most farmed species
(S. aurata by Fabbrocini et al., 2012; D. labrax by Fauvel et al.,
1998; or M. cephalus by Balamurugan and Munuswamy, 2017),
any of these could be used as a biomonitoring test organism and
cryopreservation could enhance the possibilities of development
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of this test. There is potential for the further use of this
biotechnology applied to marine water quality assessment.

The parameters used as endpoints in the classic bioassays
were characterized by good reliability and sensitivity but, when
using cryopreserved cells those parameters might need a little
adjusting in order to obtain the best results, For instance,
cryopreserved cells develop slower in the first hours post-
thaw, therefore experimental protocols need to be adjusted
in terms of exposure duration; cryopreserved microalgae can
show sensitivity to high light intensities immediately post-
thaw so that light intensity needs to be lowered during the
first hours of exposure. Cryopreserved samples can be easily
stored and transferred, making it possible to perform bioassays
in different sites or at different times and can even be part
of long-term monitoring programs. Finally, the application of
certain bioassays with cryopreserved material in environmental
monitoring and risk assessment schemes, may allow the detection
of lower concentrations of toxic substances that classical
bioassays, which would offer a higher level of protection to
marine ecosystems.

CONCLUSION

This is a perspective on the state of the art and critical analysis of
the application of cryopreservation as a tool to improve toxicity
testing. As of today, cryopreservation holds great potential as
a tool to improve toxicity testing by solving, for instance, the
seasonal shortage of biological material. On the other side, there
is a need for extensive comparative testing in order to select those

cryopreserved cells/protocols that can be more useful, either by
developing new protocols for key cell types or making sure the
cryopreservation outcome of the existing protocols is specifically
designed to be used in a bioassay. There is also a need to
obtain good and reliable correlations between methods with both
fresh and cryopreserved biological material for a wide variety
of chemical compounds. An extensive battery of comparisons
using both methods will establish a frame of comparison that
would enable researchers to use one or the other according
with their practical needs and keep increasing the historical
databases. Currently, the cryopreservation of P. lividus embryos
and S. aurata sperm are in an advanced stage of development
and present promising perspectives for their use in water quality
assessment. As cryopreservation of aquatic marine resources
continues to develop, the application of those preserved cells to
toxicity testing will continue to expand.
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