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Within the context of global climate change and overfishing of fish stocks, there is some
evidence that cephalopod populations are benefiting from this changing setting. These
invertebrates show enhanced phenotypic flexibility and are found from polar regions to
the tropics. Yet, the global patterns of species richness in coastal cephalopods are not
known. Here, among the 370 identified-species, 164 are octopuses, 96 are cuttlefishes,
54 are bobtails and bottletails, 48 are inshore squids and 8 are pygmy squids. The
most diverse ocean is the Pacific (with 213 cephalopod species), followed by the Indian
(146 species) and Atlantic (95 species). The least diverse are the Southern (15 species)
and the Arctic (12 species) Oceans. Endemism is higher in the Southern Ocean (87%)
and lower in the Arctic (25%), which reflects the younger age and the “Atlantification”
of the latter. The former is associated with an old lineage of octopuses that diverged
around 33 Mya. Within the 232 ecoregions considered, the highest values of octopus
and cuttlefish richness are observed in the Central Kuroshio Current ecoregion (with
a total of 64 species), followed by the East China Sea (59 species). This pattern
suggests dispersal in the Central Indo-Pacific (CIP) associated with the highly productive
Oyashio/Kuroshio current system. In contrast, inshore squid hotspots are found within
the CIP, namely in the Sunda Shelf Province, which may be linked to the occurrence of an
ancient intermittent biogeographic barrier: a land bridge formed during the Pleistocene
which severely restricted water flow between the Pacific and Indian Oceans, thereby
facilitating squid fauna differentiation. Another marked pattern is a longitudinal richness
cline from the Central (CIP) toward the Eastern Indo-Pacific (EIP) realm, with central
Pacific archipelagos as evolutionary dead ends. In the Atlantic Ocean, closure of the
Atrato Seaway (at the Isthmus of Panama) and Straits of Gibraltar (Mediterranean Sea)
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are historical processes that may explain the contemporary Caribbean octopus richness
and Mediterranean sepiolid endemism, respectively. Last, we discuss how the life cycles
and strategies of cephalopods may allow them to adapt quickly to future climate change
and extend the borealization of their distribution.

Keywords: biogeography, mollusk, cephalopod, cuttlefish, squid, octopus, species richness

INTRODUCTION

Given the importance that biodiversity plays in sustaining
ecosystems (Cardinale et al., 2012; Hooper et al., 2012),
identification of the main threats to biodiversity is important
(Hobday and Pecl, 2014; Marchese, 2015; Ramirez et al., 2017).
Habitat degradation, overfishing, pollution, biological invasions
and, in particular, climate change are the major causes of
biodiversity loss, which has probably already reached a critical
transition point (Barnosky et al., 2012). A global redistribution
of marine species, including cephalopods, due to both man-
driven biological invasions (e.g., direct transport of living beings,
opening and widening of the Suez Canal) and, most importantly,
climate change, is occurring (Sunday et al., 2012), with marine
organisms now expanding their limits of distribution by a mean
of 72.0 ± 13.5 km per decade (Poloczanska et al., 2013).

Among the marine biota, and within the notion of winners
and losers in the context of global change, there is some
evidence that cephalopods (octopuses, squids, and cuttlefishes)
are benefiting from the changing ocean environment, due to
the combination of global warming and overfishing of their
predators and competitors (Vecchione et al., 2009; Rodhouse,
2013; Doubleday et al., 2016). Part of this success may be also
related to their great phenotypic flexibility and, consequently,
environmental plasticity, which may be linked to their extensive
recoding activity, since in cephalopods genetic changes “on
the fly” by RNA editing at the translation level may be more
important in the short term than hardwired changes in DNA
(Alon et al., 2015; Liscovitch-Brauer et al., 2017).

Cephalopods are ecologically and commercially important
invertebrates that are semelparous with a generally short life
cycle. The latter may be categorized as: (i) holobenthic, when
the entire life cycle is associated with the benthos, as in most
cuttlefishes; (ii) holopelagic, when the entire cycle is associated
with the pelagic environment, in all oceanic squids; or (iii)
merobenthic (or meroplanktonic), when the hatchlings are
planktonic but become benthic after settlement at the juvenile
stage, in some octopuses (Villanueva et al., 2016). The short life
span is also associated with high food intake and growth rates
sustained by voracious strategies and opportunistic diets (Boyle
and Boletzky, 1996; Boyle and Rodhouse, 2005). Not surprisingly,
and probably as a result of their molecular and ecological features,
cephalopods are found in all marine habitats (excluding the hadal
zone and the Black Sea) from the polar regions to the tropics
(Boyle and Rodhouse, 2005). Although cephalopod diversity and
distribution have been studied extensively in the past, most such
research and knowledge has been compiled as species accounts
(see examples in Jereb and Roper, 2005, 2010; Jereb et al., 2014).
Large-scale biogeographic studies on cephalopod diversity are

scarce and mostly concentrated in the Atlantic Ocean (Rosa et al.,
2008a,b; Judkins et al., 2010), polar zones (e.g., Xavier et al.,
1999; Allcock et al., 2011; Golikov et al., 2013; Xavier et al.,
2016b, 2018) and the Pacific Ocean (Ibáñez et al., 2009, 2019)
or specific taxonomic groups (e.g., Ibáñez et al., 2016; Ulloa
et al., 2017). Moreover, some of those studies were designed
to investigate broad-scale latitudinal gradients (e.g., richness
and body-size data across latitudinal bins) and describe the
respective environmental determinants (e.g., Rosa et al., 2008a,
2012; Ibáñez et al., 2019). To the best of our knowledge, there
is no global quantitative information on diversity hotspots for
this charismatic group of invertebrates on the continental shelf
regions of the world.

It is worth noting that the concept of hotspots has been
used as a key strategy for global conservation plans, but they
remain largely unexplored for marine habitats (Worm et al.,
2003; Renema et al., 2008; Tittensor et al., 2010) due to data
deficiency (Mittermeier et al., 2011). Biodiversity hotspots have
been defined usually using species-based metrics (e.g., species
richness; endemic species richness; number of rare/threatened
species) or, alternatively, focusing on phylogenetic and functional
diversity metrics (Myers, 1988, 2003; Reid, 1998; Gray, 2000;
Hoekstra et al., 2005). More recently, marine hotspots have been
identified based on richness with metrics that incorporate both
species abundances and functional traits (Stuart-Smith et al.,
2013) or, alternatively, based on regions that are warming more
rapidly (Hobday and Pecl, 2014).

Here, the global biogeography (patterns of species richness
and number of endemic species) of coastal cephalopods, which
thrive on the world’s continental shelf regions, is described for
the first time. The study was restricted to the neritic realm
(i.e., coastal species) because there is a lack of knowledge about
the distribution/biogeography of deep-sea/demersal cephalopod
fauna in many parts of the global ocean. A presence/absence
database was compiled and organized in five major coastal
groups (defined in cf. Hanlon et al., 2018, p. 72), namely:
(i) cuttlefishes (species belonging to the Family Sepiidae), (ii)
bobtails and bottletails (Families Sepiolidae and Sepiadariidae,
respectively), (iii) pygmy “squids” (Family Idiosepiidae), (iv)
inshore squids (Family Loliginidae), and (v) benthic incirrate
octopuses (Families Octopodidae, Eledonidae, Enteroctopodidae,
Megaleledonidae, and Bathypolypodidae). The occurrence of
these groups was determined for Marine Ecoregions of the World
(MEOW; Spalding et al., 2007). The ecoregions are defined
as “Areas of relatively homogeneous species composition, clearly
distinct from adjacent systems (. . .). The dominant biogeographic
forcing agents defining the ecoregions vary from location to
location but may include isolation, upwelling, nutrient inputs,
freshwater influx, temperature regimes, ice regimes, exposure,
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sediments, currents, and bathymetric or coastal complexity”
(Spalding et al., 2007). The following questions are addressed.
(1) Which oceans and other large-scale marine regions (i.e.,
realms – see Spalding et al., 2007) are the most diverse in
terms of coastal cephalopod fauna? (2) Which coastal ecoregions
constitute the main hotspots (and coldspots)? (3) What are
the potential origin and diversification patterns (based on the
number of shared species)? and (4) Which ocean realms present
the greater levels of endemism? We discuss the impact of
historical processes and major marine biogeographical barriers
on the detected patterns.

MATERIALS AND METHODS

Database
The geographical ranges of coastal cephalopod species were
investigated, on a global scale, by means of an exhaustive survey
of primary literature (e.g., Rosa et al., 2008a; Judkins et al.,
2010; Xavier et al., 2018), with a special focus on the most
recent FAO guides on the cephalopods of the world (Jereb and
Roper, 2005, 2010; Jereb et al., 2014). The presence/absence
database was built around 12 realms [Arctic (ARC); Temperate
Northern Atlantic (TNA); Tropical Atlantic (TAT); Temperate
Southern Africa (TSAF); Western Indo-Pacific (WIP); Temperate
Australasia (TAUS); Indo-Pacific (CIP); Temperate Northern
Pacific (TNP); Eastern Indo-Pacific (EIP); Tropical Eastern
Pacific (TEP); Temperate South America (TSA); Southern Ocean
(SO)] (Supplementary Tables S1–S3), and 232 ecoregions, both
defined by Spalding et al. (2007). It includes a total of 370 species
associated with, but not necessarily restricted to, continental
shelves (bottom depths < 200 m) at late ontogenetic stages
(because several species display ontogenetic horizontal/slope-
shelf migrations). Oegopsid squids and pelagic octopuses are
known to thrive in, or to periodically invade the neritic province
but were not included in the present database for the sake of
clarity. Similarly, deeper dwelling species are not considered
because this would then include species such as near-benthic
cirrate octopuses, which show much broader, oceanic distribution
patterns. New (e.g., Lepidoctopus joaquini; Sales et al., 2019)
and rare species (only known from their type locality – no
significant information about their geographical distribution)
were excluded. Based on such criteria, the chambered nautiluses
were also excluded – the only species with a well-defined
geographical range outside its type locality is Nautilus pompilius.
Similarly, for the myopsid squid Australiteuthis aldrichi (the
only member of the Family Australiteuthidae). It is also worth
noting that some nominal species listed in the database are
known to comprise species complexes. In contrast to the Octopus
vulgaris complex (a focus of much recent research, e.g., Leite
et al., 2008; Amor et al., 2014, 2015, 2017; Gleadall, 2016;
González-Gómez et al., 2018), the complexes of Sepia pharaonis
(Anderson et al., 2011), Sepioteuthis lessoniana (Cheng et al.,
2014) and Lolliguncula brevis (Sales et al., 2014) are not well-
defined in geographical terms and therefore are listed as single
species. Therefore, the species richness patterns presented here
are conservative estimates.

Data Analyses
We used the software ArcGIS version 10.6.1 and the open-
source shape files from Spalding et al. (2007) for the
identification of the hotspots (ecoregions) of cephalopod
richness. Additionally, ecoregions were clustered in 12 different
realms, according to the criteria defined by Spalding et al.
(2007). The relationships among realms were evaluated for the
different cephalopod groups based on the number of shared
species (see similar approach in Floeter et al., 2008). For
each group we calculated a similarity matrix (using the Bray–
Curtis index) to obtain a distribution dendrogram by means of
hierarchical cluster analysis using the UPGMA algorithm (PAST;
Hammer et al., 2001). We then resampled the original binary
matrix performing 1000 stochastic reassignments to generate
a bootstrap procedure to obtain the percentage of replicates
(1000 iterations) supporting each node of the dendrogram
(only values > 50% are shown). Endemic species were defined
as those species restricted to a single realm in the database.
Bottletails and pygmy squids were excluded from the endemism
analysis due to their low ecoregional richness values (up to
a maximum of 2 species per ecoregion) and a restricted-
realm distribution.

RESULTS

Global Coastal Cephalopod Richness per
Ocean
The present species richness database reveals that the most
diverse ocean is the Pacific Ocean (with 213 cephalopod
species), followed by the Indian (146 species) and Atlantic
(95 species) Oceans. The least diverse are the Arctic (12
species) and Southern (15 species) Oceans. This trend is mostly
observed in octopuses (Families Octopodidae, Eledonidae,
Enteroctopodidae, Megaleledonidae, and Bathypolypodidae),
inshore squids (Family Loliginidae) and pygmy “squids”
(Idiosepiidae), since cuttlefish (Family Sepiidae) richness is
higher in the Indian (62 species) followed by the Pacific
Ocean (49 species; Figure 1). In contrast, the richness of
bobtails and bottletails (Families Sepiolidae and Sepiadariidae,
respectively) is highest in the Atlantic (27 species). Among
the 370 studied-species world-wide, 164 are octopuses, 96 are
cuttlefishes, 54 are bobtails and bottletails, 48 are inshore
squids and 8 are pygmy squids. It is important to note
the absence of: (i) cuttlefishes, bobtails, bottletails, pygmy
“squids” and inshore squids in the Southern Ocean; (ii)
cuttlefishes, bottletails, pygmy “squids” and inshore squids in
the Arctic; and (iii) cuttlefishes and bottletails around the
Americas (Figures 1, 2).

Hotspots and Coldspots of Cephalopod
Richness per Realm
The most diverse cephalopod realm is the Central Indo-Pacific
(CIP, n = 129 species), followed by the Temperate Northern
Pacific (TNP, n = 98) and Western Indo-Pacific (WIP, n = 84).
The least diverse realms were the Southern (SO, n = 15) and
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FIGURE 1 | Continued
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FIGURE 1 | Total number of species of cuttlefishes (Family Sepiidae; A), bobtails (Family Sepiolidae; B), bottletails (Family Sepiadariidae; C), pygmy squids (Family
Idiosepiidae; D), inshore squids (Family Loliginidae; E), octopuses (Families Octopodidae, Eledonidae, Enteroctopodidae, Megaleledonidae, and Bathypolypodidae;
F), and overall (total cephalopods; G) throughout the World Ocean.

the Arctic (ARC, n = 12) oceans, and surprisingly the Eastern
Indo-Pacific (EIP, n = 11; Figure 2). The major hotspot (CIP)
is consistent in all cephalopod groups, except for bobtails and
bottletails which have their hotspot in the Temperate Northern
Atlantic (TNA), and Temperate Australasia (TAUS), respectively.
For octopuses, the least diverse realm is Temperate Southern
Africa (TSAF, n = 4), and not EIP (n = 9) or the poles (ARC,
n = 6; SO, n = 15).

Similarities of Cephalopod Fauna Among
Realms
Figure 3 summarizes the relationship of the number of shared
species among realms. Based on cluster analyses, cuttlefishes
show three major clusters: (i) CIP, TNP, and TAUS group, (ii)
WIP and TSAF, and (iii) TNA and TAT (Figure 3A). Bobtails
show similar trends with CIP clustering with TNP and TAUS
(Figure 3B). In the bottletails, CIP clusters with TAUS and WIP
with TNP (Figure 3C). In pigmy “squids,” CIP also clustered
with TNP and TAUS (but below broostrap threshold; Figure 3D).
In contrast, in both inshore squids (Figure 3E) and octopuses
(Figure 3F) CIP clusters closer to WIP and then TNP, and
EIP is separate from the CIP, WIP, and TNP. Moreover, the
octopuses also clearly show a second Arctic/Atlantic cluster
and a third TNP and TAUS cluster. In the overall analysis,
cephalopod SO fauna is clearly separate from the other realms
(see section “Endemism Rates per Realm”). As observed for
the cuttlefishes (and contrarily to octopuses and squids), CIP
cephalopod fauna clusters closer to those of the TNP and
TAUS (Figure 3G).

Cephalopod Richness per Ecoregion
Within the 232 ecoregions considered, the highest richness
value is observed in the Central Kuroshio Current ecoregion
(CKC), with 64 species (Figure 4), followed by the East China
Sea (ECS) (59 species) and Eastern Philippines (48 species)
ecoregions. As mentioned above, the Indian Ocean was the
second most diverse, and three hotspots were observed, namely
the Java and Sulawesi Sea ecoregions, each with 38 species, and
the Malacca Strait ecoregion with 33 species. Regarding the
Atlantic Ocean, a major area of cephalopod richness spreads
from the North Sea down to northwestern Africa, with the
Western Mediterranean particularly rich (with 29 species) and
in the Adriatic, Aegean and Ionian seas ecoregions (with
27 species). At any given latitude, the eastern Atlantic is
always more diverse than the western side, in part because
the family Sepiidae and the subfamily Sepiolinae are absent
from the latter. As mentioned above, the families Sepiidae,
Sepiadariidae, Idiosepiidae, and Loliginidae are absent from the
polar ecoregions. Only the Family Sepiolidae and the octopuses
are found in the Arctic coastal areas, varying from 1 to 4 species
among ecoregions.

Cuttlefish, Bobtail, and Bottletail
Richness per Ecoregion
The highest values of species richness in the Sepiidae are in
the CKC and the ECS ecoregion, each with a total number of
21 species (Figure 5A). Two other hotspots are the adjacent
Southern China to Vietnam ecoregion, and the East African Coral
Coast, each with 13 species. A completely different global richness
pattern was observed for bobtail species, members of the family
Sepiolidae. Their maximum richness values were found in the
Mediterranean ecoregions, especially in the western part with a
total of 15 species (Figure 5B). The adjacent ecoregions, namely
western Europe and north-western Africa, also showed high
values (13 and 11, respectively). Quite similar values were also
observed in the ECS and CKC ecoregions, each with eight species.
Bottletails are the least speciose groups, each with a maximum
richness value of 2 per ecoregion, including the CKC, the Central
and Southern Great Barrier Reef and the East Central Australian
Shelf (Figure 5C).

Pygmy “Squid,” Inshore Squid and
Octopus Richness per Ecoregion
Concerning the pygmy squids, there are certain similarities with
the previous group regarding the restricted number of species;
that is, a maximum of 2 species in the same ecoregion. We
identify two main areas: one in the Indo-Pacific, from north
Australia to Indonesia, comprising 9 ecoregions; and a second in
the area of South Africa to southern Mozambique, comprising 3
ecoregions (Figure 6A). Clear hotspots of inshore squid species
richness occur in the Indo-Pacific area, more precisely in the
Java Sea ecoregion (12 species), and Malacca Strait, Palawan and
Sulawesi Seas (all three regions with 11 species each; Figure 6B).
In contrast, the greatest hotspot for octopuses occurs in the CKC
ecoregion, yielding the maximum value of 24 species (Figure 6C).
The nearby ECS and Eastern Philippines ecoregions also have
high species richness values, each with 18 species. Some of the
least diverse ecoregions for octopuses were found within the
TSAF and EIP realms.

Endemism Rates per Realm
Among the 12 realms analyzed (Figures 7A–E and
Supplementary Table S2), the realms with greater endemism
rates of cuttlefishes (Figure 7A) are TAUS (53%), WIP (46%),
and TNP (38%). There are no cuttlefish endemisms in TNA.
Regarding the bobtails (Figure 7B), the top three are the EIP
(100%), TAUS (83%), and TNA (55%; mainly due to the highly-
endemic Mediterranean fauna). The lowest value was found
in the Arctic (17%). For inshore squids (Figure 7C), the top
three for endemisms are the TAT (36%), WIP (29%) and TNP
(27%). No squid endemisms were found in the TSA or TEP. The
octopus fauna (Figure 7D) show most endemisms in the SO
(87%), TSA (67%), and TAUS (65%); and lowest values in the
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FIGURE 2 | Continued
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FIGURE 2 | Total number of species of cuttlefishes (Family Sepiidae; A), bobtails (Family Sepiolidae; B), bottletails (Family Sepiadariidae; C), pygmy squids (Family
Idiosepiidae; D), inshore squids (Family Loliginidae; E), octopuses (Families Octopodidae, Eledonidae, Enteroctopodidae, Megaleledonidae, and Bathypolypodidae;
F), and overall (total cephalopods; G) per marine realm.: Arctic (ARC; light blue in lower panel), Temperate Northern Atlantic (TNA; blue), Tropical Atlantic (TAT; dark
blue), Temperate Southern Africa (TSAF; light brown), Western Indo-Pacific (WIP; brown), Temperate Australasia (TAUS; purple), Central Indo-Pacific (CIP; dark red),
Temperate Northern Pacific (TNP; red), Eastern Indo-Pacific (EIP; orange), Tropical Eastern Pacific (TEP, yellow), Temperate South America (TSA; green), Southern
Ocean (SO; dark gray). (H) Is a global map for easy reference to the different realms.

Arctic (17%) and TAT (31%). In contrast to the other cephalopod
groups, octopus endemisms occur in all 12 realms. As a group
(Figure 7E), cephalopods show higher endemism in the SO
(87%) and TAUS (77%), and lowest in the Arctic (25%).

DISCUSSION

Database Limitations
Species richness patterns presented here should be considered
conservative because: (i) some assumptions were made (e.g.,
exclusion of oegopsids, new species and species-complexes;
see section “Materials and Methods”), and (ii) many coastal
regions are still under-sampled (e.g., the African and western
Indian Ocean region). Due to the lack of hard morphological
structures, cephalopod species identification is challenging and
difficult (Xavier et al., 2015), and some of the present diversity
patterns may be driven by an underestimated cryptic diversity
(Trontelj and Fišer, 2009). Moreover, cephalopods are known to
be “masters of disguise” (Hanlon and Messenger, 2018), which
may pose additional observational difficulties, particularly in the
complex and heterogeneous tropical reef habitats (such as those
found in the Eastern Indo-Pacific coldspot).

Central Indo-Pacific Realm and the Coral
Triangle
The present study revealed that the greatest values in species
richness of coastal cephalopod fauna were found in the CIP realm
(Figure 2), a large area encompassing the Coral Triangle [known
as the Indo-Australian Archipelago (IAA)], which is a well-
known marine center of speciation and the largest global marine
biodiversity hotspot for many taxa, ranging from corals to reef
fishes (Bowen et al., 2013; Briggs and Bowen, 2013; Cowman and
Bellwood, 2013). The IAA is a particularly broad shallow-water
area with pronounced geological complexity and connects with
two major biogeographic regions, key aspects that may promote
speciation processes and/or provide species refuges (Bowen et al.,
2013; Briggs and Bowen, 2013; Cowman and Bellwood, 2013).
Given that such a diversity hotspot is recurrent for so many
taxonomic groups, including cephalopods (Figure 4), Renema
et al. (2008) argued that there must be a unifying explanation.
Three main hypotheses are based on speciation processes and
dispersal, describing this region as: (i) a “center of origin,”
implying that the IAA is a major site of speciation from which
species disperse; (ii) a “center of overlap,” for which the IAA
hotspot is a consequence of overlap from surrounding faunas,
each of which is dispersing in all directions from its own
separate biogeographic area; or (iii) a “center of accumulation”
where speciation occurs in peripheral areas and species extend

their ranges into this area through unidirectional dispersal as
a result of prevailing currents (Woodland, 1983; Bellwood and
Wainwright, 2002; Mora et al., 2003; Bowen et al., 2013; Gaither
and Rocha, 2013; Bellwood et al., 2015). It is possible that,
rather than just one mechanism, each of these processes might
be contributing (see Mironov, 2006). At geological time scales,
there is some evidence for three potential evolving stages. The
IAA may have (i) begun as a center of accumulation (and/or
refuge) for species that were part of the Tethys Sea fauna
(during the loss of habitat as the Tethys Sea closed during
the late Eocene and Oligocene); then (ii) become a center of
origin or diversification, starting during the Miocene; and (iii)
started a period of dispersal following the Pliocene (Bellwood and
Wainwright, 2002; Renema et al., 2008; Briggs and Bowen, 2013;
Cowman and Bellwood, 2013). Such a biogeographic pattern
may result from higher rates of survival within the IAA, without
the need for any exceptional speciation events (Cowman and
Bellwood, 2013). The apparent enhanced rates of speciation in
the IAA may also be a comparative phenomenon linked to
the lower temperatures and high endemism at higher latitudes
(cf. Rabosky et al., 2018).

Central Kuroshio Current and East China
Sea Ecoregions (Including the Ryukyu
Archipelago)
The geological and evolutionary background mentioned above
may explain why the CIP is the richest cephalopod-related realm.
Yet, increasing the spatial resolution of analyses reveals that
the two main hotspots (at the ecoregion level) are outside the
CIP, lying within the TNP realm. Among the 232 ecoregions
considered, the highest cephalopod richness values are observed
in the CKC and ECS ecoregions (Figure 4). Such a pattern may
constitute evidence of the previously mentioned IAA dispersal
stage: these two TNP ecoregions are located in a subtropical gyre
with predominant currents running from the IAA, which is thus
provided with a strong dispersal mechanism. Moreover, the CKC
is also influenced by the Oyashio/Kuroshio transition zone. Such
a complex oceanographic context, together with the nutrient
enrichment dynamics of eddies and upwelling systems in the
area, are known to greatly influence such marine ecosystems and
related fisheries (Yatsu et al., 2013). Another, and probably more
relevant, feature is the fact that both CKC and EAS ecoregions
comprise the subtropical Ryukyu (Okinawan) Archipelago of
Japan. This southern region of Japan borders the northern limit
of the IAA and is well-known for its coral reefs and very high
levels of marine biodiversity, both in terms of species richness
and endemism (Hughes et al., 2002; Cowman et al., 2017;
Reimer et al., 2019).
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FIGURE 3 | Continued
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FIGURE 3 | Dissimilarity index of cuttlefishes (Family Sepiidae; A), bobtails (Family Sepiolidae; B), bottletails (Family Sepiadariidae; C), pygmy squids (Family
Idiosepiidae; D), inshore squids (Family Loliginidae; E), octopuses (Families Octopodidae, Eledonidae, Enteroctopodidae, Megaleledonidae, and Bathypolypodidae;
F), and overall (total cephalopods; G). Arctic (ARC; light blue in lower panel), Temperate Northern Atlantic (TNA; blue), Tropical Atlantic (TAT; dark blue), Temperate
Southern Africa (TSAF; light brown), Western Indo-Pacific (WIP; brown), Temperate Australasia (TAUS; purple), Central Indo-Pacific (CIP; dark red), Temperate
Northern Pacific (TNP; red), Eastern Indo-Pacific (EIP; orange), Tropical Eastern Pacific (TEP, yellow), Temperate South America (TSA; green), Southern Ocean (SO;
dark gray). (H) Is for easy reference to the different realms.

FIGURE 4 | Worldwide richness (number of species per ecoregion) patterns of coastal cephalopods.

Taxonomic Differences Between CIP and
TNP Hotspots
Considering the overall patterns of major taxonomic (and
consequently also ecological functional) groups, diversity is
driven mainly by the octopus and cuttlefish fauna. The former
reaches maximum richness values in the TNP, namely in CKC
(24 species) and ECS (18 species; Figure 6). The (nektobenthic)
family Sepiidae shows a similar occurrence of hotspots (CKC and
ECS: each with 21 species; Figure 5A). In contrast, the (pelagic)
inshore squid group shows highest richness in the CIP, within two
different provinces: (i) the Sunda Shelf Province (already outside
the IAA), composed of the Java Sea (12 species) and Malacca
Strait ecoregions (11 species); and (ii) the Western IAA Province,
which encompasses the Palawan and Sulawesi Seas ecoregions
(each with 11 species; Figure 6). Understanding such speciation
processes is quite challenging, first, because there are few
geographic barriers (Briggs, 1994; Briggs and Bowen, 2013) and,
second, because some coastal cephalopods have high dispersal
potential with planktonic paralarval stages (Villanueva et al.,
2016). Yet, the presence of ‘weak’ or intermittent barriers may
have facilitated cephalopod differentiation in these Indo-Pacific
areas. For instance, during Pleistocene sea-level fluctuations
particularly during glacial periods with consequent low sea levels,
a land bridge was formed on the Sunda shelf (the location of

the present squid hotspots), which severely restricted (but did
not stop) water flow between the Pacific and Indian Oceans
(McManus, 1985). A similar occurrence has been used to explain
the evolutionary partitions (vicariant speciation) of other reef-
associated groups, namely stomatopods (Barber et al., 2000) and
fishes (Randall, 1998). In addition, the greater species richness
of the benthic (octopuses) and nektobenthic (cuttlefishes and
sepiolids) forms compared to the pelagic (squid) ones (see
Figure 1) may indicate the importance of seabed (i.e., coral
reef habitat) complexity and heterogeneity as a driving force in
sympatric and/or parapatric speciation processes in the benthic
and nectobenthic groups. The relatively low levels of endemism
in the CIP (green colors in Figure 7E) and the higher number
of shared species in both the TNP and TAUS (Figure 3) are
suggestive that the IAA was a center of origin and a source of
species for cephalopod communities in the North Western Pacific
and Indian Oceans.

Richness Declines From CIP to EIP
Figure 4 reveals a striking difference between the CIP and
EIP species richness levels, and a drastic shift from a hotspot
(former) to a coldspot (latter) in adjacent realms. Such a steep
longitudinal cline is not seen in other marine taxa (Stuart-Smith
et al., 2013; Ramirez et al., 2017). For instance, Mora et al. (2003)
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FIGURE 5 | Worldwide richness (number of species per ecoregion) patterns of cuttlefishes (Family Sepiidae; A), bobtails (Family Sepiolidae; B), and bottletails (Family
Sepiadariidae; C).
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FIGURE 6 | Worldwide richness (number of species per ecoregion) patterns of pygmy squids (Family Idiosepiidae; A), inshore squids (Family Loliginidae; B) and
octopuses (Families Octopodidae, Eledonidae, Enteroctopodidae, Megaleledonidae, and Bathypolypodidae; C).
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FIGURE 7 | Worldwide distribution of cephalopod endemisms (%) per realm,
namely cuttlefishes (Family Sepiidae; A), bobtails (Family Sepiolidae; B),

(Continued)

FIGURE 7 | Continued
inshore squids (Family Loliginidae; C), octopuses (Families Octopodidae,
Eledonidae, Enteroctopodidae, Megaleledonidae, and Bathypolypodidae; D),
and cephalopods (sum of all groups; E).

and Parravicini et al. (2013) found similar trends, but far less
pronounced, with tropical fish richness decreasing with distance
away from the IAA toward the east. Cephalopod EIP values are
even lower than those found in the polar regions (cf. Figure 2).
Such a sharp longitudinal shift in cephalopod species richness
reveals that speciation and dispersal from the CIP (and the IAA)
played a negligible role in assembling cephalopod communities
in the eastern (isolated) central Pacific archipelagos and identifies
them as evolutionary dead ends. Yet, such trend may also be a
function of the narrow continental shelves in the eastern Pacific.
Nonetheless, this result supports the Center of Speciation model
and goes against the Center of Accumulation and/or Overlap
theories because the latter, in particular, advocates that oceanic
islands (e.g., the Hawaiian archipelago) may constitute engines
for biodiversity production (see examples in Bowen et al., 2013).
The TEP and EIP alignment in the cephalopod cluster analyses
(Figure 7) reflects the isolation of the East Pacific regions from
the Indo-Pacific during the Eocene and Oligocene (Cowman and
Bellwood, 2013). Yet, there are studies showing that some TEP
invertebrate and fish fauna are derived from the EIP, and vice-
versa, implying instances of successful crossing of the “world’s
most potent marine biogeographic barrier” (Lessios et al., 1998;
Lessios and Robertson, 2006).

Hotspots, Endemism, and Biogeographic
Barriers in the Atlantic Ocean
Among the most speciose groups, and in contrast to octopuses
and squids, bobtails have their maximum species richness values
in the Mediterranean Sea (Figure 5, middle panel). This pattern
may be associated with isolation of the Mediterranean Sea from
the Atlantic (about 5.5 Mya), with the consequent boost in
salinity (the “Messinian salinity crisis”), extinction of stenohaline
species and origin of endemisms (Rosa et al., 2008a; Bello, 2017).
At the other Atlantic margin, the most conspicuous feature
is the absence of cuttlefishes (Khromov, 1998). Presently, the
Caribbean area is well-known as a marine biodiversity hotspot
of other faunal groups (Briggs and Bowen, 2013; Cowman and
Bellwood, 2013), but for the cephalopods it seems to have only
moderately elevated diversity on a global scale (Figures 4–6).
Closure of the Isthmus of Panama (about 3.1 My; Emiliani,
1966; Coates and Obando, 1996) led to the isolation of octopus
and squid populations by vicariance and thence to allopatric
speciation (Voight, 1988; Gleadall, 2013; Ibáñez et al., 2016;
Ulloa et al., 2017). This geological event and accompanying
historical sea-level changes and formation of refugia (cf.
Vermeij, 1993; Lessios, 2008) explain the greater richness in
that tropical ecoregion in comparison to adjacent ones (e.g.,
the North Brazil Shelf). The presence of the Amazon/Orinoco
freshwater outflow-related biogeographic barrier (established
around 11 Mya; Hoorn et al., 1995) is also evident with: (i) the
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reduced sepiolid fauna (Figure 5) and (ii) enhanced squid and
octopod species richness changes in the Amazonia and Guyanan
ecoregions (Figure 6). Another barrier-induced species turnover
on the other side of the Atlantic is found in the Namib and
Namaqua ecoregions (Figures 5, 6) due to action (for at least 2
Mya) of the cold Benguela Current (i.e., the Benguela barrier:
Marlow et al., 2000; Floeter et al., 2008).

Polar Endemisms and Shared Richness
Cephalopods show higher endemism in the SO (87%) and
lower in the Arctic (25%; Figure 7E; see also Supplementary
Table S2). Such a distinct pattern reflects the younger age of the
Arctic fauna: the respective shelf became ice-free only after the
Pleistocene (Xavier et al., 2018). Moreover, it may also reflect
the invasion of the Arctic by Atlantic species linked to climate
change, i.e., the “Atlantification of the Arctic” (Jørgensen et al.,
2016). In contrast, Antarctic waters have an old fauna and a
well-known high level of endemism (Dayton et al., 1994), for
cephalopods driven exclusively by the coastal (shelf) octopus
fauna. The Antarctic is assumed to be another center of origin
of some deep-water fauna, including some groups of octopuses
(Collins and Rodhouse, 2006; Strugnell et al., 2008; Xavier
et al., 2018). The high endemism of benthic octopuses in this
continent was supported by the evolution toward a holobenthic
development that has influenced in situ speciation (Ibáñez et al.,
2018).The historical causes entail isolation of the Antarctic fauna
by (i) separation of the Antarctic continent from South America
and Australia; and (ii) subsequent formation of the Antarctic
Circumpolar Current, as the Drake Passage and Tasman gateway
opened up around 30 Mya ago (Livermore et al., 2005; Scher
et al., 2015). Strugnell et al. (2008) estimated that the lineage of
Antarctic (and deep-sea) octopuses diverged around 33 Mya (and
radiated at 15 Mya). Yet, calibrations based on closure of the
Atrato Seaway and subspecies vicariance during the Last Glacial
Maximum (Gleadall, 2013) suggest that octopus divergence may
have been more recent and more rapid. Griffiths et al. (2009)
found closer faunal affinity between South America (here termed
the TSA realm) and the SO, than between SO and Australia
(TAUS). However, for the octopus fauna the present study found
the opposite, and SO was clustered with TAUS (see Figure 3).
Interestingly, TAUS was the realm with the second highest level of
endemism (77%). Such a feature has been described also for other
mollusks, e.g., gastropods and bivalves, in both the New Zealand
region and the Tasmanian Province (Griffiths et al., 2009).

CONCLUSION

Acknowledging the database limitations, this is the first global
assessment of coastal cephalopod richness hotspots and reveals
that the most diverse realm is the Central Indo-Pacific (CIP),
followed by the TNP and WIP. Concomitantly, the present study
points out that the regional (eco-region) hotspots vary greatly
among cephalopod groups, highlighting distinct (historical)
dispersal processes and mechanisms of speciation. For instance,
the major hotspots of octopuses and cuttlefishes are outside the
Coral Triangle (a region known as the “cradle of marine life”

on the planet), probably evidence of a dispersal stage associated
with the subtropical gyre of predominant currents running from
that tropical region. In contrast, inshore squids show their major
hotspots within the Coral Triangle, in ecoregions that suffered
from Pleistocene sea-level fluctuations with a concomitant
formation of land bridges during low sea levels. Moreover, our
findings reveal a sharp longitudinal shift in cephalopod richness
from the Coral Triangle eastwards, suggesting that speciation and
dispersal were weak in the isolated central Pacific archipelagos
(i.e., evolutionary dead ends).

We argue that the combination of such spatial information
(e.g., at the ecoregion level) with climate change projections may
be of paramount importance to identify key diversity areas and to
prioritize them for conservation purposes (Ramirez et al., 2017).
According to Hobday and Pecl (2014), regions more prone to
be impacted by climate change may be considered key areas
for adaptation measures for marine ecosystems and respective
ocean uses, especially fisheries. Yet, the abundance of the most
commercially-important cephalopod species has been increasing
on a global scale and, therefore, somehow, they are benefiting
from the changing ocean environment (Doubleday et al., 2016).
The fact that they “live fast and die young” (O’ Dor and
Webber, 1991) may allow them to adapt to future global warming
more quickly than their fish competitors and predators. There
are already several documented instances of poleward shifts in
species distributions associated with climate forcing, in octopus
(e.g., Galil, 2007; Domínguez-Contreras et al., 2013; Osman et al.,
2014; Ramos et al., 2014), squid (e.g., Zeidberg and Robison,
2007; Golikov et al., 2013, 2014), and sepiolid faunas (Quetglas
et al., 2013; Golikov et al., 2014). It is also important to note
that most of these shifts are occurring outside the tropics, where
the marine ecosystems are warming twice as fast as the global
mean (Hoegh-Guldberg and Bruno, 2010; Fossheim et al., 2015).
Thus, enhanced borealization of cephalopod communities into
the Arctic is expected during this century (Xavier et al., 2016a).
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