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Next-Generation Optical Sensing
Technologies for Exploring Ocean
Worlds —NASA FluidCam, MiDAR,
and NeMO-Net

Ved Chirayath™ and Alan Li

NASA Ames Laboratory for Advanced Sensing, Mountain View, CA, United States

We highlight three emerging NASA optical technologies that enhance our ability
to remotely sense, analyze, and explore ocean worlds-FluidCam and fluid lensing,
MiIDAR, and NeMO-Net. Fluid lensing is the first remote sensing technology capable
of imaging through ocean waves without distortions in 3D at sub-cm resolutions.
Fluid lensing and the purpose-built FluidCam CubeSat instruments have been used
to provide refraction-corrected 3D multispectral imagery of shallow marine systems
from unmanned aerial vehicles (UAVs). Results from repeat 2013 and 2016 airborne
fluid lensing campaigns over coral reefs in American Samoa present a promising new
tool for monitoring fine-scale ecological dynamics in shallow aquatic systems tens of
square kilometers in area. MiDAR is a recently-patented active multispectral remote
sensing and optical communications instrument which evolved from FluidCam. MiDAR
is being tested on UAVs and autonomous underwater vehicles (AUVs) to remotely
sense living and non-living structures in light-limited and analog planetary science
environments. MIDAR illuminates targets with high-intensity narrowband structured
optical radiation to measure an object’s spectral reflectance while simultaneously
transmitting data. MIiDAR is capable of remotely sensing reflectance at fine spatial and
temporal scales, with a signal-to-noise ratio 10-103 times higher than passive airborne
and spaceborne remote sensing systems, enabling high-framerate multispectral sensing
across the ultraviolet, visible, and near-infrared spectrum. Preliminary results from a
2018 mission to Guam show encouraging applications of MIDAR to imaging coral
from airborne and underwater platforms whilst transmitting data across the air-water
interface. Finally, we share NeMO-Net, the Neural Multi-Modal Observation & Training
Network for Global Coral Reef Assessment. NeMO-Net is a machine learning technology
under development that exploits high-resolution data from FluidCam and MIDAR for
augmentation of low-resolution airborne and satellite remote sensing. NeMO-Net is
intended to harmonize the growing diversity of 2D and 3D remote sensing with in situ
data into a single open-source platform for assessing shallow marine ecosystems globally
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using active learning for citizen-science based training. Preliminary results from four-class
coral classification have an accuracy of 94.4%. Together, these maturing technologies
present promising scalable, practical, and cost-efficient innovations that address current
observational and technological challenges in optical sensing of marine systems.

Keywords: remote sensing, coral reefs, UAVs, fluid lensing, MiDAR, machine learning, NeMO-Net

INTRODUCTION

Our planet’s habitability depends on the health and stability of
its largest ecosystem, the global ocean. Persistent multispectral
optical remote sensing has been instrumental in monitoring
and managing Earths terrestrial ecosystems for land use
and land cover change. Through a sustained satellite land
imaging program, first implemented over 40 years ago, remote
sensing at various spatial resolutions has provided a global
view of our changing planet, enabling scientists to assess
ecosystem dynamics, biodiversity, natural hazards, and many
other applications. Yet, a comparable sustained marine imaging
system, capable of detecting changes in marine ecosystems,
remains stubbornly out of reach, albeit increasingly relevant in
a changing global biosphere predominantly governed by marine
systems. Indeed, as of 2018, 100% of the martian and lunar
surfaces have been mapped at a spatial resolution of 100 m or
finer in visible wavelengths, compared to an estimated 5% of
Earth’s seafloor.

Observational, technological, operational, and economic
issues are the main factors inhibiting global sustained imaging
of the marine environment on par with that of terrestrial
ecosystems. Observational challenges arise in remote sensing
of aquatic systems due to strong optical attenuation in the
water column as well as reflection and refraction from ocean
waves at the air-water interface. Remote sensing beyond the
photic zone, namely deeper than the first 100m of the
water column in clear waters, cannot be addressed in the
near future from airborne, and spaceborne platforms. Instead,
underwater vehicles are needed to act as the aircraft and
satellites of the ocean realm, creating multispectral optical
maps as well as topographic maps with acoustic or optical
methods. Technological limitations exist for photon-limited
passive remote sensing instruments as well as in situ autonomous
underwater vehicles (AUVs), which cannot cover the same
areas with nearly the same precision as aircraft and spacecraft.
Scalable information systems are not well-established to exploit
the myriad of data sources available from in situ and remote
sensing observations. The standardization and normalization of
terrestrial remote sensing practices, georeferencing, and dataset
processing algorithms are not directly applicable to marine
datasets. Significant difficulties remain in harmonizing multi-
modal datasets acquired from acoustic and optical instruments
above and below the surface to perform ecosystem assessment.
Finally, the significant cost associated with marine data collection
exacerbates each of these challenges, often limiting new
technologies from being able to scale to global areas due to
economic constraints.

In this report we highlight three emerging NASA technologies,
primarily supported by NASA’s Earth Science Technology Office
(ESTO), that attempt to address some of the aforementioned
observational, technological, operational, and economic
challenges in the context of a vital marine ecosystem-coral
reefs. While these developments by no means provide a whole
solution to the challenges of understanding our global ocean,
they present promising scalable, practical, and cost-efficient
ongoing innovations in this field.

Needs and Challenges in Remote Sensing

of Aquatic Systems

Aquatic  ecosystems, particularly coral reefs, remain
quantitatively poorly characterized by low-resolution remote
sensing as a result of refractive distortion from ocean waves
and optical attenuation. Earths coastal environments and
shallow reef ecosystems comprise an extensive and global life-
support system playing a crucial role in regulating our planet’s
climate and biodiversity as well as protecting our coastal cities
and infrastructure from storm events. These highly sensitive
ecosystems respond rapidly to changes in land management and
climate as indicated by precipitous changes in their morphology,
composition, and species makeup. As a result, global observation
of coastal environments and determination of the health and
extent of coral reefs is a vital earth science measurement, referred
to in a decadal survey by the National Research Council (NRC)
as a “bellwether of climate change as reef health can often presage
changing trends in circulation, ocean acidity and biodiversity
(Board, 2007).”

At present marine ecosystems are experiencing one of most
significant changes in their history on Earth, triggered by
unprecedented anthropogenic pressures, warming seas, ocean
acidification, sea level rise, habitat destruction, agricultural
runoff, and overharvesting, among other contributing stressors
(Bellwood et al., 2004). Compounding our understanding of the
impacts of these rapidly-changing pressures is a severe lack of
sustained global baseline habitat mapping data and knowledge
of reef makeup over regional areas and short timescales with
effective spatial resolutions unaffected by sea state conditions,
which can introduce refractive errors at the air-water interface
(Edinger et al., 2000; Chirayath and Earle, 2016; Storlazzi et al.,
2016). Such data are vital to accurately assess and quantify reef
ecosystem health for adequate management of these aquatic
resources (Bellwood et al., 2004).

Coral reef and shallow marine ecosystem remote sensing
can be broken down into measurement and determination
of habitat, geomorphology, water properties, bathymetry and
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currents, and waves (Goodman et al.,, 2013). Currently, remote
sensing is used to examine coral reef ecosystems primarily at
meter and km-scale scales through airborne campaigns (e.g.,
CORAL (PRISM), AVIRIS, DCS) and spaceborne assets (e.g.,
LandSat, HICO, IKONOS) (Maeder et al., 2002; Andréfouét
et al., 2003; Purkis and Pasterkamp, 2004; Corson et al., 2008).
Recently, however, it has been shown that low resolution satellite
and airborne remote sensing techniques poorly characterize
fundamental coral reef health indicators, such as percent
living cover and morphology type, at the cm and meter scale
(Chirayath and Instrella, accepted). While commercial satellite
and airborne remote sensing instruments can achieve effective
spatial resolutions (ESR) of 0.3 m over terrestrial targets, ocean
waves, and even a flat fluid surface, distort the true location, size,
and shape of benthic features. ESR finer than 10 m is within the
regime of refractive distortions from ocean waves and requires
a remote sensing methodology capable of correcting for these
effects. The classification accuracy of coral reefs, for example, is
significantly impacted by the ESR of remote sensing instruments.
Indeed, current global assessments of coral reef cover and
morphology classification based on 10 m-scale satellite data
alone can suffer from errors >36% (Figure 1), capable of change
detection only on yearly temporal scales and decameter spatial
scales, significantly hindering our understanding of patterns, and
processes in marine biodiversity.

Even with improved ground sample distance (GSD), state-of-
the-art commercial imaging satellites cannot image submerged
targets at the same effective spatial resolution (ESR) as terrestrial
targets, or consistently georectify benthic surfaces, due to the
combined effects of refractive, reflective, and caustic fluid
distortions introduced by surface waves (Figure 2) (Chirayath,
2016; Chirayath and Earle, 2016). To address this challenge,
we share the NASA FluidCam and fluid lensing technology
development, which aims to create a high ESR remote sensing
instrument robust to sea state conditions using inexpensive
components in a small CubeSat-sized package.

Getting Deeper and Beyond the Photic
Zone

Next-generation remote sensing instruments require advances
in both passive and active sensing technologies to compare to
some of the most sensitive sensors that already exist in the
ocean (Tyack, 2000; Madsen et al., 2005). Traditional remote
sensing and multispectral imaging of environments from air
and space primarily use passive broad-spectrum illumination
provided by the Sun coupled with sensitive push broom-style line
array photodetectors fitted with narrowband filters to produce
multispectral images (Irons et al., 2012). Hyperspectral remote
sensing extends this concept further by using photodetectors and
scanning spectrometers to resolve hundreds or even thousands
of spectral bands (Eismann, 2012). However, in both techniques,
atmospheric conditions and the Sun’s radiation distribution
put limits on which frequencies of light and what SNR are
attainable for multispectral imaging on Earth and other planets
within our solar system. In aquatic systems, further bounds
are introduced as only UV and visible bands of light penetrate

the first 100 meters of the clearest waters, the photic zone.
As such, current passive multispectral/hyperspectral imagers are
limited by ambient conditions along the optical path, ambient
illumination spectrum, optical aperture, photodetector SNR, and,
consequently, relatively long integration times.

The physical limitations of solar electromagnetic radiation
propagation in oceans is one of the chief factors inhibiting the
development of a sustained marine imaging program beyond the
photic zone. However, significant progress has been made in the
past decade with underwater remotely operated or autonomous
underwater vehicles (ROVs and AUVs) (Roberts et al., 2010),
unmanned surface vehicles (USVs) (Mordy et al, 2017), and
profiling floats (Roemmich and Gilson, 2009) to characterize the
seafloor, ocean surface, and ocean column over large geographic
areas. Recently, three-dimensional photogrammetry, active
acoustical methods, and in situ water column measurements have
been used with remarkable effectiveness on such platforms to
narrow the gap in observational capacity between terrestrial and
aquatic systems, revealing mesophotic, and deep sea habitats with
unexpected biodiversity and ecological complexity (Pizarro et al.,
2004; Bodenmann et al., 2013).

However, the primary means by which global terrestrial
ecosystem management has been achieved, through
multispectral/hyperspectral remote sensing, is still limited
by marine optical instrumentation. Further, relaying data
from underwater instruments to and through the surface at
bandwidths common to airborne and spaceborne platforms has
remained a significant obstacle to sustained deep sea mapping
(McGillivary et al., 2018). To address these challenges and extend
the depth attainable by airborne remote sensing platforms, we
highlight developments behind NASA MiDAR, the Multispectral,
Imaging, Detection, and Active Reflectance instrument. MiDAR
offers a promising new method for active multispectral in
situ and remote sensing of marine systems in previously
underutilized spectral bands spanning UV-NIR. As an active
optical instrument, MiDAR has the potential to remotely sense
deeper than the photic zone defined by the Sun’s downwelling
irradiance. In addition, MiDAR presents a methodology for
simultaneous imaging and optical communications within a
fluid and through the air-water interface. Finally, MiDAR makes
use of inexpensive narrowband laser and light emitting diodes for
the MiDAR transmitter and utilizes the computational imaging
capability of the FluidCam instruments for MiDAR receivers.

Making Use of All the Data

With the development of any new instrumentation or
measurement capability arise questions of scalability, data
management, and interoperability with legacy data and products.
How science-driven technology developments scale and address
questions pertinent to global marine ecosystems is an ongoing
challenge, exacerbated by the ever-increasing volume and
complexity of datasets from next-generation instruments.
Multispectral 3D data gathered from AUVs, for example, offer
high-resolution views of deep-sea systems, but ultimately their
scientific value remains limited in scope and application owing
to their standalone nature. One sensor may offer a view of
a system in certain spectral bands, resolution, and location,
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Coral Classification Error vs. Effective Spatial Resolution (ESR)
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FIGURE 1 | Coral reef classification error as a function of effective spatial resolution (ESR). Using modern machine learning based habitat mapping, coral cover can
determined with <5% error at the cm spatial scale with fluid lensing and FluidCam, under a typical range of sea states, 18% error at the 1 m scale from commercial
platforms with a perfectly flat sea state, and 34% error at the 10 m scale, typical of sustained land imaging satellites. Adapted with permission from Chirayath and
Instrella (accepted).

while another sensor may gather only topographic data of
the same system. Oceanography, in particular, is frequented
with such cases of well-understood local systems, captured by
independent dedicated field missions, but poorly understood
global systems over large time scales. Ultimately, this symptom
of marine system sensing is characterized by high spatial and

temporal heterogeneity in datasets and low interoperability
among multimodal sensing systems.

Fortunately, instrument technology development has
occurred alongside advances in information systems
technology, capable of handing the growing volume of data
and computational overhead. Machine learning for Earth
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LRSS

FIGURE 2 | Fluid lensing from ocean waves and its effect on the effective spatial resolution and true location of benthic targets. (A) A calm aquatic surface, when
remotely sensed from above, distorts the apparent depth, and spatial position of a benthic target. (B) A curved aquatic surface, or fluid lenslet formed by surface
waves, focuses sunlight, forming bright bands of light, or caustics, on the seafloor. (C) A fluid lenslet introduces a net magnification or demagnification effect as a
function of curvature. (D) These fluid lensing effects combine to reduce the ESR, SNR, and position of benthic targets. An image captured by state-of-the-art
commercial satellite systems, such this 0.3 m GSD Worldview-3 image of an Olympic swimming pool, is noticeably affected by small wave disturbances. Note the
distortion of linear lane lines from left to right as a function of surface waves and depth, as well as non-uniform reflectance over pool floor due to caustics. Adapted

Science applications, in particular, has gained traction, and
credibility in recent years as an increasing fleet of commercial
and research satellites has driven developments in scaling remote
sensing assessment capabilities through semiautonomous and
autonomous processing pipelines (Nemani et al., 2011). However,
the issue of amalgamating multi-resolution, multispectral, multi-
temporal, and multi-sensor input for multimodal remote
sensing is still pertinent and challenging in both terrestrial
and marine ecosystem science. Currently, there is a need for
extrapolating data collected upon local scales toward data
collected upon regional/global and fine temporal scales, as
issues pertaining to data quality, environmental conditions, and
scene and instrumentation-specific calibration often cannot be
easily reconciled.

Statistical and predictive learning methods using Earth
Science datasets have a long history in many remote sensing
applications (Lary et al, 2016). Typically, in a massively
multivariate system or one composed of thousands of variables,
also known as feature vectors, machine learning excels at
discovering patterns, and recognizing similarities within data. In
these cases, a training set, or training data, is designated for the
algorithm to learn the underlying behavior of the system, which
is then applied to a query or test set. The evaluation of error
using such methods requires a reference set, also referred to as the
truth set, or ground truth, in which the algorithm’s predictions
can be evaluated objectively through a number of error metrics.
Machine learning excels in classification problems and in areas
where a deterministic model is too expensive or non-existent,
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and hence an empirical model can be constructed from existing
data to predict future outcomes. Existing projects cover a wide
range of topics, such as characterization of airborne particulates
(Lary et al., 2007, 2009), prediction of epi-macrobenthic diversity
(Collin et al., 2011), and automated annotators for coral species
classification (Beijbom et al., 2015).

An emerging field within machine learning, convolutional
neural networks (CNNs), have recently been applied
to processing optical remote sensing data for semantic
segmentation of ecosystems (Serpico and Roli, 1995; Zhong
et al,, 2017). To this end, we share developments behind NASA
NeMO-Net, the Neural Multi-Modal Observation & Training
Network for Global Coral Reef Assessment. NeMO-Net is an
open-source machine learning technology under development
that exploits high-resolution data from FluidCam and MiDAR
for augmentation of low-resolution airborne and satellite remote
sensing. NeMO-Net is intended to harmonize the growing
diversity of 2D and 3D remote sensing and in situ data into
a single open-source platform for assessing shallow marine
ecosystems globally using active learning for citizen-science
based training (Cartier, 2018).

EMERGING NASA TECHNOLOGIES AND
METHODS

This section presents preliminary results from two optical remote
sensing instruments in maturation, FluidCam and MiDAR,
as well as an open-source supercomputer-based deep learning
algorithm in development, NeMO-Net, intended to ingest next-
generation 3D multispectral datasets produced by instruments
such as FluidCam and MiDAR for enhancing existing low
resolution airborne and satellite remote sensing data for global
marine ecosystem assessment. Each technology was motivated
by the observational, technological, operational, and economic
issues discussed previously. Full technical descriptions of each
technology are beyond the scope of this Technology Report and
readers are encouraged to reference citations as provided for
relevant background.

Fluid Lensing and the FluidCam Instrument
This portion outlines highlights in the study of the fluid
lensing phenomenon encountered in ocean remote sensing,
the development of the fluid lensing algorithm, and NASA
FluidCam, a passive optical multispectral instrument developed
for airborne and spaceborne remote sensing of aquatic systems.

The Ocean Wave Fluid Lensing Phenomenon

The optical interaction of light with fluids and aquatic surfaces
is a complex phenomenon. As visible light interacts with aquatic
surface waves, such as ocean waves, time-dependent non-linear
optical aberrations appear, forming caustic, or concentrated,
bands of light on the seafloor, as well as refractive lensing,
which magnifies and demagnifies underwater objects as viewed
from above the surface. Additionally, light is attenuated through
absorption and scattering, among other effects. These combined
optical effects are referred to as the ocean wave fluid lensing
phenomenon (Chirayath, 2016). The regime of ocean waves

for which such fluid lensing occurs is predominantly wind-
driven and commonplace in marine systems. Indeed, ocean wave
fluid lensing can introduce significant distortions in imagery
acquired through the air-water interface. Aquatic ecosystems
are consequently poorly characterized by low effective spatial
resolution (ESR) remote sensing owing to such fluid lensing and
attenuation (Goodman et al., 2013; Chirayath and Earle, 2016).

The ocean wave fluid lensing phenomenon has been studied
in the context of ocean optics to a limited extent. A theoretical
model for ocean wave irradiance fluctuations from lensing
events was noted first by Airy (1838) and predicted by Schenck
(1957). The closest direct analysis of the ocean wave fluid
lensing phenomenon by You et al. (2010) modeled the wave-
induced irradiance fluctuations from ocean waves and compared
the data to field observations. However, this study was chiefly
concerned with intensity variations of the light field and not
image formation and ray-tracing, which are needed to describe
the lensing phenomenon responsible for the observed optical
magnification and demagnification associated with traveling
surface waves over benthic features. Interestingly, Schenck
analytically predicted the irradiance concentration, observable
as caustics, for shallow ocean waves, but did not numerically
model the system to validate these predictions. Ultimately,
this motivated further investigation by the author into the
ocean wave fluid lensing phenomenon, which verified such
predictions by Shcenck and directly addressed Airy’s early
predictions by direct optical coupling of light and ocean waves
in a controlled environment through a Fluid Lensing Test
Pool (Figure 3A).

Figure 2 illustrates the basic geometric optics responsible
for fluid lensing and the surprising effects they can have on
imagery from state-of-the-art commercial marine remote sensing
systems. Considering the simplest case of rays propagating from
a benthic object through the air-seawater boundary, as depicted
in Figure 2A, refraction causes the apparent depth of a benthic
object to appear shallower than its true depth, as observed from
above the surface. Here, an object O, located at depth d, with
respect to mean sea level (MSL), appears as O’ at apparent depth
q. Using Snell’s law, it can be shown that the actual depth and
the apparent depth are related by the refractive depth distortion
equation: g = —%d. With #ng;r = 1 and feaparer = 1.33,
this yields ¢ = —0.752d. So, for a flat fluid sea surface and
nadir camera viewpoint, the apparent depth is typically three-
fourths the actual depth on Earth. This effect appears to magnify
an object by an inversely proportional amount. Next, consider
the presence of an ocean wave that assumes the form of a small
optical lens, or lenslet, of curvature Rj,,;. For an object O at
height p from the lenslet surface, the combined effect of refraction
and the curvature of the two-fluid interface will cause light rays
emerging from the object to converge at the focal distance g
and form image I, as depicted in Figure 2B. Using the small
angle approximation for incident light rays, Snell’s law becomes
Nairl = Nseawaterf. Using exterior angle relations, it can be
shown that 6, = o« + B and 6, = B — y. Combining these
expressions Yields Nair® + NseqwaterY = B(Mseawater — Mair). It can
be shown that tan (¢) ~ o =~ d/p, tan(B) ~ B ~ d/R, and
tan(y) & y = d/q. Substituting these linearized expressions
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FIGURE 3 | The Fluid Lensing Test Pool, 2D, and 3D Fluid Lensing Algorithm resullts. (A) A side render of the Fluid Lensing Test Pool showing formation of caustics on
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image with integration time. (C,D) Structural Similarity Index (SSIM) and signal-to-noise ratio (SNR) for fluid lensing results as a function of depth. (E) 2D and 3D Fluid
Lensing Algorithm results from 2013 and 2016 airborne campaigns in American Samoa. Adapted with permission from Chirayath (2016).
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3D Fluid Lensing Image

into ngirt + NseawaterV = B(Nseawater — Nair) yields the refractive
lenslet image equation:% + 1 Reeawater—Tair T the case

of the flat fluid surface, R — o0, and the refractive lenslet image
equation yields the refractive depth distortion equation shown
earlier: g = — ns;lij;zer d. Finally, in the case of the Sun illuminating
a refractive lenslet surface, the refractive lenslet image equation
explains the formation of caustic and the phenomenon of caustic
focusing from the light gathering area of the lenslet. Figure 2C
illustrates the formation of an image, I, at focal point g. Given the
angular size of the Sun as viewed from Earth and orbital distance,
incident light waves are approximated as planar. With p >> R, the
refractive lenslet image equation reduced to the following caustic
refractive lenslet focusing relation: % = i

The Fluid Lensing Test Pool

To better understand the effects of ocean wave fluid lensing and
create a validation testbed, a full-physics optofluidic simulation
was performed on the NASA Ames Pleaides Supercomputer,
the fluid lensing test pool (Figure3A). The 3D full-physics
simulation is the first of its kind and includes full water column
and atmospheric column absorption, dispersion, scattering,
refraction, and multiple reflections, comprising more than 50
million CPU hours for 33 s of animation (Chirayath, 2016). The
fluid lensing test pool consists of a series of test targets at various
depths submerged in a water volume, with optical properties
and surface waves characteristic of the primary target ecosystem,
shallow marine reefs in clear tropical waters.
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The time-dependent air-water surface is modeled using
Tessendorf’s Fourier domain method (Tessendorf, 2001) based
on a Phillips spectrum of ocean waves from measured spectral
features characteristic of a fringing coral reef system. A surface
mesh generated from a parameterized Phillips spectrum defines
the ocean surface height field & (x, t), represented as the sum of
periodic functions such that:

h(xt) =Y hk t)e™
k

where k is the wave number, k is the wave vector, T is the
wave period, A is the wavelength, h is the height of the water,
x is the spatial position of the simulation point, ¢ is time, g is
the gravitational constant, Py is the Phillips spectrum, & is an
independent draw from a Gaussian random number generator
with 4 = 0 and 0 = 1, L is the largest permissible wave arising
from a given wind speed, w is the angular frequency, and w is the
wind direction.

The set of complex Fourier amplitudes and initial phase values
at t = 0, is defined by the following expression:

- 1
ho (k) = E(Ef +i&)y/ Py (k)

where initial parameters are taken from a Gaussian random
number generator, &, and Py (k) is the Phillips spectrum
(Phillips, 1958) from wind-driven waves in shallow reef
environments. The Phillips spectrum characterizes the spectral
and statistical properties of the equilibrium range of wind-
generated gravity waves and is generated by the following
expression, put forth by Phillips (Phillips, 1985).

T
A‘k-w‘ e ()’

Py (k) = i

The second component of modeling the ocean wave fluid lensing
phenomenon is simulating the optofluidic interactions of light
with the ocean wave synthesis. Ray-tracing and light transport
is used to model optofluidic interactions and is performed using
LuxRender v.1.6, a physically-based, open-source, and unbiased
render engine. For the purposes of simulating the complex
optofluidic interactions specific to the ocean wave fluid lensing
phenomenon, this work configures LuxRender to use an efficient
CPU-based unbiased bidirectional path tracing render engine
with Metropolis Light Transport (MLT) for efficient sampling
and caustic convergence.

The ocean wave synthesis is coupled to water’s empirically-
determined optical properties. The absorptive and refractive
properties of seawater are based on experimental data from Pope
and Fry (1997) and Daimon and Masumura (2007). From Pope
and Fry (1997), it is shown that clear seawater and pure water
have similar optical properties relevant to this study; however, the
inherent optical properties of real-world marine environments
may differ significantly due to suspended sediment, carbon-
dissolved organic matter (CDOM), phytoplankton, molecular
scattering, and salinity, among other things. The fluid lensing

test pool does not model the ocean wave fluid lensing as a
function of all of these parameters, but focuses on the dispersive,
absorptive, reflective, and refractive properties of water discussed
earlier that effectively dominate the fluid lensing phenomenon.
However, the framework developed here can easily be extended
to model additional complexity in the water column which will
be presented in subsequent work.

Based on this modeling work, a number of crucial
relationships between surface waves and caustic focusing
was discovered and a novel high-resolution aquatic remote
sensing technique for imaging through ocean waves, called
the general fluid lensing algorithm, was developed (Figure 3)
(Chirayath, 2016; Chirayath and Earle, 2016).

The Fluid Lensing Algorithm
The fluid lensing algorithm itself enables robust imaging of
underwater objects through refractive distortions from surface
waves by exploiting surface waves as magnifying optical lensing
elements, or fluid lensing lenslets, to enhance the effective spatial
resolution and signal-to-noise properties of remotely sensed
images. Primarily a computer vision technique, which utilizes
high-frame-rate multispectral video, the fluid lensing algorithm
consists of a fluid distortion characterization methodology,
caustic bathymetry concepts, fluid lensing lenslet homography
technique based on Scale Invariant Feature Transforms (SIFT)
and SIFT Flow (Liu et al, 2011), and a 3D remote sensing
fluid lensing algorithm as approaches for characterizing the
aquatic surface wave field, modeling bathymetry using caustic
phenomena, and robust high-resolution aquatic remote sensing
(Chirayath, 2016). The formation of caustics by refractive lenslets
is an important concept in the fluid lensing algorithm. Given a
lenslet of constant curvature, R, the focal point of caustic rays
is constant across spatially distributed lenslets. This behavior
is exploited for independently determining bathymetry across
the test pool in the caustic bathymetry fluid lensing algorithm.
It should be noted that the algorithm specifically exploits
positive optical lensing events for improving an imaging sensor’s
minimum spatial sampling as well as exploiting caustics for
increased SNR in deep aquatic systems. An overview of the 2D
fluid lensing algorithm is presented in Figure 4. The algorithm is
presently provisionally-patented by NASA (Chirayath, 2018b).
To validate the general fluid lensing algorithm, the fluid
lensing test pool was used to quantitatively evaluate the
algorithm’s ability to robustly image underwater objects in a
controlled environment (Figure 3B) (Chirayath, 2016). Results
from the test pool, processed with the 2D fluid lensing algorithm
show removal of ocean-wave related refractive distortion of
a coral test target and USAF test target, as viewed from a
nadir observing remote sensing camera. The “flat fluid image”
shows the targets under flat fluid conditions. The “instantaneous
wave distorted image” shows targets under typical ocean wave
distortions characteristic of shallow marine system sea states.
The “typical remote sensing with waves image” shows the 1s
integration image, characteristic of present remote sensing sensor
dwell times. Finally, the “2D fluid lensing image” with 90 frames
(1's of data) successfully recovers test targets and demonstrates
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2D Fluid Lensing Algorithm Overview
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FIGURE 4 | An overview of the 2D Fluid Lensing Algorithm. Adapted with permission from Chirayath (2016).
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Velocity
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effective resolution enhancement and enhanced SNR from
tracking and exploiting fluid lenslets and caustics, respectively.
Results from the fluid lensing test pool were also used to
quantitatively validate the fluid lensing algorithm through image
quality assessment of reconstructed two-dimensional objects
using the Structural Similarity Index (SSIM) (Figure 3C) (Wang
et al., 2004) and Signal-to-Noise Ratio (SNR) (Figure 3D).
Results from the validation demonstrate multispectral imaging
of test targets in depths up to 4.5m with an effective spatial
resolution (ESR) of at least 0.25 cm vs. a raw fluid-distorted frame
with an ESR <25 cm, for the case of an airborne platform at 50 m
altitude. Note that this result was achieved with an instrument
ground sample distance (GSD) of 1 cm, demonstrating a 4-fold
increase in ESR from exploitation of positive lensing events.
Enhanced SNR gains of over 10 dB are also measured in
comparison to a perfectly flat fluid surface scenario with <1

of simulated remotely-sensed image data, demonstrating fluid
lensings ability to exploit caustic brightening to enhance SNR of
underwater targets.

Finally, the algorithm was tested in multiple real-world
environments for validation, as discussed in the next section. The
ocean wave fluid lensing phenomenon is observed from 2013
and 2016 airborne campaigns in American Samoa. Figure 3E
shows an instantaneous (0.03 s integration time) airborne image
and 2D fluid lensing image of coral (1s total integration
time). Note the branching coral is completely unresolvable in
the instantaneous image, while caustics introduce significant
noise, especially over the sandy pavement region. The fluid
lensing image resolves the coral and sandy benthic floor
accurately. These refraction corrected results are used alongside
a fluid lensing caustic bathymetry algorithm and structure from
motion algorithms to create a 3D fluid lensing image and the
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The NASA Fluid Lensing FluidCam Instrument

A First-Generation FluidCams in 1.5U CubeSat Volume

1.5U FluidCam

1.5U FluidCam on UAV

B Second-Generation FluidCams in 4U CubeSat Volume

Radiato CubeSat
FluidCam Processors Satellite

Q1

r
FluidCam FPAs

Aperture Light Path Nasmyth Telescope
FIGURE 5 | The NASA Fluid Lensing FluidCam instrument. (A) A cutaway
render and image of the first-generation FluidCam, which fits ina 1.5U
CubeSat volume is shown alongside the instrument mounted on a UAV for
airborne mapping missions. (B) The second-generation FluidCam consists of
a 4 U instrument payload for a 6 U CubeSat. The new architecture affords
multiple larger focal plane arrays, improved optical performance, and a
heterogeneous CPU/GPU processing stack optimized through the
SpaceCubeX project.

wavefield can be inversely estimated to render the distortions
again (Figure 3E).

FluidCam Instrument and Airborne Field Campaigns
The fluid lensing algorithm eventually necessitated the
development of dedicated high-frame-rate multispectral
full-frame focal plane arrays (FPAs) and powerful heterogeneous
computing architectures, which motivated the development of
dedicated instruments, NASA FluidCam 1&2 (Chirayath and
Instrella, 2016), shown in Figure 5, and follow-on hardware and
software optimizations through SpaceCubeX (Schmidt et al,
2017), for scaling to CubeSat form factors and power constraints.
FluidCam 1 & 2, custom-designed integrated optical systems,
imagers and heterogeneous computing platforms were developed
for airborne science and packaged into a 1.5U (10 x 10 x
15cm) CubeSat form factor (Figure5A) with space capable
components and design. Since 2014, both FluidCam 1 (380-
720nm color) and FluidCam 2 (300-1,100 nm panchromatic)
have been actively used for airborne science missions over a
diverse range of shallow aquatic ecosystems and contributed
data for research in the broader international biological and
physical oceanographic community (Suosaari et al., 2016; Purkis,

2018; Rogers et al., 2018; Chirayath and Instrella, accepted;
Chirayath and Li, in review). The 3D Fluid Lensing Algorithm
was validated on FluidCam from aircraft at multiple altitudes in
real-world aquatic systems at depths up to 10 m (Figures 3E, 6).
Field campaigns were conducted over coral reefs in American
Samoa (2013, 2016) (Chirayath and Earle, 2016; Rogers et al.,
2018), stromatolite reefs in Western Australia (2014) (Suosaari
et al., 2016), and freshwater riverine systems in Colorado in
2018, with 10 more field campaigns planned 2019-2020 for
the NeMO-Net project. Fluid lensing datasets revealed these
reefs in high resolution, providing the first validated cm-scale
3D image of a reef acquired from above the ocean surface,
without wave distortion, in the span of a few flight hours over
areas as large as 15 km? per mission. The data represent the
highest-resolution remotely-sensed 3D multispectral image of a
marine environment to date. Figure 7 shows an inset comparing
a transect of coral in American Samoa in 2013 and 2016, showing
the potential for change detection at fine spatial and temporal
scales using this methodology.

While FluidCam 1&2 were designed as instruments for
future in-space validation with components selected that met
vibrational, thermal and atmospheric requirements, a second-
generation system was designed into a 4U form-factor with
improved computational capability, redundant data storage, a
custom optical telescope, fully radiative cooling and carbon fiber
chassis, and updated high-bandwidth multispectral focal plane
arrays. Figure 5B shows the 4 U FluidCam payload. The optical
telescope has been redesigned from the first generation and
consists of a proprietary square-aperture Nasmyth focus Ritchey-
Chretien reflecting telescope based on a design proposed by Jin
etal. (2013).

Airborne field campaign results, along with validation results
from the Fluid Lensing Test Pool, suggest the 3D Fluid
Lensing Algorithm presents a promising advance in aquatic
remote sensing technology for large-scale 3D surveys of shallow
aquatic habitats, offering robust imaging capable of sustained
shallow marine imaging. However, while the highlights presented
here demonstrate applicability of the Fluid Lensing Algorithm
to the tested environments, further investigation is needed
to fully understand the algorithm’s operational regimes and
reconstruction accuracy as a function of the inherent optical
properties of the water column, turbidity, surface wave fields,
ambient irradiance conditions, and benthic topography, among
other considerations. Current and future work is already
underway to study the impact of these variables on the fluid
lensing algorithm and its application to aquatic remote sensing
as a whole. This research is ongoing with algorithm performance
improvements, FluidCam imaging and processing hardware
maturation, and automated fluid lensing dataset analysis tools
such as NeMO-Net.

MiDAR —The Multispectral Imaging,
Detection, and Active Reflectance

Instrument
While FluidCam and fluid lensing offer a new technique
for improved passive remote sensing of aquatic systems,
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Airborne Fluid Lensing Results in American Samoa (2013)

A Best Satellite Image B Fluid Lensing (FL)on C
(2013) - 0.5m ESR

D FL + SfM Bathymetry
(3cm ESR)
. r m——

&,

UAV (2013) - 0.5cm ESR Fluid Lensing Detail
£y RET®
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-14.182°
-169.658°

4 )
alle

30m
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FIGURE 6 | The first airborne fluid lensing results from an experimental 2013 campaign in American Samoa. (A) Highest-resolution publicly available image of a
transect area captured June 2015 from Pleiades-1A satellite with 0.5 m ESR. (B) Fluid lensing 2D result of the same area as captured from UAV at 23 m altitude with
estimated 0.5-3 cm ESR. (C) Inset details in fluid lensing 2D image include a parrotfish ~20.cm in length, a sea cucumber ~21 cm in length, multiple coral genera
including Porites and Acropora, and a reef shark. (D) High-resolution bathymetry model generated with fluid lensing caustic bathymetry (FL) and Structure from Motion
(SfM) algorithms, validated by underwater photogrammetry. Maximum depth in model is ~3 m, referenced to mean sea level (MSL). Adapted with permission from
Chirayath (2016).

they are passive sensing methods, reliant on the Suns along the optical path by exploiting phase information using
downwelling irradiance, and thus limited to the photic  heterodyne receivers. Thus, hardware requirements for receiver
zone of the ocean. This inspired the development of an  sensitivity, aperture and SNR can effectively be relaxed
active multispectral sensing technology that could extend the  given increased transmitter power (up to MW of power
penetration depth of remote sensing systems. Here, we share  in the case of RADAR). Recent advances in LiDAR have
preliminary results and developments behind the recently- also enabled multiple wavelengths of laser diodes to be
patented NASA Multispectral Imaging, Detection, and Active  used simultaneously in green and two infrared bands to
Reflectance Instrument (MiDAR) and its applications to aquatic ~ achieve a “color” LiDAR point cloud (Briese et al, 2012,
optical sensing and communications (Chirayath, 2018a). 2013). However, multispectral LIDAR methods are not yet
Active remote sensing technologies such as radio detection  applicable to imaging across the visible optical regime as there
and ranging (RADAR) and light detection and ranging  exist significant limitations in narrowband laser-diode emitter
(LiDAR) are largely independent of ambient illumination  chemistry and efficiency.
conditions, provided sufficient transmitter irradiance over Recent advances in active multispectral imaging have explored
background, and advantageously contend with attenuation  the concept of multiplexed illumination via light-emitting diode
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Cm-scale Change Detection with Airborne Fluid
Lensing in American Samoa (2013 vs 2016)

2013 Fluid Lensing on
UAV (0.5cm ESR)

2016 Fluid Lensing on
UAV (0.3cm ESR)

FIGURE 7 | Cm-scale change detection from airborne fluid lensing in American Samoa. Here, 2013 airborne fluid lensing data from a patch of reef are compared with
a repeat survey in 2016 showing cm-scale changes in the reef. Color coded regions compare similar areas in each image and show a change in ratio of coral types as
well as coral cover. The increased ESR and improved SNR of the 2016 data reflect software and hardware advances in the development of the FluidCam instrument.

(LED) arrays to dynamically illuminate a scene, reconstructing
the spectral reflectance of each pixel through model-based
spectral reconstruction through a charge-coupled device (CCD)
detector (Nischan et al, 2003). Most prototypes at this
stage have been relatively low power (~10W), stationary,
and unable to achieve the levels of irradiance required for
remote sensing applications at larger distances, and hence
have been predominantly been purposed for the task of
object detection, relighting and close-up monitoring (Park
et al, 2007; Parmar et al., 2012; Shrestha and Hardeberg,
2013). However, results have shown significant promise in
the system’s ability to reveal key features in the spectral
domain, reconstruct spectra with surprising accuracy (Goel et al.,
2015), and operate in conditions where an active illumination
source can be directly controlled as required. In the field
of multispectral video, passive systems employing dispersive
optical elements through scene-scanning or bandpass filtering
(Yamaguchi et al., 2006), while providing high spectral resolution,
are unsuitable for achieving high framerates due to limited
ambient illumination.

Motivated by the challenges discussed above, MiDAR was
developed in pursuit of a next-generation sensing technology
capable of expanding the use of multispectral/hyperspectral
optical sensing to the seafloor. For aquatic optical
sensing, the goal of MiDAR is to reach a state of parity

with  terrestrial remote sensing. Namely, to develop
an instrument capable of reaching beyond the photic
zone with active sensing and integration on AUVs for
seafloor mapping.

MiDAR Overview

MiDAR is an active multispectral/hyperspectral system capable
of imaging targets with high-intensity narrowband structured
optical radiation to measure an object’s spectral reflectance,
image through fluid interfaces, such as ocean waves, with
fluid lensing, and simultaneously transmit high-bandwidth
data. MiDAR consists of an active optical transmitter (MiDAR
transmitter) and passive receiver (MiDAR receiver) in either
a monostatic or bistatic configuration (Figures 8A,C). The
MiDAR transmitter emits coded narrowband structured
illumination to generate high-frame-rate multispectral
video, perform real-time spectral calibration per color band,
and provide a high-bandwidth simplex optical data-link
under a range of ambient irradiance conditions, including
darkness. A schema of a bistatic MiDAR, typically used
for aquatic remote sensing, is shown in Figure8C as a
payload aboard a UAV. The MiDAR receiver, a high-
framerate panchromatic focal plane array coupled to a
heterogeneous computing stack, passively decodes embedded
high-bandwidth simplex communications while reconstructing

Frontiers in Marine Science | www.frontiersin.org

12

September 2019 | Volume 6 | Article 521


https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles

Chirayath and Li

NASA FluidCam, MIDAR, and NeMO-Net

114

BWTO B

102 108

Wrea =[3142]T

}Mi AR Multispectral Imaging, Detection, and Active Reflectance Instrument

Wareen=[13 4 2]7 Weie = [42 3 1]7

Dpeak

RECEIVER

MiDAR Power [W]
Dpean/a <O(1)>

[S)
0 /(N(n+1))
n+1 calibration cycles

a amplitude modulations

Lambient calibration
Lambient calibration
Lambient calibration

/N

T
N color bands MiDAR integration time

Time [s]

structured illumination,
de(Pt) and embedded
data stream at bN/7 bits/s

on UAVs.

)Mll A RReceiver (Fluid =) )Ml AR Muttispectral Reconstruction

frames I[x,y,t]

4
|

e/ Multispectral Video
1 /// /,/ Panchromatic . _am
= .
///// //& =7 hlgh—fratmt(‘e—rat:e Automated MiDAR color signature
2 N computational jqentification ¢e,u = NIR,R,G,B,UV, ]
N-channel, narrowband L7 imager records Data Transmission

..., ambient radiance calibration,
intensity normalization and
embedded data decoding

/
/
/
/
/
/
/ \

3D Structure

FIGURE 8 | MiDAR, the NASA Multispectral, Imaging, Detection, and Active Reflectance Instrument. (A) MiDAR is an active multispectral/hyperspectral instrument
that uses multiple narrowband optical emitters to illuminate a target with structured light (ViDAR Transmitter). The reflected light is captured by a telescope and
high-frame-rate panchromatic focal plane array (MiDAR Receiver) with a high-performance onboard heterogenous computing stack, which creates hyperspectral
images at video framerates, and decodes embedded optical communications in real-time (Chirayath, 2018a). (B) The structured ilumination pattern generated by the
MIDAR transmitter allows for simultaneous optical communication and calibrated measurement of a target’s reflectance at multiple wavelengths, independent of
ambient illumination conditions. (C) MIDAR can be operated in a bistatic or monostatic configuration. For remote sensing applications, MiDAR has been tested

calibrated multispectral images. A central goal of MiDAR
is to decouple the transmitter from the receiver to enable
passive multispectral synthesis, robustness to ambient
illumination, optical communications, and the ability to
select particular multispectral color bands on the fly as a function
of changing mission requirements. The MiDAR transmitter and
receiver utilize cost-effective components and relax sensitivity
requirements on the receiving aperture to achieve multispectral
video at a SNR that can be directly modulated from the
MiDAR transmitter.

MiDAR multispectral image synthesis is premised upon the
following physical approximations:

1. Light is reflected instantaneously from target surfaces.
Phosphorescent materials thus are characterized by only by
their reflectance.

. Incoming light from the MiDAR transmitter is reflected
from the target surface at the same wavelength. Fluorescent
emission can be characterized using a special MiDAR receiver.

. There are limited participating media. Primary reflectance
occurs at a surface element rather than scattering within
a material.

. The bidirectional reflectance distribution function (BRDF)
is a function only of three variables, f(0;, 6y, ¢; — ¢,), where

0;, 6y, ¢i, ¢, are the respective incident and reflected zenith and
azimuthal angles and reflectance is rotationally invariant about
the target surface normal.

Helmbholtz reciprocity applies such that BRDF satisfies

J (65, ¢35 Or, br) = f(Or> Dr: 03 ).

MiDAR transmitter power, ¢pear, at range R, results in
signal irradiance that is much greater than ambient irradiance,

Lambient- UMiDAR > Lambient)-

. Target reflectance and scene do not change on timescales
faster than the MiDAR receiver frequency, fry (90
Hz—36,000 Hz for NASA FluidCams).

. MiDAR receiver frequency fry is at least two times greater
than MiDAR transmitter driving frequency fry. (fx > 2fr).

5.

6.

The MiDAR Transmitter

The MiDAR transmitter achieves narrowband optical
illumination of a target at range R with an array of efficient
high-intensity laser or light emitting diodes (LEDs) grouped into
N multispectral color bands, p. MiDAR transmitter spectral
bands, and their associated emitter diode chemistries, are
shown in Figure9B. The laser and LED array, or MiDAR
transmitter, is driven by a periodic variable-amplitude input
signal to emit modulated structured light. ¢, » (P,t) G(X) is
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each spectral channel that allow for high luminous efficiency.

the time-varying, emitted spectral radiant power distribution
of the MiDAR transmitter [an_ls_l], where G (L) is the
gain of the MiDAR transmitter at wavelength A. Each MiDAR
color band, u, spanning spectral range 1, is assigned a unique
amplitude-modulated signature, MiDAR signature wy,, defined
by modulating the peak power in a color band, ¢, peqx, according
to coeflicients in column vector w,, consisting of » irradiance
calibration cycles per color band, a amplitude modulation levels
and one ambient irradiance calibration cycle (Figure 8B). For all
color bands, these column vectors form a nxN MiDAR coefficient
WRed, WGreen " ** WN;

matrix W =

WRed, WGreen,, *** WN,

Reflecting optics are used to distribute the radiation pattern
Y (x,y) uniformly across the scene while N total multispectral
color bands ©# = NIR, R, G, B, UV, ... (Figure9B) are

cycled through in total MiDAR integration time v = N(fnT;FD

seconds (Figure 8B). Modulating power based on coefficients in

the weight matrix W allows for passive detection, independent
color band recognition and irradiance normalization by a
panchromatic MiDAR receiver. This scheme, subject to the
constraints Equation 1, below, allows the MiDAR transmitter
to alter the color band order and irradiance in real-time,
relying on the MiDAR receiver to passively decode the
embedded information and autonomously calibrate to changing
illumination intensity. Further, MiDAR signatures allow the
transmitter and receiver to operate in a monostatic or bistatic
regime with no communication link beyond the embedded
optical signal. For additional bandwidth, color bands may have
b redundant MiDAR signatures, allowing for b bits of data to be
encoded at a bitrate of b7N bit/s.

The MiDAR signature for each color band, ¢,,;,, must remain
unique to p across ¢ (f) (Equation 1, ii). For uniform SNR
across the color bands, the average integrated power ((b(t)) must
be constant over /N (Equation 1, i). Finally, to maximize
the multispectral video frame-rate, SNR and data transmission
bandwidth, the optimization problem in Equation 1 must be
solved to minimize t.
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min T & maxb, SNRfor given N, n,a

(e, PB,HG) ) = /I% Geo. 5 (P, 1) G (1) dt = constNu (i)
3be Z instances where ¢, peak - Wy * ¢ () = 1 (ii)
n = ka Vke 7 (iii)
SNR;, =~ const. (iv)

subject to

MiDAR transmitter signal optimization problem and constraints
for minimum multispectral integration time,
bandwidth and uniform SNR.

MiDAR receiver image reconstruction, discussed in the
following section, composes the final multispectral image from
a weighted average of decoded frames. In the limit of an ideal
system, the SNR of a monostatic MiDAR system at a particular
wavelength, 1, is proportional to the expression in Equation 2.

Dpeak 09 G 0) et (s [r5e 1)

\/ Gpeak MG (AT L) +L () Qo

maximum

SI\’R}L X

Idealized MiDAR SNR proportionality for a color band at
wavelength A where @,k (1) is the peak power input to the
MiDAR transmitter at wavelength A and G () is the gain of the
MiDAR transmitter at wavelength A. A, is the MiDAR receiver
area, Qroy is the field of view, L,,,piens (1) is the ambient radiance
at wavelength A and R is the range.

MiDAR Receiver

A passive, high-frame-rate panchromatic FPA coupled to a
computational engine functions as the MiDAR receiver. The
MiDAR receiver samples reflected structured light from the
illuminated object at the MiDAR receiver frequency, fry.
Onboard algorithms digitally process the high-frame-rate image
data to decode embedded simplex communication, perform in-
phase intensity and color-band calibration and reconstruct a N-
band calibrated multispectral scene at a framerate of t ~! Hz. The
MiDAR prototype highlighted here uses the NASA FluidCam
instruments as MiDAR receivers.

MiDAR Receiver Multispectral Video Reconstruction
Algorithm

The MiDAR receiver digitizes sequential panchromatic images
I[x,y,t] at {Ny,N,} pixels and framerate frx Hz. N ambient
radiance calibration cycles are used to calibrate intensity and the
normalized image sequence is then difference transformed:

u,‘=llflj>1k
elseu; =0

Vj, k where k > j, i < jxk

This method permits varying gains per channel and is robust
to noise as a function of the subject being imaged. Note that
the length of I here is the same length as w, and mirrors the
relative signature pattern of w. The final transformed u is then
cross-correlated with the MiDAR coeflicient matrix to detect
and assign color bands. The MiDAR multispectral reconstruction
algorithm composes a calibrated [N, x Ny] x N x t dimensional

multispectral video scene consisting of N color bands, . The
multispectral video matrix, M [x,, i, t], is constructed from a
weighted average of color-band classified panchromatic images
I[x, y, t] over total integration time .

MiDAR Optical Communications Decoding Algorithm
Additional simplex communications may be simultaneously
embedded in the MiDAR transmitter’s spectral radiant power
distribution, ¢, 5 (P, t). By creating b redundant MiDAR color
signatures ¢, simplex data can be transmitted at a minimum
rate of b7N bit/s with no loss to MiDAR multispectral image
SNR. For a panchromatic FluidCam-based MiDAR receiver, for
example, with frp, = 1550Hz, N 32 color bands, a
n 5 amplitude modulation and calibration cycles and b =
10 redundant MiDAR signatures, this algorithm can achieve
a data-rate of 2.58 kbps while performing imaging operations.
Using a passive color sensor as the MiDAR receiver, such as the
multispectral FluidCam with K color channels, this bandwidth
can be increased by simultaneous transmission of multiple
MiDAR color bands. In the case that a MiDAR receiver has
K = N matching color bands, the data rate increases to brﬁ bit/s,
or 82.67 kbps.

MiDAR can be used for long-range optical communications
using this methodology with the MiDAR receiver pointed
directly at the MiDAR transmitter for increased gain. The
SNR for b bits of data transmitted at wavelength XA is then

proportional to:
(%22 t)

\/ Gpeak GO (Fry/E XL 2 ) +L () @roy

AT
he(n+1)

Ppeak (M) G (1)

SNR;, X

Full descriptions of the MiDAR Receiver Multispectral Video
Reconstruction Algorithm and Optical Communications
Decoding Algorithm are provided in the MiDAR patent
(Chirayath, 2018a).

MiDAR Instrument Development and Preliminary
7-Channel Airborne MiDAR Results

MiDAR transmitter and receiver hardware are currently under
active development. Five, seven, and thirty-two band MiDAR
transmitter prototypes have thus far been developed with total
peak luminous power ratings up to 200 watts and spectral
ranges from far UV to NIR, suitable for in-situ and short-range
active multispectral sensing (Figure 9B). A number of light-
emitting diode chemistries have been tested and identified that
span much of the UV-NIR electromagnetic spectrum for future
implementations (Figure 9). Currently, a 10-band airborne kW-
class MiDAR transmitter is in development featuring four UV-
band channels. This transmitter is designed to fly on a UAV
for active multispectral imaging at an altitude of 25m. At
this altitude, the transmitter is expected to match downwelling
solar irradiance at noon, but will operate primarily during
twilight and evening for increased SNR (Figure 9A). Compared
to daytime passive remote sensing observations with full
downwelling solar irradiance, nighttime MiDAR observations
with a full lunar phase downwelling irradiance will have
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Laboratory and Field Tests of Active Multispectral
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FIGURE 10 | MiDAR Laboratory and Field Tests of Active Multispectral Imaging and Optical Communications. (A) 7-Channel monostatic MIDAR imaging test on
optical bench with multispectral test target. Here, half of the test target was illuminated with a broadband source to test MiDAR’s ability to determine active reflectance
independent of ambient conditions. RGB image shown on left. Reflectance maps shown for each spectral band from 655 to 447 nm on right. (B) The first 7-channel
airborne MiDAR test over coral with an underwater MiDAR receiver from a 2018 field campaign in Guam. Here, MiDAR is operating in a bistatic configuration with a
MIDAR transmitter above the surface, and a diver-mounted MiIDAR receiver underwater. MiDAR resolves a Porites coral in the same seven multispectral bands as the
optical bench test, and simultaneously performs simplex optical communication through the air-water interface. (C) Embedded MIDAR data transmission in coral
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Embedded message:[0 0 1 0 0000100
01100110000011100101
01110011000001110010
11000001000001000110
01100000111001010]
Decoded message:[' ', 'L', 'A', 'S',
INI’ IAI, lsl, IAI’II' ILI, IAI’ ISI]

a SNR 10-10° times higher in the case of a UAV at 25
m altitude.

Figure 10A shows results from a basic laboratory test of a
7-channel airborne MiDAR in Figure 9B. Here, a monostatic
MiDAR system is tested using the 7-channel transmitter mounted
on an optical bench, collocated with FluidCam as a receiver. The
monostatic system was targeted at a multispectral test target 2m

away under constant diffuse, broad-spectrum ambient lighting
conditions of ~1 W/m?. MiDAR parameters for this experiment
were: N = 7, fry = 100Hz, n = a = 4, {Nx,Ny} =
{1024, 1024}, fry = 365Hz, T = 0.25s.

Figure 10B presents results from a 2018 bistatic MiDAR field
test in Guam with the 7-channel airborne transmitter above
the air-water interface at 1 m illuminating a Porites coral at a
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depth of 1 m. The MiDAR receiver is located under the water
at a range of 1 m from the coral head. Here, similar MiDAR
parameters were used as for the laboratory test. In addition, a
simplex transmission was encoded during imaging through the
air-water interface. The decoded signal and message are shown
in Figure 10C.

The MiDAR transmitter spectral radiant power distribution,
@e, . (P, t) was produced using a 7-channel array of narrowband
LEDs (Figure 9B), centered at 447, 470, 505, 530, 590, 627, and
655nm wavelengths with full-width-half-maximum (FWHM)
values of AL = 10, 25, 35, 15, 35, 35, and 37 nm, respectively. The
LED array was driven by microsecond, pulse-width-modulated
(PWM) signals generated by an Arduino Uno microprocessor
with high-current switching performed by MOSFETs. LED power
per color was chosen to compensate for transmitter gain losses,
G (1) and receiver losses such for an average emitted power
(@e, 5. (P,1) G (L) ) = 10Watts.

Potential Applications of MiDAR to the Earth and
Space Sciences

Preliminary MiDAR results at low transmission power (~10 W)
offer promising developments in active optical sensing that
are applicable to aquatic systems. As higher-power kW-
class MiDAR transmitters are matured, there are a number
of potential applications of this technology to Earth and
Space Sciences including high-resolution nocturnal and
diurnal multispectral imaging from air, space and underwater
environments as well as optical communication, bidirectional
reflectance distribution function characterization, mineral
identification, UV-band imaging, 3D reconstruction using
structure from motion, and active fluid lensing for imaging
deeper in the water column (Figure11). Multipurpose
sensors such as MiDAR, which fuse active sensing and
communications capabilities, may be particularly well-suited for
mass-limited robotic exploration of Earth and other bodies in the
solar system.

NeMO-Net—Neural Multi-Modal
Observation and Training Network for

Global Coral Reef Assessment
Driven by the need for multimodal optical sensing processing
tools for aquatic systems, as well as a toolkit to analyze and exploit
the large (TB and PB scale) datasets collected from FluidCam
and MiDAR, the NeMO-Net project was initiated in late 2017
(Chirayath et al., 2018a,b). NeMO-Net is highlighted here as an
example of a scalable data fusion and processing information
systems development that aims to make use of optical datasets
from a variety of instruments to answer questions of global
scale for aquatic ecosystems. Specifically, NeMO-Net is an open-
source deep convolutional neural network (CNN) and interactive
active learning training software designed to accurately assess
the present and past dynamics of coral reef ecosystems through
determination of percent living cover and morphology as well
as mapping of spatial distribution (Cartier, 2018). NeMO-Net
exploits active learning and data fusion of mm-scale remotely
sensed 3D images of coral reefs from FluidCam and MiDAR
as well as lower-resolution airborne remote sensing data from
commercial satellites providers such as Digital Globe and Planet,
as well as NASAs Earth Observing System data from Landsat,
to determine coral reef ecosystem makeup globally at the finest
spatial and temporal scales afforded by available data.
Previously, it was shown that mm-scale 3D FluidCam
imagery of coral reefs could be used to improve classification
accuracies of imagery taken from lower-resolution sensors
through a communal mapping process based upon principal
component analysis (PCA) and support vector machines (SVM)
(Chirayath and Li, in review). This work further showed
that supervised learning of FluidCam data can be used to
identify spectral identification data from higher-dimensional
hyperspectral datasets for coral reef segmentation. Consequently,
the scope of this work was expanded with the development of
NeMO-Net, utilizing supervised and semi-supervised CNNs to
recognize and fuse definitive spatial-spectral features across coral
reef datasets.

A B

Background image credit: NASA.

) MiT AR Earth and Planetary Science Applications
C D

FIGURE 11 | MiDAR Earth & Planetary Science Applications. (A) Airborne MIDAR depicted operating over coral system with FluidCam in bistatic configuration.
(B) MiDAR operating as high-bandwidth communications link to satellite system from same airborne transmitter. (C) MiDAR system integrated onto Mars rover for
hyperspectral and UV sensing of facies. (D) MiIDAR system integrated onto deep sea AUV for active multispectral benthic remote sensing in light-limited environment.
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FIGURE 12 | NeMO-Net Convolutional Neural Network (CNN) Overview. NeMO-Net's CNN is designed to perform multiresolution, multispectral, multitemporal,
multisensor feature extraction, and classification for optical remote sensing data. Independent data sources are fed into the CNN, in which convolution, pooling, and
fully connected layers are implemented to extract invariant features. Final predictions are made according to logistic regression upon relevant classes.
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NeMO-Net CNN Architecture

On a high level, CNNs are modeled upon the human image
recognition process, where sections of the field of view are
independently synthesized and collated over multiple layers
(i.e., neurons) to form abstract and high level feature maps
which are generally robust and invariant (Lecun et al.,, 1998).
This can be extended to the remote sensing case, where a
combination of spatial-spectral properties may be more reflective
of segmentation criteria than a single-faceted approach. However,
CNN s have only very recently been examined as an alternative
to conventional methods for image classification and thematic
mapping, and as such is currently an area of active research with
many unexplored possibilities (Gomez-Chova et al., 2015).

The structure of NeMO-Net’s CNN is shown in Figure 12. The
input to the CNN is an image or a set of images (different spectral
bands and spatial resolutions in our case). The convolution step
is used to extract a set of filters through back-propagation, by
applying 3 x 3 convolutions, for example, that are smaller in size
than the original image. During the next step, pooling is used
to reduce the spatial scale of the filtered images, often down-
sampling by a factor of two per dimension. This process can be
repeated several times, depending on the image size and feature
complexity. Finally, the results from pooling are fed into a fully
connected layer where probabilistic votes are combined to predict
the class based upon previously trained ground-truth samples. A
distinct advantage of the CNN scheme over the standard multi-
layer perceptron (MLP) NN schemes is their ability to ingest 2D
(e.g., images) or 3D (e.g., spectral images), or higher-dimensional
datasets, as direct inputs, whereas the inputs for MLP-NN depend
heavily on pre-processing and dimensionality reduction in order
for the network to achieve good prediction, and sometimes even
to reach convergence. Another advantage of the pooling process
inherent with CNN is its low sensitivity to the exact position
or skewness of the feature (up to a certain extent), allowing
for the augmentation of noisy images. At present, CNNs have
already shown promise in remote sensing areas such as land
use, hyperspectral, and satellite image classification (Castelluccio

et al., 2015; Chen et al.,, 2016; Zhong et al., 2017) with greatly
increased classification accuracies. Challenges remain, however,
especially since tuning large CNNs often require an abundance of
training data and significant computational power. To this end,
NeMO-Net incorporates a citizen-science based active learning
and training application as well as utilizing the NASA Ames
Pleaides Supercomputer and NASA Earth Exchange (Figure 13).

As primarily an information systems development project,
NeMO-Net’s overall technical goals are to: (1) develop a malleable
CNN architecture specific to aquatic optical sensing datasets
for scalable heterogenous computing architectures such as the
NASA Ames Pleaides Supercomputer, (2) create a cloud and
cloud shadow detection CNN algorithm for masking (Segal-
Rozenhaimer et al., accepted), (3) implement domain transfer
learning for spectral and spatial resolution transfer learning
(super resolution) across multiple sensors, and (4) create a
3D active learning CNN training application in game interface
for data training from multiple sensors. NeMO-Net’s science
objectives include: (1) Developing an accurate algorithm for
identification of coral organisms from optical remote sensing
at different scales. (2) Globally assessing the present and past
dynamics of coral reef systems through a large-scale active
learning neural network. (3) Quantifying coral reef percent
cover and spatial distribution at finest possible spatial scale. (4)
Characterizing benthic habitats into 24 global geomorphological
and biological hierarchical classes, resolving coral families with
fluid lensing at the finest scales and geomorphologic class at the
coarsest scale.

Often the most challenging and limiting aspects of CNNs,
such as NeMO-Net, are CNN learning and label training; that
is associating pixels in remote sensing imagery with mapping
labels such as coral or seagrass. On this topic, the three prevalent
issues are:

1) The labeled data is not representative of the entire
population distribution. In coral reefs, for example, labels often
only correspond to reefs within their immediate geographical
vicinity, which are known to vary compositionally and
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FIGURE 13 | NeMO-Net is aimed at harmonizing the growing diversity of remote sensing and in situ imagery into a single open-source platform for assessing shallow
marine ecosystems at scale across the globe. An active learning game, playable on tablet and virtual reality platforms, allows users to view 3D FluidCam data of coral
reefs and provide training data on coral classes including living cover, morphology type, and family identification. These data, along with their spatial coordinates, are
fed into NeMO-Net, which produces a classification map and reef constituent breakdown as well as error analysis based upon training data. This technology is
presently under development and will be expanded to third-party georeferenced 3D datasets as well.

structurally worldwide. This can lead to significant generalization
error when learned CNN models are tested on particular samples
and evaluated upon data points from other areas.

2) The number of available labels is very small (~1% of the
data), where the most common criticism associated with CNNs
is their dependence upon a vast amount of labeled training data.

3) Spectral mixing and 3D structure confusion occurs in areas
of high benthic heterogeneity, conflating multiple ecological
classes into small areas.

To address the first and third issues, NeMO-Net utilizes
a technique called transfer learning. To address the data
skewness issue, for example, NeMO-Net can utilize areas where
extensive training label data exist concurrent with instrument
data (Chirayath and Earle, 2016; Chirayath and Instrella, 2016).
Feature representation learned by the CNN on this dataset is
then used to augment the feature representation of other regions.
Deep features extracted from CNNs trained on large annotated

datasets of images have been used as generic features very
effectively for a wide range of vision tasks, even in cases of high
heterogeneity (Donahue et al., 2014). To address the second issue,
NeMO-Net utilizes virtual augmentation of data. Here, existing
labeled data are subjected to a series of transformations such
as spatial rotation, decimation, radiation-specific and mixture-
based techniques to reinforce robustness of the algorithm. This
allows the simulation of radiometric attenuation, spectral mixing,
and noise effects inherent to any spectral based sensing platform.

Additional components of NeMO-Net include the use
of semi-supervised learning. Semi-supervised classification
combines the hidden structural information in unlabeled
examples with the explicit classification information of labeled
examples to improve classification performance. The objective
here is such that given a small sample of labeled data and a large
sample of unlabeled data, the algorithm will attempt to classify
the unlabeled data through a set of possible assumptions, such as
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FIGURE 14 | NeMO-Net Processing Pipeline. UAV, airborne, and satellite data are preprocessed and split into labeled and unlabeled categories. Relevant training,
validation, and reference sets are created and fed into the CNN training process. Ambiguous data sets are fed back into an active training section for active learning.
The final CNN model takes spatially and temporally co-registered datasets, if available, and outputs predictions based upon ensemble or Bayesian inference

smoothness/continuity, clustering, or manifold representation.
Supervised learning in the context of CNNs can be accomplished
through pseudo-labels by maximizing the class probabilities of
the unlabeled data pool (Lee, 2013). Other approaches include
use of standard supervised learning methods such as non-linear
embedding (MDS, Isomap) in combination with an optimization
routine at each layer of the deep network for structure learning
on the unlabeled pool (Weston et al., 2012).

Finally, NeMO-Net augments labeled data through active
learning. Active learning is an area of machine learning research
that uses an “expert in the loop” to learn iteratively from large
data sets that have very few annotations or labels available. In the
case of NeMO-Net, the users classifying objects are humans in
the loop and the active learning strategy algorithm decides which
sample from the unlabeled pool should be given to the expert for

labeling such that the new information obtained is most useful
in improving the classifier performance. Common strategies
include most likely positive (Sharma et al., 2016) and uncertainty
sampling (Lewis and Catlett, 1994). The interactive NeMO-Net
tablet application is used for active learning (Figure 13).

The overall algorithmic architecture for NeMO-Net is shown
in Figure 14 and consists of:

1) Preprocessing of multiplatform data: this includes image
registration, scaling and noise removal from affected
datasets, allowing easy ingestion into the CNN regardless of
sensor platform.

2) NeMO-Net training is performed by providing a multitude
of classification images from various sources, covering a wide
spatial, spectral, and temporal range. The goal is such that
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FIGURE 15 | Preliminary NeMO-Net CNN benthic mapping predictions using FluidCam data. (A) Cm-scale 2D and 3D multispectral data are input into NeMO-Net
from airborne fluid lensing campaigns. (B) To test accuracy of NeMO-Net prediction, divers meticulously surveyed this entire transect to produce a benthic habitat map
of the coral reef to use as truth, or reference data (Chirayath and Instrella, accepted). The reef transect was classified into four classes; sand, rock, mounding coral, and
branching coral. (C) The diver data were randomly sampled to label 0.2% of the FluidCam data for training the NeMO-Net model on the NASA Ames Supercomputer.
As a result, the NeMO-Net CNN is able to predict the entire benthic map from FluidCam data (A), with a total accuracy across all four classes of 94.4%.
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the CNN is able to extract high level spatial-spectral features
that are inherent across all relevant datasets. As mentioned
previously, to alleviate the issue of labeled data shortage,
techniques such as virtual data augmentation, semi-supervised
learning, and active learning methods are be used.

3) To address the issue of data overfitting, regularization,
dropout, and activation function selection are used
(Krizhevsky et al., 2012).

4) Parameter tuning is performed via a validation set and error
analysis performed through cross-analysis against a reference
set, designed to gauge the robustness, predictive capability and
error characteristics of the system.

5) Final classifications are calculated via logistic regression
into relevant classes. In cases where multiple temporal and
spatially co-registered datasets are available, fusion of multiple
CNN outputs by ensemble or Bayesian inference techniques
is implemented.

NeMO-Net Preliminary Results

Presently, NeMO-Net’s CNN is implemented through an open-
source Python package that can be integrated with QGIS, an
open source geographical information system. With this pairing,

the CNN learning module has access to other useful services
such as geolocation, layered data, and other classification tools
for comparison. The Python package is also designed to build
upon and integrate with existing libraries for machine learning
and modern geospatial workflow, such as TensorFlow, Scikit-
learn, Rasterio, and Geopandas. To increase computational
speed, NeMO-Net takes advantage of heterogenous CPU and
GPU processing on the NASA High-End Computing Capability
(HECC) Pleiades supercomputing cluster, located at NASA
Ames. The active learning application has been developed on
the game development platform Unity Pro and 3D modeling
software Maya LT for iOS, with a server for data storage
and transfer.

Figure 15 shows an example of NeMO-Net’s prototype cm-
scale benthic map product from FluidCam, based on field data
from American Samoa shown earlier. The reef transect was
classified into four classes; sand, rock, mounding coral, and
branching coral. Using 0.2% of randomly-sampled label data for
training the NeMO-Net CNN is able to predict the entire benthic
map from FluidCam data with a total accuracy across all four
classes of 94.4%. This result is compared to the 92% accuracy
(8% error) achieved at the cm spatial scale in Figure 1 using an
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independent methodology based on MAP estimation (Chirayath
and Instrella, accepted).

DISCUSSION AND FUTURE WORK

The three emerging NASA technologies shared here begin to
address some of the ongoing observational, technological, and
economic challenges encountered in marine sensing, particularly
as they apply to coral reef ecosystems.

FluidCam has been utilized extensively on UAVs for scientific
surveys of shallow marine environments in small areas, ~15 km?
at a time. The fluid lensing algorithm has provided a robust
way to survey shallow marine ecosystems under various sea
states at high-resolution in 3D. In addition, FluidCam and fluid
lensing have been tested for applicability to marine mammal
conservation, imaging cetaceans at high-resolution in the open
seas (Johnston, 2018). Nevertheless, to cover larger swaths of
geographically isolated regions at regular intervals and meet
earth science measurement requirements, high-altitude airborne
or space-based validation of fluid lensing is eventually required.
FluidCam will be used in a number of upcoming airborne field
missions over coral reefs in Puerto Rico, Guam, and Palau in
2019 for use in NeMO-Net. In these regions, FluidCam data
will improve the accuracy of low-resolution airborne and satellite
imagery for benthic habitat mapping. However, this is a stopgap
measure intended to improve the state-of-art for the foreseeable
future. Ultimately, just as in the case with terrestrial ecosystems,
only global high-resolution aquatic remote sensing will fully
resolve fine-scale dynamics in marine systems. Finally, passive
fluid lensing is limited to imaging in the photic zone, like all other
passive remote sensing methods, and cannot image in highly
turbid environments or areas with continuous wave breaking.

MiDAR is an early TRL (technology readiness level)
instrument, but has shown promising results using a novel active
multispectral imaging and optical communications capability
(Chirayath, 2018a; McGillivary et al., 2018). MiDAR was also
designed with future fluid lensing compatibility in mind, helping
to extend the depth range of the passive FluidCam instrument
from aircraft and be used in underwater applications for
entirely light-limited environments. Previously, 5, 7, and 32-
band laboratory MiDAR prototypes were developed through
NASA CIF and Innovation Awards with total luminous power
ratings up to 200 watts and spectral ranges from far UV to
NIR, suitable for in-situ and short-range active multispectral
sensing. Presently, development of the first 10-band kW-class
UV VNIR MiDAR transmitter and SpaceCubeX-based (Schmidt
et al, 2017) MiDAR receiver is underway for airborne and
future spaceborne payload integration. MiDAR will be matured
to NASA TRL 4 with a new transmitter and receiver design
and flight demonstrated on UAVs. In addition, MiDAR is being
tested with divers and AUVs in underwater environments with
upcoming tests over mesophotic coral reefs in Puerto Rico and
Guam in 2019.

NeMO-Net concludes in early 2020 and will provide a global
benthic habitat map for shallow marine systems based on
harmonized high-resolution airborne (primarily FluidCam and

MIDAR) and satellite data processed using a CNN. The NeMO-
Net citizen-science app (Chirayath et al., 2018a) is anticipated to
generate a vast amount of 3D training data pertinent to ongoing
habitat mapping of shallow marine systems. The project will
result in open-source software packages and be available to the
broader community through the NASA Earth Exchange (NEX)
repository, which currently houses many existing algorithms and
data products related to machine learning and Earth Science for
investigators. All final code developed as well as final deliverables
will be made available under the GNU General Public License
(GPL) for ongoing public use and development. As the first
citizen-science based 3D training and classification software,
NeMO-Net has many potential future applications to mapping of
terrestrial, deep sea, and planetary 3D photogrammetry datasets,
among other applications.

While these technologies present promising technological
advances, work is needed to mature these systems into sustained
marine observing systems. As science requirements change,
these technologies must either be improved upon or replaced
by better methodologies. Over the coming years, these tools
will continue their maturation through ongoing hardware
and software development, cost reduction, experimental field
campaigns in increasingly diverse and challenging ecosystems,
deployments on different sensing platforms, open-source code
sharing, citizen-science inputs, and input and adoption from the
broader oceanographic community.
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