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Fishing pressure is often expressed in terms of a vessels physical attributes, like
tonnage and engine power, while a common definition of fishing capacity identifies
vessel size as a convenient proxy for the size of the gear used. Nevertheless,
these definitions remain arguable, and the refinement of these fishing descriptors is
increasingly being considered. A stronger understanding of the relationship between
the standard measures of effort and capacity and fishing mortality remains a primary
objective, followed by the need to overcome a traditional approach that simply describes
effort, capacity and mortality as linearly related, conferring a greater fishing power to
larger vessels. In this perspective, the analysis of trawlers’ technical features in relation
to the size and power of the vessel might constitute an essential step. This study
specifically investigated a collection of trawling gears’ technical specifications collected
by CNR-IRBIM, Ancona. The dataset used includes records from several Mediterranean
fisheries, and involves three trawling techniques, including single trawling, twin trawling
and pair trawling, and diverse trawling gear categories, comprising demersal/bottom
2-panel trawls (OTB2), demersal/bottom 4-panel trawls (OTB4), pelagic 4-panel trawls
(PTM4), semi-pelagic 2-panel trawls (OTM2), semi-pelagic 4-panel trawls (OTM4), and a
Mediterranean bottom beam trawl (TBB). We analyzed and described the relationships
between vessels’ technical features (LOA, towing force, and engine power), some
among the main trawl-metrics (headline length, footrope length, trawl length, square
width; fishing circle) and the otterboard’s technical features (height, width, and projected
area) in an attempt to enhance fishing capacity definition through the inclusion of the
fishing gear deployed. Self-organizing maps (SOM) were used to explore the empirical
relationships among different parts of the fishing trawl gears, as well as between some
of these parts, the otterboard size and the engine power of the vessel.

Keywords: Mediterranean fishing, fishing gears, trawling, trawls, fishing equipment, gear research, trawl survey,
Mediterranean Sea
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INTRODUCTION

Fishing activity regulation is aimed at the management of
exploited fish populations while ensuring maximum sustainable
yield and maximum economic yield. Mortality management is
generally achieved through a couple of competing and alternative
approaches, the input control, regulating the extent at which
fishing activity is performed, and the output control, with a
core concept that revolves around limitations in catches of
one or more selected species. The former approach finds its
management tools in restrictions in fleet capacity, fishing gears
used and the number of licenses, limitations on technological
updates and on the spatial and temporal distribution of fishing
activity. These may involve the institution of ad hoc area closures,
MPAs, zoning schemes and the rotation of areas (Veiga et al.,
2016; McLachlan and Defeo, 2018). The output control approach
instead relies on the definition of total allowable catches per
season, daily catch limits, allowance of the capture and retention
of a maximum amount (threshold values), and the establishment
of minimum legal landing sizes and Individual transferable or
non-transferable quotas. In general, fisheries targeting a limited
number of species lean toward an output control scheme,
while for mixed fisheries, characterized by multiple species
and multiple gear types deployed in the same area, the input
control strategy represents a more viable solution (Pope, 2009;
McLachlan and Defeo, 2018). Management redundancy, namely
the simultaneous application of measures pertaining to both
strategies, is also sometimes a possibility (Caddy and Defeo, 2003;
Gutiérrez et al., 2011; Santiago et al., 2015) in the pursue of
profitable, sustainable and long-lasting fishing activity.

Spatial and temporal limitations of activity are strongly related
to the concepts of fishing capacity and fishing effort. Fishing
capacity can be either measured in number of vessels or in
terms of engine power, size and gross tonnage (FAO, 2008).
These vessel-metrics are normally used to cluster together all the
exponents of a fleet falling within the same category and thus far
represents an indirect method of measuring a vessels harvesting
potential. Accordingly, the simple association between vessel size
and the size of the fishing gear deployed may be used to estimate
harvesting potential, and restrictions to a vessels temporal activity
may be applied based on the fleet segment it belongs to. The
greater the vessel and the larger its engine power is, the fewer the
times a year it can practice fishing.

Fishing effort, on the other hand, can be defined as the product
of capacity and activity (European Commission [EC], 2002). It
represents a vessels time span of activity and can be measured
as numbers of days at sea or number of hours fishing. With
the recent establishment of VMS (Vessel monitoring System)
and AIS (Automatic Identification System) technologies, the
ability to gage fishing effort has indefinitely increased. Where
needed, the estimate of both capacity and effort is now relatively
simple. What remains to be clarified is how these two standard
measures are related and how they affect the fishing mortality
of different target species. The traditional association between
fishing capacity and gear size, remains questionable, since it has
already been demonstrated that no simple and clear relationship
between a fishing vessels power and the size of the net it tows

exists (Reid et al., 2011). Furthermore, the connection between
horsepower, gear size (fishing circle) and swept area was found
to be non-uniform across vessels, gear types and species targeted
(Fiorentini et al., 2004; Eigaard et al., 2011). Furthermore,
several studies have described the relationship between the effort
deployed, fishing capacity and fishing mortality as weak and
variable, underlining the need to include other effects (“skipper
effect”) to explain the variance observed (Squires and Kirkley,
1999; Marchal et al., 2006, 2007). These knowledge gaps still
interfere with a more accurate modulation of fishing pressure and
with the achievement of a sustainable fishing mortality level. The
outcome is often faulty management restrictions and a general
imbalance between the fleets ability to harvest resources and their
ability to regenerate.

Fishing gears, with all their intrinsic variability, represent the
physical link between a fishing management strategy and the
target populations directly affected by its application. Gear type
and trawl size do not represent the only measures that affect
catch-efficiency. Other gear components may also be of equal
importance such as gear geometry, door spread and ground
gear. Furthermore, the horizontal and vertical opening of the
mouth may also play a significant role in affecting the gear
catchability (Eigaard et al., 2011). In this perspective, better
knowledge of the geometries and the technical characteristics
of fishing gears is an important aspect to consider on par with
fishing effort, size class and engine power, while also assessing
the fishing mortality induced by a vessel or a fleet belonging to
a specific fleet segment. In this paper we specifically investigated
a collection of trawling gears’ technical specifications collected
by CNR-IRBIM, Ancona. The dataset used includes records
collected from eight Mediterranean fisheries, and involves three
trawling techniques, including single trawling, twin trawling and
pair trawling, and diverse trawling gear categories, comprising
demersal/bottom 2-panel trawls (OTB2), demersal/bottom 4-
panel trawls (OTB4), pelagic 4-panel trawls (PTM4), semi-pelagic
2-panel trawls (OTM2), semi-pelagic 4-panel trawls (OTM4), and
a Mediterranean bottom beam trawl (TBB). We analyzed and
described the relationships between vessels’ technical features,
some among the main trawl-metrics and otterboards technical
specifications in an attempt to enhance the definition of fishing
capacity through the inclusion of the fishing gear deployed.
These aspects were explored using Kohonen self-organizing
maps (SOM) (Kohonen, 1997) and model-based clustering, based
on finite Gaussian mixture modeling. Finally, we tested the
predictive capabilities of the trained SOM, observing its ability
to predict the size of different trawling gear components, as
well as of the otterboards. These parameters were estimated,
providing the map with quantitative variables (vessel-metrics)
and qualitative descriptors (vessel provenance and gear type), for
the observations contained in a test dataset.

MATERIALS AND METHODS

Data Collection
In this paper we analyzed a collection of trawling gears’
technical specifications collected by CNR-IRBIM Ancona.
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The information collected includes technical specifications of
trawling nets (headline length, footrope length, square width,
codend circumference and extension, etc.), doors (length, height,
and weight) and general fishing vessel features (engine power,
LOA, GRT, fleet registry number, bollard pull, base harbor, etc.)
collected from eight Mediterranean fisheries, including Italy,
France, Spain, Greece, Turkey, Croatia, Tunisia, and Cyprus.
Data collection involved a first critical review of diverse literature
sources (technical and scientific papers), followed by direct in situ
measurements of vessels and fishing gears, performed with the
help of fishermen, net makers and door manufacturers. The
analysis of literature sources proved invaluable in establishing
the main gear characteristics required for the evaluation of the
overall gear size, while field technical measurements helped in
completing the information obtained through literature research,
filling the emergent knowledge gaps in all the inspected trawling
techniques. The collected data can be subdivided by trawling
techniques and gear typologies. Three trawling techniques
were described, including single trawling, twin trawling and
pair trawling techniques, performed with diverse trawling gear
categories, comprising demersal/bottom 2-panel trawls (OTB2),
demersal/bottom 4-panel trawls (OTB4), pelagic 4-panel trawls
(PTM4), semi-pelagic 2-panel trawls (OTM2), semi-pelagic 4-
panel trawls (OTM4), and a Mediterranean bottom beam trawl
(TBB). Among the available technical specifications, Vessel
Length Overall (LOA), Gross Registered Tonnage (GRT), Engine
Power (P) and Total Available Towing force (TAT) were chosen
as indicators of vessel size; headline and footrope length (HL,
FL), trawl length (TrL), trawl weight (TrW), square width
(Wsq), fishing circle (FC) and the primary hanging ratio (E1),
were chosen as indicators of gear magnitude; and door height
(OBH), length (OBL) and projected area (OBA) were selected
as descriptors of the otterboard size. As additional information,
vessel and gear provenance (country and base harbor) were also
considered in the analysis.

Definition of Vessel Size, Gear-Metrics
and Otterboard’s Descriptors
The adopted vessel-metrics (LOA, GRT, and P) defined the
size of a fishing vessel in terms of the maximum length of
its hull (in meters), its internal volume (registered tons), and
the power of the main propulsion engine installed onboard
(hp). TAT represents an alternative vessel descriptor proposed to
overcome the lack of information regarding a vessel’s bollard pull,
rarely available. The indicator considers installed engine power,
propulsion system (nozzle and propeller) and trawling speed, and
it was used as an alternative metric of the vessel’s actual power in
operation. A more extensive description of this indicator can be
found in Notti et al. (2013).

Among gear metrics, the headline and the footrope
respectively represent the upper frame rope to which netting and
floats are attached, and the lower combination rope, carrying
the sinkers. Both their lengths are measured in meters. Fishing
circle and square width, also measured in meters, are two
additional gear descriptors. The fishing circle indicates the
perimeter of the net measured at the footrope bosom, while the

square width describes the width of the square, the first section
of the gear netting, placed in the top panel right behind the
wings. Trawl length and weight respectively describe the length
of the trawl, codend excluded, along its longitudinal axis (in
meters), and the overall trawl weight, expressed in kilograms.
The primary hanging ratio indicates the ratio between the length
of the rope frame on which a net panel is attached, and the
length of the attached net panel stretched. This ratio affects the
ability of a net to change shape and area in water, consequently
increasing or reducing a trawl’s fishing efficiency. Finally, the
collection of gear descriptors was completed by two additional
calculated indicators, the Horizontal Net Opening (HNO) and
the Horizontal Door Spread (HDS), also measured in meters.

As for the otterboards, OBL and OBH respectively represent
the length and height of the otterboard, while the projected
area indicates the area of its surface, corrected by an
otterboard-specific factor to consider the otterboard’s shape.
A schematic representation of the gear descriptors considered, is
reported in Figure 1.

Trawling Techniques and Gear
Typologies
Each record analyzed was assigned to one of the five gear
typologies, based on a classification first described in Eigaard
et al. (2011) broadened by the addition of a sixth category,
the Mediterranean “Rapido” trawl. A brief description of the
observed gear categories is provided below, while a short
summary of the described gears is available in Table 1.

Demersal/Bottom 2-Panel Trawls (OTB2)
Often made entirely of knotless PA netting, the OTB2 trawls
present a wide winghead opening attached to long sweeps and
bridles, coupled with a narrow vertical opening. Target species
of these gears include Merluccius merluccius, Mullus barbatus,
Merlangius merlangius, Trisopterus minutus capellanus, Lophius
spp., Nephrops norvegicus.

Demersal/Bottom 4-Panel Trawls (OTB4)
These trawls are made by 4 panels, the upper and lower
panel and two side panels, which are usually made entirely
of knotless polyethylene netting, though sometimes a portion
of knotless polyamide netting may appear in the lower panel.
The vertical opening of these trawls can reach up to 2 to 4 m
in height, increased by a couple of long bridles whose length
can easily reach 10 to 15 m. This gear category usually mainly
targets crustaceans like Parapenaeus longirostris, Aristaeomoprha
foliacea and Nephrops norvegicus.

Pelagic 4-Panel Trawls (PTM4)
Large pelagic gears built with four connected panels,
characterized by a wide vertical opening made with very
wide meshes or ropes, specifically constructed to flock target
species toward the center of the net, where a smaller mesh size
collects the catch. These fishing gears are used to mostly target
pelagic species like Sardina pilchardus, Engraulis encrasicolus,
Scomber scombrus, and Trachurus trachurus.
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FIGURE 1 | Schematic representation of the main gear-metrics and otterboard’s descriptors considered.

Semi-Pelagic 2-Panel Trawls (OTM2)
This fishing gear type is typically used near the seabed in
Tyrrhenian fisheries to catch demersal species living a
semi-pelagic lifestyle, characterized by frequent ascending
displacements. Lepidopus caudatus, Sparus aurata and
Dicentrarchus labrax are among the major representatives
of these trawls’ target species. Their main features include
relatively large meshes (up to 1600 mm), a mean vertical
opening of 3 to 4 m, and a four-cable rigging. In semi-pelagic
2-panel trawls, catching efficiency is determined mainly by
the gear’s volume.

Semi-Pelagic 4-Panel Trawls (OTM4)
These trawls are similar to semi-pelagic 2-panel trawls but
characterized by a wider vertical opening usually ranging within
4 to 10 m. Although this trawl typology mainly targets demersal
species, the increased vertical opening also improves their catch
efficiency for pelagic species.

Mediterranean Bottom Beam Trawl Typology
(“Rapido” – TBB)
This peculiar gear type, mostly used in Northern Adriatic
fisheries, is constituted by a cone-shaped net with a mouth
opening that attaches itself to a metallic frame, up to 4 m

wide, that slides on the sea floor aided by sledges. The trawl
uses a rake-like structure, equipped with iron teeth, to dig
through the upper layers of sediment and to forcefully displace its
target species, herding them toward its body. The Rapido trawl
primarily targets flatfish species like Solea solea, Psetta maxima,
Scophthalmus rhombus, and bivalve mollusks like Pecten jacobeus
and Aequipecten opercularis.

Data Analysis – Self Organizing Maps
Data analysis was performed using the R language1. The
collection of technical gears was examined using SOM
(Kohonen, 1982, 2001), an unsupervised neural network-based
approach, commonly used for classification and association,
suitable for non-linear data mining, exploration, clustering and
summarization of the variability in a dataset (Park et al., 2018).
The SOM were applied as an explorative method to examine and
classify vessels and gear records according to similarities in their
technical features. Their predictive power was also evaluated
observing the map’s capability to estimate the major descriptors
of gear and otterboards’ magnitude on the basis of information
regarding the size of the vessel, its geographical provenance and
type of trawling gear used.

1http://cran.R-project.org/
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TABLE 1 | Summary table of the observed gear types and subtypes followed by
an indication of the major species targeted.

Trawl description Trawl type Trawl subtype Species targeted

Demersal/bottom OTB2 Volantina Merluccius

2-panel trawls Tartana Mullus barbatus

Huelvano Merlangius

Fondo duro Trisopterus minutus
capelanus

Cadenero Lophius spp.

Minifalda Nephrops
norvegicus

Twin trawls

Demersal/bottom OTB4 Semitangonero Parapenaeus

4-panel trawls longirostris

Cuadrado pescado Aristaeomoprha
foliacea

Tangonero cuchilla Nephrops
norvegicus

Twin trawls

Cuadrado gamba (rosso)

Tangonero clasico

Dos bocas

Espada

Tangonero

Four faces

Jumeaux

Filet a chaine

Pelagic 4-panel PTM4 Pair trawling Engraulis

trawls encrasicolus

NA Sardina pilchardus

Scomber scombrus

Trachurus

Semi -pelagic OTM2 NA Sparus aurata

2-panel trawls Dicentrarchus
labrax

Lepidopus
caudatus

Semi -pelagic OTM4 Semitangonero Alboran Mixed demersal fish

4-panel trawls Butterfly

Pelagic a corde

Juge a corde

NA

Mediterranean TBB Rapido Solea

Psetta maxima

Scophthalmus
rhombus

Pecten jacobaeus

Aequipecten
opercularis

Self-Organizing Maps algorithms learn from complex
multidimensional data and project the multi-dimensional
data space onto a regular lower-dimensional grid, usually a
two-dimensional space map. The visualization of more than
two dimensions is possible, but a bidimensional map is usually
preferred since it is closer to human perception. The projection is
made preserving the topology (or neighborhood) of the original

dataset, with similar records creating neighboring clusters on
the grid, and distant records expected to be distant on the
map. The distance between sample units and virtual units is
calculated by applying a user-defined distance measure, selected
to provide an accurate data representation on the map (Brosse
et al., 2001). A SOM neural network uses two layers of nodes,
an input layer, connected to the original dataset, and an output
layer (the Kohonen layer). The output layer, made by n neurons,
is a two-dimensional array of virtual units used to represent
in an ordered way the distribution of the original dataset. The
projection of the sample units of the input layer onto the output
layer is achieved through an unsupervised learning algorithm
that calculates the components (Wik) of each virtual unit during
the training phase. The algorithm starts the learning process,
assigning random weights w to the output units, then calculating
the distance between each input vector xij and the weight vectors,
identifying the best matching unit (BMU) for every input vector;
the unit showing minimum distance from the input vector.
A neighborhood is defined around the BMU by the units whose
distance from the BMU is less than or equal to the neighbor
radius r. The units’ weights w are then updated following the rule:

wik (t + 1) = wik (t)+ α (t) hck (t)
[
xij (t)− wik (t)

]
where wik is the weight vector of the BMU, xij is the input
vector and α(t) is the learning rate at the time step (t). The
function in charge of this update is the Neighborhood function,
identified in the equation as hck(t). During the learning process,
the BMU is not the only updated unit, since the units falling
within its neighborhood range are updated as well, in inverse
proportion of their distance from the BMU. The learning rate
and the radius are progressively decreased at each iteration, and
the process is iteratively repeated until an ending criterion is met.
A more complete descriptions of SOM algorithms can be found
in Kohonen (1982, 2001, 2012), Park et al. (2018).

We used two different SOMs, the first for data recovery
and the second for the actual exploration of the dataset. The
first step of the analysis involved dealing with missing data
which, to different degrees, affected the variables describing
vessels’ characteristics. Missing data can be treated with three
possible approaches, they can either be deleted, skipped or
replaced by estimated values (Park et al., 2018). SOMs’ ability to
cluster together in the output space data points showing similar
characteristics makes them reliable candidates for data mining
and recovery, as outliers and gaps in the original dataset can
be replaced by their features in the map (Adeloye et al., 2012).
Strictly speaking, when a vector containing gaps is presented
to the SOM, its BMU can still be identified according to the
other variables available. An estimate of the values for the
missing variables can then be obtained as their corresponding
values in the BMU (Adeloye et al., 2012). Several studies have
already used this approach to recover gaps in datasets with
positive results (Kalteh and Hjorth, 2009; Adeloye et al., 2012;
Mwale et al., 2012, 2014; Kim et al., 2015; Nkiaka et al.,
2016). Following this method, a first SOM was trained to
estimate gaps in vessels’ description where present, using all
the observations available in the dataset (591 records), but
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FIGURE 2 | SOM quality evaluation through the optimization of quantization and topographic error.

keeping only the variables that concern the characteristics of
the fishing vessels. A 6 × 6 virtual unit map was trained
using the “supersom” function from the R package “Kohonen”
(Wehrens and Kruisselbrink, 2018). Map size was decided on the
observation and comparison of two SOM quality measures, the
quantization error and the topographic error. The quantization
error (Kohonen, 2001) represents the average distance between
the nodes and the training data points, while the topographic
error (Kiviluoto, 1996) was calculated as the mean distance
in map coordinates between the BMU and the second BMU
for all data vectors. Both measures were repeatedly calculated
while testing different map sizes with an increasing number
of output neurons. The optimal map size was then defined
aimed at the best tradeoff that minimizes both quantization
and topographic error, as shown in Figure 2. SOM Training
was performed on two separate data layers, the first containing
continuous variables (LOA, GRT, and P) and the second
with categorical data (vessels’ provenance), coded as a binary
variable. The adoption of two separate layers was motivated
by the need to select two different distance measures, each
one appropriate to the specific data typology. For the first
layer the SOM algorithm used Euclidean distance applied to
a transformed dataset, normalized between zero and one, in
the range of the minimum and maximum values of each
variable. Range normalization represented a necessary step to
provide the same weight to all variables, otherwise spanning
very different ranges. For the second layer, distances were
calculated using the Tanimoto distance, which is more suitable
for data with binary-valued features. The outcome of the first
SOM enabled the completion of vessel data, achieved through
the replacement of missing values with their corresponding
values in the BMUs. A second SOM was then trained, this
time using the updated gapless vessels dataset, joined with the

remaining portion of selected variables of interest, describing
fishing gears’ technical features and otterboards’ metrics. The
second map, a 10 × 10 unit map, was trained using the
same algorithm applied to three layers of data, one for vessel
metrics, one for gears and otterboard specifications and a
third one carrying categorical data (reporting vessel provenance
and trawl type). Euclidean distance was used for the first
two layers, along with Tanimoto distance for the third layer.
The SOM algorithm was applied to 80% of the collected net
observations, from a random 80/20 split of the data, into training
and test sets specifically devised to test the map predictive
capabilities on a new dataset and to evaluate its ability to
infer the dimensions of the gear and otterboards used. The
size of the map was decided based on the same optimization
method of topographic and quantization errors previously used
for the first SOM.

SOM and Clustering
Model-based clustering, based on finite Gaussian mixture
modeling, was performed on the trained map to identify
groups of observations with similar metrics. Clustering was
obtained using the Mclust function from the R “Mclust”
package (Scrucca et al., 2016). This function estimates the
optimal number of clusters and defines the best partition
according to the Bayesian Information Criterion (BIC) for
expectation-maximization, initialized by hierarchical clustering
for parameterized Gaussian mixture models. The function runs
several competing models and identifies the best one as the one
with the highest BIC. The optimal number of clusters is defined as
the point at which adding additional clusters no longer increases
the BIC value. This clustering technique is described extensively
in Scrucca et al. (2016). Clustering results were optimized
excluding the cluster analysis variables that did not show
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recognizable patterns, therefore contributing less to the final
distribution of the variables on the map. Clusters were compared,
and between-cluster vessels and gear parameters where further
examined with the purpose to improve the description of the
relationships between various gear components, gear-metrics
and vessel sizes.

Predictive Power and Performance
After the SOM training, the distribution of the variables on the
created map remains fixed and can be used to predict values
for new observations. This process is very similar to a linear
regression, where the parameters of a function are estimated
first, then the defined function is used to predict the value of
the dependent variable of interest for new observations. A SOM
can be considered as a form of non-linear regression without
a presupposed form of a defined function. Given the non-
linearity of the model, defining the exact contribution to the
estimated values could be trivial, but its performance can still be
measured using common statistical techniques. The trained SOM
was used to infer the dimensions of gears and otterboards used,
estimated on the basis of quantitative variables (vessel metrics),
and qualitative descriptors (vessel provenance and gear type), for
the observations contained in the test dataset. The performance
of the obtained predictions was assessed comparing predicted
estimates with real observed values. A common measure of the
performance of a linear regression model is the coefficient of
determination. Given the non-linearity of SOMs, in this case
the R2 coefficient was not the appropriate method of model
performance assessment, but still a simulated R2 coefficient was
calculated assuming that the predicted results constituted the
outcome of a linear model. We created several scatterplots of
predicted vs. observed values, then calculated a linear regression
through these values, calculating the associated R2 measure. The
simulated coefficient is not comparable to the R2 measure in
a linear regression model but could still be used to explore
model performance and to approximate a description of the fit

of predicted values to the observed values. This procedure is
described in Tan et al. (2002).

RESULTS

Database Description
The original database contained more than 600 trawling gear
records, 589 of which were effectively analyzed during this
research study. A few records were excluded from the analysis
due to too much missing data, resulting in the inability of the
SOM to classify them correctly and properly assigning them to a
BMU. Beam trawl data were also omitted due to the small number
of records (less than 10) associated with trawl gear metrics that
were too different from the rest of the dataset. Their presence,
taken into consideration at first, was finally ruled out as they
generated anomalous peaks in the trained map. The analyzed
dataset is then composed of 55.68% of OTB2, 32.25% of OTB4,
9% of OTM4, 1.69% of PTM4 and 1.32% to OTM2. Trawling gear
records belong to eight different countries, with approximately
44% of the records belonging to Italy, 40.77% coming from Spain,
6.26% from Greece, 4.56% from Turkey and 3.55% from France.
Croatia, Tunisia and Cyprus are represented in the dataset with
less than 1% of the data. Table 2 shows a summary of the
descriptive statistics of gear and vessel metrics observed, without
a subdivision per trawl typology.

Self-Organizing Maps and Data Recovery
The first SOM is represented by a map of 36 output units,
generated from two information layers, the first one containing
normalized vessel metrics (LOA, GRT, and Engine Power) and
the second one containing geographical information such as the
vessel’s nationality and port of origin, coded as binary variables.
The map training process went through 18,000 iterations,
following the suggestion of Kohonen (2001), which recommends
that the number of iterations in the training process should be

TABLE 2 | Summary table of the descriptive statistics of gear, vessel and otterboard’s metrics observed.

Item Acronym Units Min Max Mean Median SD

Vessel length overall LOA m 9.01 37.2 21.85 21.84 4.81

Vessel engine Power P hp 80 3200 835.8 660.0 499.77

Gross Registered Tonnage GRT GT 13.0 285.5 85.17 79.0 55.86

Total available towing force TAT kg 581.6 19680 6517.3 5409.3 3704.50

Headline HL m 14.0 128–0 53.79 48.5 22.33

Footrope FL m 16.0 162.41 69.79 63.00 29.53

Trawl length TrL m 2.98 219.86 61.60 54.21 30.01

Square width Wsq m 12.44 188.10 41.84 36.97 19.58

Fishing circle FC m 16.48 409.6 75.28 58.00 49.97

Trawl weight TrW kg 7.94 778 280.6 244.08 182.06

Primary hanging ratio E1 – 0.03 0.90 0.37 0.34 0.12

Horizontal door spread HDS m 6.29 291.85 89.89 84.92 38.94

Horizontal net opening HNO m 1.26 106.24 19.57 17.54 9.66

Otterboard length OBL m 0.92 3.37 1.90 1.86 0.39

Otterboard height OBH m 0.45 1.87 1.24 1.2 0.32

Otterboard projected area OBA m2 0.57 5.0 2.32 2.15 0.98
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FIGURE 3 | Results of the first trained SOM. From (A–C) the patterns of the considered unscaled vessel metrics are represented in a color scale; (D) shows the
“codes plot,” representing the magnitude of each variable per output unit.

at least 500 times the number of network units. All output units
were associated with input records in the training dataset, with
no empty units emerging at the end of the training process.
The number of input records associated with each unit ranged
between one and 30 with an average of 14.72 records associated
per unit. The main results of the SOM are reported in Figure 3.
The trained SOM revealed very similar distribution patterns for
the continuous variables observed, showing a diagonal gradient
that places smaller vessels, characterized by minor LOA, GRT

and P, in the upper left corner of the map, and larger vessels in
the lower right corner, with values gradually increasing along the
diagonal connecting the two corners. According to the gradient
shown, vessels characterized by average tonnage, length and
engine power are distributed in the central area of the map,
following the diagonal connecting the two opposite corners.
Although the patterns returned by the map agree in the general
distribution of the vessels, the observed gradients diverge slightly
from one another in the positioning of the extreme peaks in the
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units of the map (near but not necessarily overlapping) and for
the smoothness in the transition from smaller to higher values,
indicating the non-linear nature of the correlation between the
observed variables. No further analysis was carried out on the
first trained map, which represented only an intermediate step.
The estimates delivered by the SOM output units, based on the
similarity of the weight vectors, were used as a replacement of the
gaps in the original dataset.

Second Map - Analysis of the Observed
Patterns
The final trained SOM is a map of 10 × 10 output units,
generated from three information layers, the first two containing
normalized vessel metrics (LOA, GRT, TAT, and P) and
normalized gear and otterboard measurements (HL, FL, TrL,
Wsq, FC, TrW, E1, HDS, HNO, OBH, OBL, OBA), and a third
one containing categorical variables such as trawl type and gear’s
nationality, coded as binary variables. The map training process
went through 50000 iterations, a number determined following
the same procedure adopted during the training of the first
SOM. Only four out of 100 units were not associated with input
records in the training dataset at the end of the training process.
The number of input records associated with each output unit
ranged between one and 17 with an average of 4.89 records
associated per unit. Figure 4 shows how the different variables
relate to each other within the trained map. A first observation
of the patterns delivered by the SOM shows a distribution of
the highest values in the upper half of the map, followed by
a concentration of the lower values in the lower half. A finer
observation highlights a general distribution trend of the highest
values in the upper right corner for vessel metrics such as engine
power and TAT, gear metrics such as HL, FL, gear length and
gear weight, and otterboard descriptors such as otterboard height
and the projected area. Associated with the distributions of gear
type and country of origin, these higher values can be ascribed
to the Spanish gear types OTB2, OTB4 and OTM4 and to the
French gear type OTM4.

The vessel variables LOA and GRT showed a second peak in
the upper left corner of the map, which however, are associated
average values in terms of trawl size, belonging to the fishing gear
types OTB2, PTM4, and OTM4, all of Italian origin. The variables
HL, TrL, Wsq, FC, TrW showed two evident peaks of maximum
values in two units positioned on the left and right of the first
line of hexagons in the upper portion of the map. Those units
correspond to the larger size category of Italian PTM4 trawls,
and to the larger size category of French OTM4 fishing gears,
respectively. The minimum values in terms of size of the vessel
and the size of the gear used are displayed on the map in the
lower left corner, dominated by OTB2 gears of Italian origin.
It was not possible to identify any recognizable pattern for the
variables HDS and HNO, while the hanging ratio E1 displayed
a rather homogeneous distribution gradient, with slightly higher
values displayed by gears of a smaller size class (lower right corner
of the map). Regarding the distribution patterns of gear types
and geographical provenance, the gear type OTB2 clustered on
the left side of the map, while the right side of the map was

dominated by the OTB4 gear type. Italian and Spanish trawls
almost followed the same distribution pattern with a small degree
of overlap. The OTM4 trawl type was almost entirely positioned
in the upper right portion of the map, among gears belonging to a
larger size class, with a second cluster of three units placed in the
central-lower portion of the map. Pelagic 4-panel trawls clustered
in the upper left corner, in the larger vessel and gear class, while
OTM2 records did not show any recognizable pattern. Greek and
Turkish trawls clustered on the left side of the map, among the
OTB2 gear type and the average and average-to-small vessels and
gear classes, respectively. Finally, Tunisia, Croatia and Cyprus
had concentrated values within single output units, scattered in
the OTB2 portion of the SOM.

Cluster Analysis
The model-based clustering approach based on finite Gaussian
mixture modeling evaluated 14 competing models, choosing
an ellipsoidal, equal shape and orientation (VEE) model with
four components as the best model, indicating an optimal
partition of the trained map in four clusters. The HDS and
HNO variables were excluded from the cluster analysis as
they did not show recognizable patterns, but an approximately
homogeneous distribution of values instead, evenly spread all
over the map. The outcome of the clustering algorithm and the
resulting partition transposed on the trained map are shown in
Figure 5. The clustering algorithm partitioned the trained map
into four subgroups, one for the smaller vessel/gear/otterboard
combinations (Cluster 1), another for the heavyweight class
(Cluster 3), and two clusters for the average sized vessels (Clusters
2 and 4), which did not necessarily correspond to medium sized
gears. Cluster 1, was placed at the bottom of the map, gathering
smaller vessels with an average 8.19 m LOA, 368.3 hp and 42.88
GRT; corresponding to the average trawl length of 43.08 m,
a square width of 17.77 m, FC of 33.68 and trawl weight of
149.0 kg. Cluster 3, was placed at the top of the map, collecting
observations pertaining to the larger LOA and GRT vessels, but
characterized by a wide variability in terms of engine power.
Vessels belonging to this cluster share an average 19.77 m LOA,
1345.0 hp and 219.1 GRT; corresponding to the average trawl
length of 78.43 m, square width of 45.58 m, FC of 110.03 and trawl
weight of 318.43 kg. Clusters 2 and 4 represented the average size
class vessels and shared very similar characteristics in terms of
LOA and GRT. These two clusters were instead very different
in terms of engine power, with Cluster 2 vessels characterized
by an average 634.1 hp and Cluster 4 vessels characterized by
an average 1102 hp. In this case the observed differences in
engine power translated into marked differences in the size of the
gears deployed. Cluster 2 vessels operated trawls characterized
by an average length of 42.3 m, square width of 26.17 m, FC
of 36.7 and trawl weight of 135.3 kg. Cluster 4 vessels, on the
other hand, deployed trawls characterized by an average length
of 88.09 m, square width of 39.55 m, FC of 88.95 and trawl
weight of 419.4 kg. A summary of the reported average value
for each cluster is reported Table 3, while a description of each
variable range, median and interquartile ranges divided by cluster
is available in Figure 6.
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FIGURE 4 | Trained SOM. The distribution pattern of the observed variables, normalized between 0 and 1, is expressed in the SOM using a color scale. Darker areas
correspond to the higher values of each variable.
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FIGURE 5 | (A) Outcome of the clustering algorithm and (B) the resulting partition transposed on the trained map.

SOM Predictive Performance Evaluation
The analysis of 472 observations, corresponding to 80% of
the dataset, allowed the investigation of the SOM’s ability
to predict gears and otterboard sizes for the remaining 20%
of the dataset, with a total number of 119 observations.

The prediction was based on independent variables describing
vessel size and the categorical factors indicating gear type and
vessel provenance. A simulated R2 coefficient was calculated
assuming that the predicted results constituted the outcome of
a linear model. It was then used to explore model performance

TABLE 3 | Summary table of the observed statistics for the identified clusters.

Item Acronym Units Cluster 1 Cluster 2 Cluster 3 Cluster 4

Vessel length overall LOA m 8.19 15.33 19.77 14.44

Vessel engine Power P hp 368.3 634.1 1345 1102

Gross Registered Tonnage GRT GT 42.88 87.53 219.1 65.11

Total available towing force TAT kg 2945 5040 10687 8589

Headline HL m 25.44 31.34 49.42 65.15

Footrope FR m 35.28 41.28 66.51 87.48

Trawl length TrL m 43.08 42.3 78.43 88.09

Square width Wsq m 17.77 26.17 45.58 39.55

Fishing circle FC m 33.68 36.7 110.03 88.95

Trawl weight TrW kg 149 135.33 318.43 419.4

Primary hanging ratio E1 – 0.33 0.37 0.31 0.29

Horizontal door spread HDS m 74.79 82.15 80.88 98.14

Horizontal net opening HNO m 13.11 17.62 20.97 25.15

Otterboard length OBL m 1.63 1.82 2.32 2

Otterboard height OBH m 1.06 1.1 1.51 1.54

Otterboard projected area OBA m2 1.5 1.69 3 2.88

Country Italy – % 56.20 73.88 37.25 0

Country Spain – % 30.70 1.49 37.25 100

Country Turkey – % 6.52 8.95 0 0

Country Greece – % 5.88 12.68 0 0

Country France – % 0.65 0 25.49 0

Country Croatia – % 0 0.74 0 0

Country Tunisia – % 0 1.49 0 0

Country Cyprus – % 0 0.74 0 0

Gear type OTB2 OTB2 % 67.97 85.07 35.29 20.45

Gear type OTB4 OTB4 % 23.52 8.95 33.33 62.87

Gear type OTM4 OTM4 % 5.22 4.47 17.64 16.66

Gear type PTM4 PTM4 % 0 0 13.72 0

Gear type OTM2 OTM2 % 3.26 1.49 0 0

Frontiers in Marine Science | www.frontiersin.org 11 September 2019 | Volume 6 | Article 534

https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-06-00534 September 10, 2019 Time: 14:52 # 12

Sala et al. Gears, Otterboards and Fishing Vessels

FIGURE 6 | Description of each variable range, median and interquartile ranges divided by cluster.

and to approximate a description of the fit of the predicted
values to the observed values. The SOM predictive ability
performed differently depending on the variable considered,
obtaining the best results in the prediction of trawl length,
headline length, footrope length and otterboard area variables.
A summary of the evaluation of the SOM predictive performance
is available in Figure 7.

DISCUSSION

The continuous improvement of fishing efforts and capacity
descriptors is an essential element for the adoption of reliable
management measures, aimed at the optimization of fishing
activity revenues and the concurrent maintenance of sustainable
exploitation levels. The purpose of this work was to explore the
relationship that connects vessel size to the size of the fishing
gear deployed, to facilitate tracing the dimensions of the trawl
from readily available information like LOA, tonnage and the
engine power of the vessel. If such a relationship were accurately

described, it would be extremely useful to tailor specific
management measures for specific fleet segments, improving
the estimate of the impact exerted on the populations of target
species. To the best of our knowledge, this is the first study
using SOM applied to the exploration of these technical aspects
of fishing activity, taking advantage of the capability of neural
networks to perform non-linear data mining, clustering and
summarization of the multidimensional variability of a dataset.

The main outcome of the study is that a simple relationship
connecting vessels’ magnitude and gear size could not be
described, confirming the findings produced by other authors
in previous studies (Reid et al., 2011). Certainly, the patterns
described by the SOM suggests the existence of a general trend
that associates the increasing dimensions of the vessel with
an increasing size of gears and its components, but the great
amount of variability observed in the dataset, reflected in the
heatmaps delivered by the SOM, suggests the interaction of
multiple factors in determining the size of the fishing gear. A first
variable to consider is the distribution of vessel-metrics within
the fleet, displayed by the first map, trained using only vessel
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FIGURE 7 | Summary of the evaluation of the SOM predictive performance. (A) Trawl length, (B) Trawl weight (C) Fishing circle, (D) Headline length, (E) Footrope
length, (F) Otterboard area, (G) Otterboard height, (H) Otterboard length.
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size descriptors and their geographical origin. Although the first
map was only devised for the estimation of missing data in the
dataset, it proved useful to observe the distribution of vessel-
metrics within the fleet that are not influenced by any additional
factor. The patterns displayed by the first SOM suggests a general
trend that indicates a correlation between the length of a vessel, its
tonnage and the power of the engine. At the same time, however,
the positioning of the extreme values in near but non-overlapping
units of the map, better defined the nature of this correlation,
characterizing it as non-linear. Vessel-metrics per se cannot
be described by a simple linear relationship, even without the
intervention of any additional factor, and this evidence already
sets a first level of complexity to consider while studying the
relationship between vessels and gears used.

The complexity of the analysis increased with the addition of
the parameters pertaining to fishing gears, which complicated the
distribution of the patterns in the map. The length of the vessel
and gross registered tonnage, described by a unique gradient
when only vessel-metrics are considered, resulted divided by the
addition of descriptive parameters of the fishing gear, and showed
patterns of distribution that associated large-sized boats with
different gear sizes, depending on the type of gear, nationality
and geographical origin of the vessels. The subdivision of the map
into clusters facilitated the identification of extremes in the fleet
in terms of vessel and gear size (Clusters 1 and 3), as well as the
definition of the intermediate clusters (Clusters 2 and 4), where
important differences could be highlighted. In Clusters 2 and
4 vessels characterized by very similar LOA and GRT reported
marked differences in terms of engine power. This difference
allowed the vessels belonging to cluster 4 (Spanish vessels using
gears of the OTB4 type) to operate with much larger trawls,
often equal in size to the gears used by the heavyweight class of
the analyzed fleet. Among vessel descriptors, engine power was
the only variable showing a unique gradient on the map, that
associated higher hp values to a larger size gear. This association
is visible when comparing the engine power gradient with the
distribution patterns of gear descriptors like headline length,
footrope length, trawl length, trawl weight, square width, fishing
circle and the size of the otterboards used. This result suggests
that the engine power, more than the size of the vessel (GRT or
LOA), has the greatest influence on the size of the gear deployed.
Given two vessels of similar magnitude, a greater engine power
grants much more freedom in the choice of the size of the trawl
and consequently in the type of fishing that can be practiced. This
parameter, more than vessel size, should certainly have a greater
relevance when formulating management indications.

The size of the gear used is also dependent on gear type,
and varies with the geographical origin of the vessel. In fact,
gear type and geographical origin were important variables
used by the SOM when estimating gear-metrics and otterboard
magnitudes. The inclusion of these factors has indeed contributed
to improving the SOM’s predictive performance. In many
cases the map was able to infer gear and otterboard metrics
properly, but its performance can certainly be enhanced through
a training phase performed on a larger dataset, and via the

inclusion of additional descriptors that might be still missing.
The geographical variability observed could probably be traced
back to a similarity which characterizes vessels belonging to
the same local fleet, which usually share similar characteristics
and adopt similar solutions in the implementation of a peculiar
type of fishing. This speculation, if confirmed, would discourage
the adoption of fleet management measures applied on an
international scale, in favor of solutions that give greater
relevance to local homogeneity/variability.

Future Steps
From this analysis, an excessive variability in the description
of the vessels/gears of greater size has emerged, indicating that
the dataset should be expanded to provide a more accurate
description of this fleet component. Furthermore, the dataset
considered provided an adequate description of a portion of
the fleet pertaining to two countries (Italy and Spain) but did
not allow an equally adequate characterization of the intrinsic
variability of other fleets operating in the Mediterranean Sea.
Geographical variability has greatly contributed to improving the
predictive capabilities of the trained map, suggesting that the
dataset should be enriched to consider the regional variability
characteristic of Mediterranean fleets even more. A step forward
in this direction would also be the inclusion of the species
targeted by each fishery/gear combination. The incorporation of
these variables, and others to be evaluated, would certainly allow
the improvement of descriptive and forecasting models, and will
be considered in a future work.
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