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Seaweed aquaculture is a rapidly growing component of marine food production, but
the capacity to control seaweed growth lacks behind that of land agriculture. Seaweed
growth requires nutrients, acquired from dissolved pools through their fronds, and
light, and, as such may also be density-dependent, but general relationships between
seaweed growth, nutrient concentration and incident irradiance are not yet available. We
used a dataset of 1729 experimental assessments of seaweed specific growth rates and
density under various nutrient and irradiance levels retrieved from the published literature
to examine the relationship between seaweed growth, density, irradiance, and nutrient
concentration. This analysis confirmed strong density-dependence of seaweed specific
growth rates, and further confirmed that nutrient and irradiance limitation strongly
impose density-dependent seaweed growth. These findings demonstrate that nutrient
and irradiance limitation modulate density-dependent seaweed growth, and can help
maximize growth rates in seaweed aquaculture, a rapidly growing component of global
aquaculture production, by manipulating stocking density where nutrients are scarce
and/or underwater light penetration poor.
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INTRODUCTION

Plant stands typically show an upper, size-dependent limit to their abundance, which is expressed
in the self-thinning law (Westoby, 1984). Whereas this relationship has been described across
terrestrial and aquatic plants (Arenas et al., 2002; Reynolds and Ford, 2005; Li et al., 2013), the upper
density for terrestrial plants is about 10-fold higher than that for aquatic photosynthetic organisms,
for a given size (Agusti et al., 1987; Duarte and Kalff, 1987). This difference was interpreted as
reflecting the different light environment experienced by plants growing on land and submerged
(Duarte and Kalff, 1987), since the self-thinning law has been explained to derive from self-shading
with increasing density.

However, in contrast to terrestrial plants, which take up nutrients from the soil, seaweed
take up nutrients from dissolved nutrient pools through their fronds. Indeed, nutrient uptake by
macroalgae has also been reported to be size-dependent, specifically increasing with the surface
to volume ratio (or decreasing with thickness) of the plants (Hein et al., 1995). Hence, nutrient
limitation may pose an additional constraint to the upper limit of seaweed density beyond
which is imposed by light-limitation through self-shading. This hypothesis provides an alternative
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explanation for the order-of-magnitude lower density aquatic
photosynthetic organisms can support compared to terrestrial
plants of similar size (Duarte and Kalff, 1987). Moreover, the
notion that both nutrients and light set the upper limit to the
density of seaweed is supported by the observation that the
highest biomass and density of seaweed is found in high-energy
environments, such as kelp beds (Cheshire and Hallam, 1988),
as high turbulent energy facilitates nutrient uptake (Hurd et al.,
1996; Hurd, 2000; Wernberg and Connell, 2008).

Understanding the regulation of seaweed growth has now
gained particular importance, as seaweed aquaculture is a rapidly
growing component of marine aquaculture (Duarte et al., 2009)
and relies on ambient nutrients and irradiance. The development
of general relationships between seaweed growth and resource
(light and nutrient) availability and density can, therefore, select
sites and conditions, as well as stocking density, to maximize
seaweed growth in aquaculture. Indeed, nutrients may become
limited to seaweed aquaculture as this industry expands (Xiao
et al., 2017), and create a demand for relationships between
seaweed growth and resource availability, which, surprisingly, has
not received much attention in the past.

Here we test the hypothesis that irradiance, nutrient limitation
and density regulate seaweed growth. We do so through an
analysis of the role of nutrients, density and irradiance in
modulating the density-dependence of seaweed growth based on
a comparative analysis of data on specific growth rates of seaweed
across a range of densities under controlled nutrient conditions in
the laboratory and aquaculture farms.

MATERIALS AND METHODS

We searched the published literature for data on the density-
dependence of seaweed growth under different nutrient levels.
The search was based on the Web of Science R©, accessed
in May 2019, using a combination of keywords including
“seaweed and remediation,” “seaweed and bioremediation,”
“seaweed and nitrogen removal,” and “seaweed and phosphorous
removal.” These searches yielded a total of 164 papers
reporting growth rates and biomass density for seaweed. We
retrieved the growth rates, biomass density, concentration of
the dominant forms of inorganic nutrients - ammonia, nitrate
and phosphate – and incident irradiance, and recorded the
taxa (chlorophyta, phaeophyta or rhodophyta). This generated a
raw dataset containing a total of 1729 experimental assessments
(Supplementary Table S1). For all the assessments, we further
converted all growth rates to units of % day−1 and biomass
density (i.e., the seaweed biomass per unit habitat volume) to g
FW L−1. A total of 733 experimental assessments included data
on specific growth rate and initial cultivation biomass density,
while a total of 854 experimental assessments included data on
seaweed specific growth rates and irradiance (Xiao et al., 2019).

The density-dependence of specific seaweed growth
(SGR, % d−1) was described using a power law of the
form SGR = a BDx, where BD is the biomass density (BD,
g FW L−1) and x is the power exponent describing the
scaling of SGR to BD. Similarly, the irradiance-dependence
of specific seaweed growth (SGR, % d−1) was described

using a power law of the form SGR = a Ix, where I is
the irradiance (I, µmol photon m−2 s−1) and x is the
power exponent describing the scaling of SGR to I. The
relationship was fitted using model I linear regression on log10
transformed variables. The role of nutrients in modulating
the density dependence of seaweed growth rate (log10
transformed) was then examined by fitting a general linear
model including log10 transformed density, irradiance and
nutrient (N, ammonia, nitrate or phosphate, mmol L−1)
concentrations as independent variables, yielding the equation
log10 SGR = a+ x1 log10 BD+ x2 log10 I+ x3 log10 N, which
is equivalent, in arithmetic scale, to SGR = 10a BDx1 Ix2 Nx3,
thereby involving interactions between density, irradiance and
nutrient concentrations as covariates. All statistical analyses
were conducted using JMP v. 10 software. The data supporting
this study are available from the open access data repository
PANGAEA (Xiao et al., 2019).

RESULTS AND DISCUSSION

Specific growth rates ranged from below detection limit to very
fast rates of 54.6% d−1, with an average (±SE) of 6.40 ± 0.18%
d−1 (median 4.51% d−1), and the biomass density ranged from
0.04 to 25 g FW L−1, with an average (±SE) of 3.43 ± 0.11 g
FW L−1 (median 2.0 g FW L−1) (Xiao et al., 2019). The mean
biomass density of 2.0 g FW L−1 for seaweed density in the data
set corresponds, assuming a density of 1, to an occupation of
0.2% of the available volume by seaweed biomass. This is similar
to results derived from examination of the size-dependence of

FIGURE 1 | The relationship between specific growth rate (SGR) and biomass
density (BD) for seaweed growing under experimental or culture conditions.
The closed symbols show the mean values for BD bins of 0.1 g FW L−1, for
BD < 1 g FW L−1, and intervals of 1 g FW L−1 for greater values, and the
insert shows the raw values. The fitted power law for the binned and raw data
are SGR = 17.4 BD−1 .44 ± 0 .18 (R2 = 0.51, F = 61.96, N = 60, P < 0.001)
and SGR = 5.06 BD−0 .21 ± 0 .03 (R2 = 0.06, F = 43.3, N = 733, P < 0.001).
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the maximum abundance of aquatic organisms in culture, which
indicates that they can occupy, at maximum density, 0.1% of the
available volume regardless of whether they are photosynthetic
organisms or animals (Duarte et al., 1987; Marquet et al., 1995).

Specific seaweed growth declined with biomass density
(Figure 1) as described by the power law SGR = BD−1.44(±0.18)

(Figure 1), independently of taxa (ANOVA, P > 0.05), with
SGR declining from average values of 10% day−1 at BD less
than 0.2 g FW L−1 to <1% day−1 at BD >8 g FW L−1. SGR
increased with incident irradiance as described by the power
law SGR = I 1.72(±0.18) (Figure 2), with SGR increasing from
<0.1% day−1 at I < 100 µm photon m−2 s−1 to average values
of 100% day−1 at I > 10,000 µm photon m−2 s−1.

General linear models showed that the SGR yielded the
fitted equation:

SGR = −0.03− 0.51(±0.04) log 10BD+ 0.30(±0.05) log 10I

+ 0.08(±0.01) log 10NO3

Where nitrate has units of µmol L−1 (R2 = 0.39, N = 349,
F = 74.16, P < 0.001 and t-test for all slopes have P < 0.001).
While the fitted relationship for ammonia concentrations
(µmol L−1) was

SGR = −0.37− 0.37(±0.04) log 10BD+ 0.30(±0.05) log 10I

+ 0.17(±0.03) log 10NH4

(R2 = 0.33, N = 275, F = 44.4, P < 0.001 and t-test for all slopes
have P < 0.001).

FIGURE 2 | The relationship between SGR and irradiance (I) for seaweed
growing under experimental or culture conditions. The closed symbols show
the mean values for BD bins of 0.1 g FW L−1, for BD < 1 g FW L−1, and
intervals of 1 g FW L−1 for greater values, and the insert shows the raw
values. The fitted power law for the binned and raw data are
SGR = 2.0 × 10−7 I 1 .72 ± 0 .18 (R2 = 0.60, F = 90.7, N = 61, P < 0.001) and
SGR = 0.58 I −0 .41 ± 0 .03 (R2 = 0.15, F = 143.8, N = 854, P < 0.001).

The general model with phosphate concentrations did not
yield a significant effect for phosphate (P > 0.05).

These relationships show that seaweed growth rate for any
given density increases as the 1/3 power of irradiance and
increases much faster with increasing nitrogen when this is
supplied as ammonium compared to nitrate (Figure 3).

These results confirm that the density-dependence of
seaweed growth rate is imposed by nitrogen and light
limitation, with seaweed growing under high nutrient
supply and incoming irradiance able to sustain high growth
rates, even when occupying 2% of the available space
(Figure 2). Our results also demonstrate a contrasting role
for phosphate, nitrate, and ammonia, with growth rates
independent of phosphate concentrations, and increasing

FIGURE 3 | The fitted relationships between SGR and BD for seaweed
growing under experimental or culture conditions under different irradiance (I),
ammonia (NH4

+), and nitrate (NO3
−) concentrations. The solid lines

correspond to the fitted general linear models log10 SGR = –0.03–0.51
(±0.04) log10 BD + 0.08 (±0.02) log10 NO3 + 0.30 (±0.05) log10 I (R2 = 0.39,
F = 74.16, N = 349, P < 0.0001), and log10 SGR = –0.37–0.37 (±0.04) log10

BD + 0.17 (±0.03) log10 NH4 + 0.30 (±0.05) log10 I (R2 = 0.33, F = 44.4,
N = 275, P < 0.0001), respectively. Low I, medium I and high I are 10, 125,
and 1000 µm photon m−2 s−1, respectively, which are the 2.5, 50, and
97.5% quantiles of the irradiance data. (A–C) Seaweed growth in response to
nitrate (NO3

−), under low, medium and high irradiance, respectively; (D–F)
seaweed growth in response to ammonia (NH4

+), under low, medium and
high irradiance, respectively.
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faster, for a given concentration, with increasing ammonia
compared to nitrate (Figure 3). High irradiance and ammonia
concentrations allow seaweed to achieve high growth rates,
approaching 10% day−1 even at high biomass density
(3 g FW L−1 or 3% of available space, Figure 3).

The results presented explain the high yield of seaweed in
the intensive farms that have proliferated along much of the
coast of China, where eutrophication leads to very high nutrient
concentrations exceeding 127 µmol NH4 and 2.21 µmol PO4
along much of the coast of China (He et al., 2008; Huo et al., 2011;
Wu et al., 2015; Xiao et al., 2017). Moreover, these findings may
also help explain the occurrence of massive green tides in Chinese
coastal waters in recent years, where over 1 million tons of green
algae were removed from the coast during Olympic sailing events
in 2008 (Wang et al., 2015; Zhou et al., 2015). The density-
dependence of seaweed growth reported here is also consistent
with the use of thinning to promote the growth and maturation
of U. pinnatifida sporophytes in the field (Gao et al., 2014).

Whereas light limitation, resulting from self-shading, will
impose an ultimate limit to seaweed growth with increasing
biomass density (Westoby, 1984; Duarte and Kalff, 1987), the
results presented show that the upper limits to seaweed growth
in dense stands are likely imposed by nitrogen, particularly
ammonium concentration, together with light, which impose an
ultimate limit at biomass densities above those observed in dense
seaweed stands, such as those proliferating in hypereutrophic
Chinese coastal waters during green tides. Hence, nutrient and
light limitation help explain the 10-fold lower density, for a given
plant size, of seaweed, as well as other aquatic photosynthetic
organisms, compared to terrestrial plants (Agusti et al., 1987;
Duarte and Kalff, 1987).

The results presented here can help predict potential seaweed
yields in aquaculture, given incident irradiance and nutrient
concentrations, and also inform how density can be managed
to achieve maximum growth where nutrient concentrations and
or light maybe limiting. Because space is rarely a constraint
in seaweed aquaculture (e.g., Oyinlola et al., 2018), reducing

stocking density may allow high growth rates and yields in
nutrient-poor coastal waters.
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