
PERSPECTIVE
published: 25 September 2019
doi: 10.3389/fmars.2019.00627

Frontiers in Marine Science | www.frontiersin.org 1 September 2019 | Volume 6 | Article 627

Edited by:

Carlos M. Duarte,

King Abdullah University of Science

and Technology, Saudi Arabia

Reviewed by:

Andrés Cózar,

Universidad de Cádiz, Spain

Angel Borja,

Technological Center Expert in Marine

and Food Innovation (AZTI), Spain

*Correspondence:

Andrew Forrest

aforrest@minderoo.com.au

†ORCID:

Sarah Dunlop

orcid.org/0000-0002-1306-3962

Specialty section:

This article was submitted to

Global Change and the Future Ocean,

a section of the journal

Frontiers in Marine Science

Received: 15 August 2019

Accepted: 25 September 2019

Published: 25 September 2019

Citation:

Forrest A, Giacovazzi L, Dunlop S,

Reisser J, Tickler D, Jamieson A and

Meeuwig JJ (2019) Eliminating Plastic

Pollution: How a Voluntary

Contribution From Industry Will Drive

the Circular Plastics Economy.

Front. Mar. Sci. 6:627.

doi: 10.3389/fmars.2019.00627

Eliminating Plastic Pollution: How a
Voluntary Contribution From Industry
Will Drive the Circular Plastics
Economy
Andrew Forrest 1,2*, Luca Giacovazzi 2, Sarah Dunlop 1†, Julia Reisser 2,3, David Tickler 1,2,

Alan Jamieson 4 and Jessica J. Meeuwig 1,3

1 School of Biological Sciences, The University of Western Australia, Perth, WA, Australia, 2 The Minderoo Foundation, Perth,

WA, Australia, 3 The UWA Oceans Institute, The University of Western Australia, Perth, WA, Australia, 4 School of Natural and

Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom

Marine plastic pollution is a symptom of an inherently wasteful linear plastic economy,

costing us more than US$ 2.2 trillion per year. Of the 6.3 billion tonnes of fossil

fuel-derived plastic (FFP) waste produced to date, only 9% has been recycled; the rest

being incinerated (12%) or dumped into the environment (79%). FFPs take centuries to

degrade, meaning five billion tonnes of increasingly fragmented and dangerous plastics

have accumulated in our oceans, soil and air. Rates of FFP production and waste

are growing rapidly, driven by increased demand and shifting strategies of oil and gas

companies responding to slowing profit growth. Without effective recycling, the harm

caused by FFP waste will keep increasing, jeopardizing first marine life and ultimately

humankind. In this Perspective article, we review the global costs of plastic pollution

and explain why solving this is imperative for humanity’s well-being. We show that

FFP pollution is far beyond a marine environmental issue: it now invades our bodies,

causing disease and dysfunction, while millions of adults and children work in conditions

akin to slavery, picking through our waste. We argue that an integrated economic

and technical solution, catalyzed through a voluntary industry-led contribution from

new FFP production, is central to arrest plastic waste flows by making used plastic a

cashable commodity, incentivizing recovery and accelerating industrialization of polymer-

to-polymer technologies. Without much-needed systematic transformation, driven by a

contribution from FFP production, humanity and the oceans face a troubling future.

Keywords: oceans, plastics, circular economy, voluntary contribution, technology, waste, linear consumption

model, Sea The Future initiative

INTRODUCTION

Plastics are a ubiquitous and persistent form of marine pollution (Gago et al., 2018; Angiolillo,
2019; Barboza et al., 2019a,b) with contamination levels rising drastically on beaches (Barnes, 2005;
Kako et al., 2014; Lavers and Bond, 2017), the seafloor (Matsuguma et al., 2017) and coastal and
oceanic waters (Lebreton et al., 2018; Ostle et al., 2019). While our knowledge of ocean plastics is
far from complete, the best available predictions suggest that with increasing mismanagement of
fossil fuel-derived plastics (FFP) (Lebreton and Andrady, 2019) there will be one tonne of ocean
plastic for every three tonnes of fish by 2025 (Ellen MacArthur Foundation, 2017), the equivalent
of 600 plastic bags for every ten-kilogram fish. Themost visible impact of marine plastic pollution is
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its harm to marine megafauna (Galgani et al., 2019) including
turtles (Lynch, 2018; Wilcox et al., 2018), mammals (Panti et al.,
2019), birds (Wilcox et al., 2015) and sharks (Parton et al.,
2019), which ingest and become entangled in FFP with fatal
consequences (Stelfox et al., 2016; Provencher et al., 2017).
Millions of marine animals of at least 260 species die annually
due to interactions with FFP (Moore, 2008; Thompson et al.,
2009; Claro et al., 2019). These numbers are likely to increase
as smaller and more elusive organisms are examined (Jamieson
et al., 2019). Additionally, plastics transport invasive species
and pathogens between marine regions (Rech et al., 2016;
Lamb et al., 2018), inhibit gas exchange between sea water and
seafloor sediments (Goldberg, 1997), and smother fragile seafloor
inhabitants (Gregory, 2009).

Marine plastic pollution not only comprises visible items, such
as single-use packaging and fishing gear, but also microplastics,
particles <5mm (Hidalgo-Ruz et al., 2012), and nanoplastics,
<1µm (Gigault et al., 2018), released directly into the
environment or created by the fragmentation of larger items.
The legacy and reach of FFP is strikingly demonstrated by its
impact on the most remote and inaccessible marine ecosystems.
Jamieson et al. (2019) recently detected synthetic particles in
the hindguts of the majority of crustaceans sampled in deep
ocean trenches around the Pacific Rim, at depths from 7,000
to 10,890m, the latter being the deepest point of the ocean.
Over 72% of specimens contained at least one synthetic item
in their digestive systems. Concerningly, preliminary Fourier-
transform infrared spectroscopy (FTIR) analyses suggest that
most of these synthetic materials were produced before the 1970s
(Jamieson, personal observation), implying that they have taken
50 years to reach their current resting place and that the far vaster
quantity of plastic pollution generated since is still working its
way through the marine ecosystem. Plastics’ invasion of natural
environments now appears complete, with contamination found
from mountain tops and polar extremes (Bergmann et al., 2019)
to the remote depths of our oceans.

Plastics’ fragmentation and dispersal as micro-particles may
be the most insidious property of marine plastic pollution.
FFPs contain dyes, flame retardants and plasticizers, some
of which are persistent, bio-accumulative toxins (Rani et al.,
2015). These compounds, along with water-borne pollutants
absorbed into micro- and nanoplastics (Engler, 2012), can be
transferred to organisms upon ingestion (Cole et al., 2011;
Neves et al., 2015), contaminating them, their predators and
potentially accumulating up food chains to human consumers
of seafood (Bouwmeester et al., 2015; Rochman et al., 2015b;
Vethaak and Leslie, 2016; Lusher et al., 2017; Santillo et al.,
2017; Revel et al., 2018; Rist et al., 2018). Nanoplastics, while
understudied at present, may pose the greatest ecotoxicological
risk (Koelmans et al., 2015; Haegerbaeumer et al., 2019) because
their concentrations at sea are likely higher than for microplastics
(Andrady, 2011), they have a proportionally larger surface area
for the absorption of toxic chemicals (Koelmans et al., 2015;
Mattsson et al., 2015) and, critically, they can penetrate living
tissues (Kashiwada, 2006; Rossi et al., 2014; Mattsson et al., 2017)
causing intracellular damage (Brown et al., 2001; Haegerbaeumer
et al., 2019). Observed effects of micro- and nanoplastics on

experimental organisms include increased mortality (e.g., Lee
et al., 2013; Ziajahromi et al., 2018), disease (e.g., Vasseur
and Cossu-Leguille, 2006; Chae et al., 2018), inflammation in
digestive and respiratory systems (e.g., Murray and Cowie, 2011;
Jin et al., 2018), increased oxidative stress (e.g., Bhattacharya
et al., 2010; Gomiero et al., 2018), disturbed feeding behavior
(e.g., Cedervall et al., 2012; Nasser and Lynch, 2016) and
compromised fecundity and reproduction (e.g., Bergmann et al.,
2015; Sussarellu et al., 2016).

In this Perspective article, we argue that ocean plastic pollution
is a symptom of a far broader issue, rooted in the way we place
little to no value on a versatile material made from a finite
resource, whose environmental legacy lasts decades following its
brief usefulness to us. The solution to plastic pollution cannot rely
solely onmore ocean research (Borja and Elliott, 2019), education
(Uyarra and Borja, 2016) and clean-up technologies (Sherman
and van Sebille, 2016), nor in phasing out or replacing all FFPs
(Rochman et al., 2015a). It requires us to shift the economics of
FFPs from a linear to a circular model. We first review the cost
of the plastic pollution problem and then propose a pragmatic
solution to fix it, which builds beyond current proposals.

THE PRICE OF PLASTIC

Plastic pollution results from our failure to account for the
full economic cost of FFP’s manufacture and disposal, and its
impacts on ecosystem services and human health. While our
knowledge is incomplete, best estimates suggest that plastic costs
humanity over US$ 2.2 trillion per year in environmental and
social damage (UNEP, 2014; Ricke et al., 2018; Beaumont et al.,
2019; Zheng and Suh, 2019). This is a consequence of a linear
economic model in which resources flow unidirectionally from
fossil fuels, are cracked into monomers (the building blocks of
plastic “resins”), extruded into a final product, used, often briefly,
and then discarded (Geyer et al., 2017; Hundertmark et al.,
2018; Figure 1A). It is estimated that nearly 60% of this plastic
waste is dumped into landfill and the environment, with at least
10% entering the oceans (Figure 1B; Supplementary Materials

section Plastic Leakage to Oceans).
Most of the costs of plastic pollution damage results from

impacts on our oceans (Figure 1C; Supplementary Materials

section Plastic Pollution Damage Costs). An estimated∼US$ 1.5
trillion per year is lost through reductions in the oceans’ capacity
to provide seafood, genetic resources, oxygen, clean water and
recreational and cultural value, as well as critical regulation of
Earth’s climate (Beaumont et al., 2019). An additional ∼US$
730 billion per year in losses occurs during FFPs’ upstream
lifecycle (UNEP, 2014; Zheng and Suh, 2019), due to a model of
plastic waste management that is more “burn, bury, befoul” than
“reduce, reuse, recycle.” These costs include∼US$ 700 billion per
year from the release of greenhouse gases during FFP production
and waste incineration (Ricke et al., 2018; Zheng and Suh, 2019),
the release of toxic chemicals from plastics buried in landfill
to soils and water sources (∼US$ 25 billion per year); water
usage during plastic production and manufacturing (∼US$ 4.5
billion per year); release of plastic-associated pollutants into the
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FIGURE 1 | The plastic problem. (A) Global plastic flow in 2016, as estimated by Hundertmark et al. (2018). Numbers within black boxes represent amounts (million

tonnes per year) of plastics produced, wasted, recycled, incinerated, landfilled, dumped and leaked to oceans. (B) Break-down of the different sources of ocean

plastics, in million tonnes per year: coastal zones (Jambeck et al., 2015), fishing (Watson et al., 2013; Bell et al., 2017; Lebreton et al., 2018), shipping (Halpern et al.,

2008; Lebreton et al., 2018), aquaculture (FAO, 2016a; Lebreton et al., 2018), primary microplastics (Boucher and Friot, 2017), inland populations (Lebreton et al.,

2017, 2018), and waste exports (UN Trade Statistics, 2018). (C) Break-down of the different costs associated with plastic pollution in US$ per year: ocean damage

(Beaumont et al., 2019), greenhouse gases (Ricke et al., 2018; Zheng and Suh, 2019), land pollutants, water usage, air pollution, and land disamenity (UNEP, 2014).

The data, limitations and assumptions used for the plastic mass flow and environmental economic analysis are described in Supplementary Materials.
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air (∼US$ 1.3 billion per year); and land value loss due to littering
or proximity to waste disposal sites (∼US$ 875 million per year;
UNEP, 2014).

The estimated total cost of plastic pollution is likely
conservative, as several important impacts are yet to be
quantified, particularly those related to human health. Plastics
can harm us both through the interaction of nanoplastics with
human cells and our exposure to harmful additives in plastic
products (Hermabessiere et al., 2017; Revel et al., 2018). Both
nanoplastics and harmful additives occur in food packaging,
household items and even medical equipment, entering the body
via ingestion, inhalation and skin contact. Nanoplastics have been
shown to cause damage and inflammation in human skin, lung
and brain cells (Lehner et al., 2019) and may be linked to cancers
(e.g., Pauly et al., 1998; Mastrangelo, 2003). Plastics also leach
harmful endocrine-disrupting chemicals (Meeker et al., 2009;
Talsness et al., 2009) which have been linked to:

• Cancer (Ohlson and Hardell, 2000; Brophy et al., 2012;
DeMatteo et al., 2013)

• Obesity (Angel Nadal, 2012; Manikkam et al., 2013)
• Diabetes (Lang et al., 2008; Shankar and Teppala, 2011)
• Endocrine system disorders (Andra and Makris, 2012; Brophy

et al., 2012)
• Thyroid disfunction (Ahmed, 2016)
• Reproductive impairment (Kabir et al., 2015).

Infants and children are the most vulnerable groups, due to
their greater sensitivity and higher exposure to plastic-associated
chemicals via baby food packaging (Fantoni and Simoneau,
2003), children’s toys (Xie et al., 2015; Turner, 2018) and breast
milk (Tanabe and Kunisue, 2007). Plastic contamination in
humans has been detected globally (Koch and Calafat, 2009;
Barboza et al., 2018), with the average US citizen consuming
more than 74,000 microplastic particles annually (Cox et al.,
2019) and an unknown but likely larger number of nanoplastics
(Triebskorn et al., 2019). Further research is urgently required
into the human health impacts and associated health-care costs
of plastics and their ingredients.

A further unevaluated cost of plastic is the prevalence
of acute labor issues in the waste management systems
of many low and middle-income nations, where collection,
recycling and disposal of domestic and imported waste are
largely unregulated. The informal recycling sector employs
an estimated 15–20 million workers globally (UNEP, 2015)
and often creates abusive and hazardous conditions for a
meager but crucial income (Wilson et al., 2006; Walk Free,
2018; GAIA, 2019). This highlights a moral dimension of
plastic pollution: profits from fossil fuel extraction and plastic
production typically accrue to a small number of companies
headquartered in high-income nations, while waste disposal,
burning and dumping, including of imported waste from
wealthy countries, are usually shifted to low to middle-income
nations (GAIA, 2019). This disconnect between production
and disposal also weakens the impetus for consumers in
rich, high consumption countries to shift behavior, since they
are insulated from the consequences of their plastic habit
(Torras and Boyce, 1998).

PRINCIPLES OF A SOLUTION

TheUS$ 2.2 trillion annual external cost of plastic pollution is not
captured in the production costs of our linear plastics economy,
representing a major market failure (Laffont, 2008). Whilst
initiatives such as Extended Producer Responsibility (EPR) and
plastics-related legislation have made some positive inroads to
reduce plastic pollution, a system-wide change is needed to
rectify this market flaw. A pragmatic solution is to apply an
appropriate contribution to FFP at first production, whereby the
supply chain passes on this price premium on raw FFP resin
equitably through to the trillions of plastic items purchased each
year by end consumers, converting plastic waste into a cashable
commodity. This voluntary contribution, promoted publicly as
the “Sea The Future” initiative, but referred to herein as “the
Contribution”, will also generate considerable funds to tackle
the plastic issue, via investment in transformative technologies
and by funding environmental remediation. Such a voluntary,
industry-led contribution for FFP, applied at the resin production
level, has the greatest potential to drive global manufacturing
toward a circular economy (Figure 2; Schepel, 2005).

A circular plastics economy has remained elusive despite
decades of concerted advocacy and public outcry. The key barrier
to its realization has been the inability of circular recycling
technologies to compete with the extremely low direct cost of
producing FFPs. This perverse market price signal has meant
that emerging technologies which can infinitely recycle most
used plastic into high-purity polymers (e.g., Ragaert et al.,
2017; Rahimi and García, 2017) have failed to achieve global-
scale commercialization. A higher cost of FFPs, applied via
the Contribution, levels the playing field and should drive
plastic producers to rapidly seek out lower cost feedstocks.
Demand for recycled polymers will ignite, transforming plastic
waste from toxic and destructive into a cashable commodity,
incentivizing recovery and recycling rates. This will have a
transformative effect on the recycling industry as the next
generation of polymer-to-polymer technologies are modularized,
thereby enabling both an extremely low capital cost, compared
with traditional large scale refineries and petrochemical plants
(IHS Chemical, 2015), and placement at aggregation points
of plastic waste (e.g., rivers, garbage depots, mine sites). This
powerful competitive advantage, together with a level playing
field, will energize new entrepreneurs and recycling businesses
to contribute to the circular economy in both developed and
developing markets (Baechler et al., 2013). Concurrently, mobile
applications and artificial intelligence (AI) are set to remodel
and decentralize waste collection services (Adams, 2018; Coelho
et al., 2019). These peer-to-peer technologies have tremendous
potential to connect billions of people currently not serviced
by formal waste collection systems, increasing recovery rates
without the need for expensive waste collection infrastructure.
Access to this technology may also contribute to improving
the livelihood of millions of disenfranchised waste-pickers
through improved transparency, security and compensation
(Walk Free, 2018).

The Contribution would also directly (via investment)
and indirectly (via demand) support advances in
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FIGURE 2 | Illustrations of the linear plastics economy (left), circular polymers economy (right), and transition plastic economy (center). Our proposed initiative will

re-direct the flow of fossil fuel-derived plastics away from the environment and into the economy.

renewable, compostable biomaterials including “edibles”
and polyhydroxyalkanoates (PHAs) (Shit and Shah, 2014; Dilkes-
Hoffman et al., 2019a) derived from sustainable sources such
as seaweed (Rajendran et al., 2012) and biomass residues (FAO,
2016b). These are ideal materials for problematic applications
such as sachets and agricultural films (Dilkes-Hoffman et al.,
2019b) as well as aquaculture and fishing gear likely to be lost at
sea (Park et al., 2010; Bilkovic et al., 2012; Bugnicourt et al., 2014;
Kim et al., 2016; UNEP, 2018).

In summary, the Contribution achieves the following:

• Transforms plastic waste into a cashable commodity,
rewarding recovery and increasing recycling rates

• Incentivizes the plastic industry to reduce its use of fossil fuel
feedstocks and seek out recycled and degradable alternatives

• Makes a material contribution to reducing climate change in
the context of the global community’s targeted temperature
increase range, when considered on an accumulative basis to
2050 (Zheng and Suh, 2019)

• Halts the rising health impacts of plastics on both humans and
other species and ensures viable ecosystem services

• Materially improves the profitability of polymer-to-polymer
technologies and other supporting industries

• Is complementary to and supportive of the
“Three Rs” philosophy, “Reduce, Reuse, Recycle,”
promoted by the circular economy community
(Ellen MacArthur Foundation, 2019)

• Prioritizes technologies which keep plastics within the
economy, e.g., purification, depolymerization and pyrolysis
technologies (Sardon and Dove, 2018; The Center for the
Circular Economy, 2019)

• Generates funds to develop waste management infrastructure,
catalyze innovation and deal with legacy pollution issues, such
as plastic waste accumulated in the oceans.

How Will the Contribution Be
Implemented?
The most effective point to apply and collect the Contribution
is at resin production, ensuring that it can be practically
implemented and administered. This concentrated point in the
supply chain, comprised of only a small group of producers
(American Chemistry Council, 2013), facilitates the application
of the Contribution on a simple, equitable and transparent
per-weight basis, streamlining stakeholder participation and
industry-wide application. As the cost of the Contribution is
passed through intact from the base of the supply chain to the
point of final consumption, it is divided out via manufacturing
intermediaries, packaging companies and retailers (UNEP,
2014), to the end consumers, who each experience only a
small price increase. To anticipate potential anti-trust concerns
regarding the implementation of the Contribution, the lead
author has engaged with global law firms to investigate the issue
and believes that an initiative in the public good can comfortably
operate within the law in countries across the world.

How Will the Contribution Be Governed?
Strict governance of the Contribution is paramount to avoid
issues such as corruption and gaming of the system and to
ensure that intra- and international value transfer is equitable
and efficient, as the revenues from FFP production and the costs
from its polluting effects often accrue in different regions (Abbott
and Sumaila, 2019). Extended Producer Responsibility (EPR)
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policies (Hanisch, 2000; Spicer and Johnson, 2004; European
Commission, 2019; Hilton et al., 2019) provide a template for
a global scheme. EPRs often rely on a Producer Responsibility
Organization (PRO) to act on behalf of the stakeholders
and operate under clearly defined governance arrangements
(Fleckinger and Glachant, 2010; Börner and Hegger, 2018; Park
et al., 2018). Here, a global audit system will play a critical
role and to circumvent concerns regarding governance costs the
Minderoo Foundation has committed to underwrite up to 5 years
of audit fees for a total cost of US$ 260 million, plus US$ 40
million in establishment costs, subject to appropriate conditions.
As a further protection mechanism against fraud, a certification
process would be implemented that could leverage blockchain
technologies to track provenance (Kim and Laskowski, 2018),
supported by technologies allowing identification of plastics via
their chemical signatures (Primpke et al., 2018; Serranti et al.,
2018). This potentially facilitates producer-specific labeling of
plastics, informs consumer purchasing decisions and further
drives industry adoption. A global PRO would allow funds
raised from the Contribution to be aggregated and distributed
according to a constitution that ensures efficient governance
and management, timely allocation of funds and maximizes
environmental, social and health benefits. Four constitutional
pillars will be prioritized as follows:

1) Drive the global deployment and industrialization of polymer-
to-polymer technologies and associated infrastructure as
well as support the segments of the incumbent supply
chain vulnerable to the impact of Contribution, during the
transition from FFP to polymer-to-polymer production.

2) Provide pollution remediation where a market solution is not
feasible, such as sedimentary build-up of plastics in rivers
and landfills.

3) Recovery of oceanic plastics.
4) Other environmental policies as agreed, which may include

mitigating climate change.

The first author has reached a preliminary agreement on
these four pillars with a major consumer-facing organization.
With respect to (1), the consensus reached was that the
petrochemical businesses are the most vulnerable to the impact
of the Contribution, but conversely have a key role to play
in achieving a circular plastics economy (Hundertmark et al.,
2018). It was agreed, under an initiative known as the Bridging
Scheme for Industry (BSI), that part of the Contribution
proceeds will be used to facilitate the industry-wide transition
from fossil fuels to plastic waste, which eventually becomes its
sole feedstock.

As the capital raised by the Contribution is estimated to
reach at least US$ 20 billion per annum, these funds may
eventually exceed the quanta required for priorities (1–3). While
this excess could be fully refunded, it may instead be attractive
to apply the balance to the mitigation of anthropogenic climate
change, largely a by-product of the fossil fuel industry, under
pillar (4). Given consumers have ultimately paid the cost of the
Contribution, this would be an attractive outcome for the fossil
fuel industry.

If Not a Voluntary, Industry-Led
Contribution, Then What?
Should industry fail to act, then alternatives to the Contribution
include government-led taxes, heightened industry regulation
or joining international treaties with similar force. However,
each of these interventions has drawbacks in the context of the
complexity of plastics. Global treaties like the Montreal Protocol
on Substances that Deplete the Ozone Layer, and the Stockholm
Convention on Persistent Organic Pollutants, regulate the
manufacture and application of specific chemicals with relatively
narrow use cases, like chlorofluorocarbons and the pesticide
dichlorodiphenyltrichloroethane. While both are supported by
multilateral compensation funds and have successfully assisted
countries to develop and promote safer alternatives to these
niche chemicals, they do not address a problem as pervasive and
embedded in every part of the consumer economy as plastics.
Our most visible attempt to solve such a problem with an
international treaty, the Kyoto Protocol and subsequent Paris
Agreement, continues to attract criticism from environmental
groups, academics and governments for the range of exemptions
and trade-offs it offers to individual countries and industries, and
its failure to achieve its central goal of reducing carbon emissions.
Consequently, the US has yet to ratify the treaty and Canada has
withdrawn from the protocol.

Compared with a global voluntary industry contribution,
taxes and regulation in individual jurisdictions open the door
for regulatory arbitrage and the requirement for border taxes
on plastics imports. Trillions of plastics items are traded
globally daily in varying different forms, from resin pellets to
finished products, and often contain compositions of many
different plastic types and other materials. As a result, the
task for governments of administering taxes and regulations
on goods, both domestically and across borders, is onerous
and complicated, potentially compromising their effectiveness.
Local governments may also invest tax revenue in programs
unrelated to resolving the plastic problem, compromise on
policies unpopular with voters, and be unwilling to redistribute
proceeds to other countries, making it difficult to deal with the
issues in many impoverished nations subject to exported waste.

The Contribution is a global solution with the potential
to overcome many of these shortcomings by transcending the
compliance issues related to a mosaic of national taxes, laws and
treaties. Self-governed industry initiatives have also previously
been applied successfully to challenges of cost recovery in the
agriculture (OECD, 2017), fisheries (Townsend et al., 2008) and
media industries (Leeds, 2006).

Ultimately, the Contribution and other interventions should
not be seen as mutually exclusive and, in fact, will likely play
complementary roles. For example, regulations can and should
be used to tackle specific situations such as environmental leakage
of nano- and microplastics and use of harmful additives in plastic
products. In these cases, immediate alternatives are available,
including compulsory filters on washing machines (McIlwraith
et al., 2019), upgrades in wastewater treatment plants (Talvitie
et al., 2017), regulatory frameworks to better prevent plastic
pellet spills (Karlsson et al., 2018) and bans of both toxic
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plastic additives (Halden, 2010; Kole et al., 2017; Lahimer et al.,
2017) and nano- and micro-plastics as ingredients in products
(Rochman et al., 2015a; Hernandez et al., 2017).

What Should the Quantum of the
Contribution Be?
An estimated contribution in the range of US$ 200 to US$ 5,000
per tonne is required to incentivize the collection and recycling
of used FFP, with the quantum of the Contribution depending on
the type of polymer. This equates to between ∼20% and 500% of
the cost of FFP resin (The Plastics Exchange, 2019), translating
into only a ∼US$ 1 to 3 cent increase in the cost of a take-away
coffee, as an example. Assuming an average contribution of US$
500 per tonne of FFP resin, the total cost of the Contribution
is <10% of the US$ 2.2 trillion in damages currently caused
by FFP pollution. Our suggested contribution range is based
on anecdotal estimates collected during discussions with major
stakeholders in the plastics supply chain, including oil and gas
companies, resin producers, consumer goods brands, retailers
and recycling businesses. As such this quantum is preliminary,
with further economic modeling required to triangulate other
factors, including the different incentive levels required to collect
waste in different regions, capital market incentives and the price
elasticity of plastics demand.

CONCLUSION

Plastic pollution damages societies, economies and natural
environments, particularly the world’s oceans. With plastic
pollution’s increasing visibility on land and at sea, pressure
for action is mounting while an effective global solution
to this “wicked problem” remains elusive. While removing
plastic litter from oceans (Sherman and van Sebille, 2016)
and replacing plastics with other materials (Song et al., 2009;
Dilkes-Hoffman et al., 2019b) contribute to a solution, we
suggest that a far broader economic and technical approach
is needed to catalyze change. The proposed initiative, a
voluntary contribution on new FFP production led by the global
plastics industry, should jump-start the circular economy by
transforming plastic waste into a cashable commodity. The new

economics will help catalyze global-scale commercialization of
polymer-to-polymer technologies capable of creating food grade
polymers from plastic waste, while drawing plastic pollution
from the environment back into the economy. If implemented
successfully, the effects can be far-reaching: stopping the
flow of plastics into oceans, giving economic opportunity
to vulnerable people, funding remediation of contaminated
ecosystems and protecting future generations from the toxicity
of plastic waste.
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