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Despite their importance as a larval source for the aquaculture industry in several
countries, natural stocks of pectinids have been heavily impacted by a variety of natural
and anthropogenic stressors. Here we studied the key transition from larvae to early
recruitment using the largest natural population of the scallop Argopecten purpuratus
(Lamarck, 1819) in Chile. We assessed whether thermal anomalies associated to El
Niño-La Niña (EN-LN) cycle had a signal in the temperature regime at La Rinconada
Marine Reserve and the consequences of this variability for the settlement of competent
larvae of A. purpuratus to artificial and natural substrates in this area. For this, we
gathered historical data (February 1950–December 2017) regarding satellite-derived
thermal anomalies in the El Niño 1 + 2 region and in situ measurements of sea
surface and bottom temperature in the study area. Moreover, we sampled the larval
abundance of A. purpuratus in the water column and the settled spat on artificial
collectors and on red algae Rhodymenia spp. – their natural settlement surface –
between April 1996 and January 2000. Thermal anomalies associated to EN-LN cycle
were strongly related to interannual changes in winter and summer temperature in
Antofagasta Bay, with a clearer signal in winter than summer temperature. The increased
reproductive activity during September–April seemingly foster the observed pulses in the
larval abundance of A. purpuratus, as expected in a semi-enclosed system. In contrast
to previous studies, the larval abundance did not show clear responses to the local EN-
LN-related shifts in temperature regimes. Larval settlement of A. purpuratus in artificial
collectors increased through the study period while that on Rhodymenia spp. showed a
contrasting, decreasing trend. At the same time, the abundance of Rhodymenia spp.
dropped continuously. All these temporal trends and our statistical analysis implied
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that, whether EN-LN-driven thermal shifts had an effect on the larval settlement of
A. purpuratus, it is masked by the strong and continuous reduction in the availability
of Rhodymenia spp. as a settlement surface. This reduction may have consequences
for the stability of natural stocks of A. purpuratus in Chile.

Keywords: Pectinidae, larval settlement, larval ecology, ENSO, Humboldt Current System, marine reserves

INTRODUCTION

Pectinids stand among the most important fishery resources in
several countries, but dramatic reductions of natural stocks have
led to tight regulations aiming to preserve source populations that
ensure sustainable fisheries and larval supply for the aquaculture
industry (Dickie, 1995; Paulet et al., 1997). The scallopArgopecten
purpuratus (Lamarck, 1819), distributed between northern Peru
and central Chile, has long been exploited by small-scale
fishermen, leading to the reduction or collapse of several local
populations. The high demand of this scallop has prompted the
development of aquaculture operations, which for the most part
depend on scallop larvae from natural populations. For this, mesh
bags are suspended in the water column to collect larvae that
are then transported to culture areas and grown to marketable
size. However, scallops populations are also affected by El Niño-
Southern Oscillation (ENSO), a quasi-periodic variation in winds
and sea surface temperatures (SSTs) over the tropical eastern
Pacific Ocean that modify climate patterns in the tropics and
subtropics. This interannual environmental variability overlaps
with human exploitation in the Humboldt Current System, either
bringing local collapses or population blooms in coastal species,
depending on their biogeographic affinities (Riascos et al., 2009;
Carstensen et al., 2010). In the early 1980s, annual landings in
northern Chile (23◦S–29◦S) hardly reached 500 MT, but these
figures drastically changed to ∼5,000 MT in 1984 (Avendaño
and Cantillánez, 1996). A warm El Niño episode in 1982–1983
caused population blooms in several populations in Peru and
Chile, turning small-scale fisheries into ephemeral multimillion-
dollar business (Wolff et al., 2007). Landings in this region
rapidly returned to low levels (1,410 MT in 1985 and 492 MT
in 1986), which promoted the permanent closure of this fishery
and regulatory efforts to protect natural stocks (Avendaño and
Cantillánez, 1996; Stotz, 2000).

La Rinconada, located in the innermost area of Antofagasta
Bay in northern Chile supports the largest natural population
of A. purpuratus in the country. To secure the protection
of this important species, the Chilean government declared
in 1997 this area as its first marine reserve (Avendaño and
Cantillánez, 2016). The reserve aimed to protect natural stocks
of A. purpuratus and to maintain the larval supply for neighbor
populations and aquaculture facilities that started operations
soon after the establishment of the reserve. Despite these efforts,
recent evaluations indicate a sustained decline in the abundance,
mean size and spawning biomass, most likely reflecting illegal
exploitation (Avendaño and Cantillánez, 2016). This decline and
the concomitant increase of scallop aquaculture in Peru have
seriously affected this business in Chile.

The monitoring program established as part of the
implementation of the marine reserve revealed that A. purpuratus
consistently display intense spawning activity between September
and April, with increases in larval abundance associated to this
period of gamete release (Cantillánez et al., 2005). Despite this,
there is considerable stochasticity in A. purpuratus recruitment,
hinting on the diverse and interacting nature of factors affecting
the transition between D-veliger larvae (∼110 µm) and settled
larvae (∼244 µm). Wolff (1988) suggested that a combination
of high temperature, food availability and oxygen saturation
are key conditions for fast larval development to successful
metamorphosis, settlement and pre-recruit growth. This in turn
would mean less exposure time to filter feeders and currents,
which would cause larval drift from the parent bed areas.

In Chile, studies on the ecology of early life stages of
A. purpuratus are lacking, but larval settlement in artificial
collectors differ between El Niño and La Niña episode
(Cantillánez et al., 2007). As, e.g., larval growth, duration and
mortality are temperature dependent-factors for pectinids species
(Davies et al., 2015; Nicolle et al., 2016) and temperature regimes
in La Rinconada may respond to El Niño and La Niña episodes,
it is key to assess how temperature may affect the transition
between larval release and subsequent settlement in natural
surfaces. Settlement of scallop larvae is not random process;
an array of species-specific organic (filamentous red algae and
hydroids) or inorganic surfaces (gravel, pebbles, mollusk shells)
seem to facilitate settlement and provide refuge for settlers. In
La Rinconada, the red algae Rhodymenia spp. seems to play an
equivalent role for the settlement of A. purpuratus (Avendaño
et al., 2008); therefore, changes in the abundance of these red
algae were included as part of the monitoring program.

Under normal conditions, the population dynamics of most
coastal species in the Humboldt Current System is controlled by
mesoscale oceanographic processes, including upwelling events,
frontal systems and eddies that influences variation in recruit
supply and upwelling shadows – a high temperature region
within coastal upwelling – in bay systems that influences larval
retention (Thiel et al., 2007). However, these oceanographic
processes could be highly modified during the warm El Niño
and cold La Niña phases of ENSO. Hence, a critical question is
whether ENSO – a large oceanographic process in the tropical
eastern Pacific – affects local climatic regimes and how these local
changes influences early life stages of coastal species.

In this context, our study aims to (i) evaluate the potential
relationship between the El Niño-La Niña cycle and the thermal
variability in La Rinconada Marine Reserve and (ii) assess the
consequences of this variability for the settlement of competent
larvae of A. purpuratus to natural (Rhodymenia spp.) and
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FIGURE 1 | Map of the Antofagasta Bay (northern Chile) and the sampling
station (black dot) in La Rinconada Marine Reserve.

artificial substrates (moored collectors) and for the stability
of natural stocks.

MATERIALS AND METHODS

Study Area and in situ Thermal Variability
The study was performed at La Rinconada Marine Reserve
(23◦ 28′28 ′′S, 70◦ 30′35′′W; hereafter La Rinconada), located
20 km north of Antofagasta, Chile (Figure 1) with samplings
between April 1996 and January 2000, with breaks in November
1996, June–August and December 1997, July and September–
December 1998, January and September 1999 due to budget cuts.

La Rinconada represents a retention area for particulate
material and larvae, owing to the unique oceanographic
characteristics of the Antofagasta Bay: it is located between
two active upwelling centers in the mouth, which creates
an “upwelling-shadow” with an almost constant sea water
temperature frontal oceanographic structure crossing the mouth.
As a result, upwelled waters are retained inside the bay long

enough for temperatures to be elevated by several degrees
through surface heating (Castilla et al., 2002; Ashton et al., 2008;
Avendaño and Cantillánez, 2008). The dynamics of shallow water
mass in the bay indicates a central retention area, dominated
by a gyre with reduced speed by inertial effect (Figure 1),
Escribano and Hidalgo (2001). This small area (∼46 ha; 15–
17 m water depth) has long been known and monitored
for settlement of A. purpuratus on the seaweed Rhodymenia
(Avendaño and Cantillánez, 2016) and was thus chosen as the
sampling area for this study.

In October 1997 a Minilog 8-BIT (Vemco, Model TR) was
installed at 16 m water depth to register bottom temperature
every 6 h in the sampling area until the end of the
study (January 2000).

Assessing Relationships Between ENSO
and Local Thermal Variability
Historical data (February 1950–December 2017) of the el Niño-
coastal index (Takahashi et al., 2014) were taken as a relevant
descriptor of regional interannual anomalies of SST related
to ENSO. The index represent a 3-month moving average of
monthly anomalies of SST for the period 1981–2010 at the
El Niño 1 + 2 Region, close to the western coast of South
America, taken from the ERSST v3b dataset provided by the
NOAA (United States). El Niño-La Niña episodes are classified
according to the values of the index as: warm (extraordinary,
strong, moderate, weak) and cold (strong, moderate, mild),
respectively (see Takahashi et al., 2014 for details). In turn, to
describe the local thermal variability, we used historical data
(the same time range) on the monthly mean SST (◦C) from a
fixed station off Antofagasta (23◦39′S; 70◦25′W) provided by the
Servicio Hidrográfico y Oceanográfico de la Armada de Chile.
Monthly mean SST in this dataset was calculated from daily
measurements taken from a fixed station (23◦39′S; 70◦25′W)
by hand (1950–1998) and using automatic temperature sensors
(1998 to date). As SST in Antofagasta Bay display a clear
seasonal signal, with higher temperatures during January–March

FIGURE 2 | Seasonal variability in mean sea surface temperature in
Antofagasta Bay. Monthly values represent the mean value (and standard
deviation) for the period 1946–2017.
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FIGURE 3 | The relationship between El Niño-La Niña episodes, as described by El Niño-Coastal Index, and summer and winter SST in Antofagasta Bay between
February 1950 and December 2017. Classification of el Niño-La Niña episodes according to Takahashi et al. (2014).

(Austral summer) and lower temperatures (Austral winter)
during June–August, we tested how the ENSO cycle affect
summer SST and winter SST in Antofagasta Bay. For this,
a simple regression model (least square fit) was used to
fit the relationship between El Niño-Coastal Index (ENCI)
and summer (January–March) and winter (June–August) SST
in the study area. The significance of the relationship (the
regression slope) was tested by an analysis of variance. The
relationship between SST (obtained by SHOA) versus bottom
(in situ) temperature in La Rinconada was assessed using a non-
parametric regression called LOESS (locally estimated scatterplot
smoothing; Trexler and Travis, 1993), because conditions for
traditional regression analyses were not satisfied. We used the

standard package R 3.5.0 (R Core Team, 2018) to fit the
LOESS regression.

Larval Sampling
Plankton samples were collected monthly from May through
October (the period of low larval abundance) and every 10–
15 days from November to April (the period of high larval
abundance) from the central retention area described above and
shown in Figure 1. Each sample was collected on the whole
15–17 m-depth water column, using a 53-µm-mesh HYDRO-
BIOS plankton net (No. 438 005; mouth diameter = 25 cm) to
perform the vertical plankton hauls. Each sample was preserved
in 70% ethylic alcohol and transported to the laboratory,
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FIGURE 4 | Thermal variability of sea surface and bottom temperature in Antofagasta Bay. (A) Time series of sea surface temperature in a meteorological station in
Antofagasta Bay and bottom temperature (16 m) in the sampling area at La Rinconada Marine Reserve (see Figure 1); (B) LOESS (Locally estimated scatterplot
smoothing) regression of the relationship between sea surface temperature and bottom temperature in the sampling area (spam argument: 2/3; dashed lines
represent 95% confidence intervals).

homogenized and split in 10 parts using a Folsom’s plankton
sample divider. Two aliquots were used to count larvae under
a dissecting microscope and ocular micrometer and the average
was extrapolated to the whole sample. Larval abundance
(ind m−3) was estimated from the radius (m) of the net aperture,
the haul length and from the total volume of filtered seawater.

Spat Collection in Artificial Collectors
To evaluate changes in the settlement of the competent scallop
larvae, three replicated artificial 3D Japanese collectors were
installed 1–3 m off the bottom in the central retention area
described above. The collector unit derives from a Japanese device
made up of a plastic mesh bag (mesh size: 0.5× 1 mm) filled with
Netlon netting (10 mm mesh size). Three replicated collectors
were deployed with 10 m distance between them and fastened at
1–3 m off the bottom, on ropes suspended from immersed buoys
and anchored by a 125-kg concrete weight. Previous experimental

work demonstrated that the efficiency of spat collection increased
in this position off the bottom (Avendaño and Cantillánez,
1992). Collectors were monthly removed, placed into labeled
plastic bags, and immediately replaced by SCUBA divers. In the
laboratory, all post larvae and juvenile scallops were washed from
individual collectors and the content was screened on a 180-µm
sieve to retain any recently settled post-larvae. The collected spat
was then mixed and split in 10 parts using a Folsom’s plankton
sample divider. Two aliquots were used to count spat under a
dissecting microscope and ocular micrometer. The number of
post larvae per collector was obtained by multiplying the average
obtained in the two subsamples by 10.

Spat Collection of A. purpurtus on
Rhodymenia spp.
To assess the importance of natural settlement substrates,
the abundance of Rhodymenia spp. and the settlement of
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FIGURE 5 | Temporal variability of population processes during the larval stage and settlement of Argopecten purpuratus in La Rinconada Marine Reserve between
April 1996 and January 2000. (A) Abundance of larvae in the water column; (B) larval settlement in artificial collectors, and (C) larval settlement in the seaweed
Rhodymenia spp. Blue and red panels indicate the occurrence of La Niña and El Niño episodes, respectively, according to El Niño Coastal Index (see Figure 3). Gray
panels in the background denote periods of spawning activity after Cantillánez et al. (2005).

A. purpuratus were also monitored in the central retention
area described above. For this, the monthly mean algal mass
(g m−2) was obtained by collecting algae using three replicate
quadrats (0.25 m−2). Each quadrate was haphazardly placed at
least 10 m apart from each other. Samples were stored in 180 µm
mesh bags and transported to the laboratory. Thereafter samples
were carefully washed in a 180 µm sieve to recover all the
spat. Thereafter algae were weighted using an analytical scale
(0.1 g precision), and the number of post larvae (spat m−2)
in each sample was determined following the same procedure
described above.

Factors Influencing Larval Settlement
We used linear and non-linear models using least square fitting to
assess the influence of the available larval pool (larvae m−3), the
SST (◦C) and the ENCI on the larval settlement of A. purpuratus
in either moored artificial collectors (spat per collector) or in mats
of Rhodymenia spp. (spat m−2). Additionally, the relationship

between larval settlement density onRhodymenia spp. (spat m−2)
and the algal mass was assessed in order to evaluate if changes in
settlement density were dependent on the abundance of the algae.
These analyses were performed using Statistica V10 (Statsoft,
Inc., 1984–2011).

RESULTS

The SST in Antofagasta Bay shows a consistent seasonal pattern
(Figure 2), with high summer temperatures averaging 20.4◦C
in January and 19.3◦C in March and low winter temperatures
averaging 15.6◦C in June and 15.2◦C in August. The ENCI was
positively correlated with summer and winter SST in the bay, with
a much better fit for winter temperature (Figure 3). The higher
values for summer and winter SST registered in the bay since
1950 coincided with extraordinary and strong El Niño episodes.
In turn, lower summer SST have been registered under neutral
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FIGURE 6 | Bivariate scatterplots and model fittings assessing factors affecting the larval settlement of A. purpuratus in artificial collectors (A) and in Rhodymenia
spp. (B). Data on larval settlement were transformed (Log X + 1) to meet the assumption of the models.

conditions and lower winter SST were observed during weak
La Niña episodes. Clearly, a strong interannual variability not
explained by ENCI is observed in summer SST, as opposed to
winter SST. Figure 4 shows that the normal seasonal variation
in SST (∼14–20◦C, see Figure 2) had little influence on the
rather stable bottom temperature. However, anomalous high SST
(20–22◦C) observed during El Nino 1997-1008 had strong effects
on the bottom temperature.

The larval abundance of A. purpuratus in the water column
(Figure 5A) generally increased each year after the reproductive
period (September–April), but it showed a strong interannual
variability; there was a strong pulse at the end of the study
period but the observed interannual variability was not related
to EN-LN episodes. In turn, the settlement of A. purpuratus
in artificial collectors generally increased through time but also
displayed seasonal pulses that generally coincided with pulses of
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FIGURE 7 | Comparison of the relationship of the log-transformed settlement
density (log X + 1) in (A) artificial collectors and (B) in Rhodymenia spp. during
months of high larval abundance (November–April) through the study period.
Statistics associated with model fitting are given.

larval abundance (Figure 5B), with no evident responses to EN-
LN episodes. In contrast, the larval settlement of A. purpuratus
on Rhodymenia spp., as well as the abundance of this seaweed,
decreased through time (Figure 5C). Moreover, there were not
consistent seasonal changes in larval settlement on its natural
settlement surface that could be related to seasonal or ENSO-
related pulses of larval abundance.

Although the relationships were weak, the larval settlement of
A. purpuratus in artificial collectors (Figure 6A) was significantly
related to the larval pool available in the water column and to
the thermal variability in the study area, but not to the thermal
forcing related to ENSO episodes (Figure 6A). In turn, none
of those factors showed a significant effect on the settlement of
the scallops in their natural settlement surface (Figure 6B); only
the abundance of Rhodymenia spp. in the sandy bottom of La
Rinconada showed a significant association to settlement success.

DISCUSSION

Our results clearly show a strong interannual signal of EN-
LN cycle, a regional-scale oceanographic process, on the rather
consistent seasonal SST variability in Antofagasta Bay. The
observed differences in the strength of this signal between
summer and winter seasons can be partially explained by the
lower number of strong La Niña episodes (ENCI < −1.4)
occurring in summer in comparison with those during winter.

But there is objectively more thermal variability in summer
than in winter, if neutral or weak and mild El Niño and
La Niña episodes are compared. This is more likely related
to the particular oceanography of Antofagasta Bay, whereby
water retention greatly magnifies the thermal seasonality in
comparison with surrounding areas (Piñones et al., 2007).
During summer, the pulsing increment of upwelling strength
may bring even colder waters than those during winter,
which can enter the bay by relaxation of thermal fronts
forming upwelling shadows in coastal bays (Marín et al.,
2003; Piñones et al., 2007). The good fit observed between
bottom and surface temperature suggest that the described
signal of EN-LN cycle also affects shallow bottom water in
Antofagasta Bay. Notably, according to ENCI, the period
1999–2000 was considered neutral, as opposed to Oceanic
Niño Index (based in thermal anomalies in the El Niño 3.4
region, central Pacific Ocean) that classified this period as La
Niña conditions1.

As expected in a semi-enclosed system, the larval abundance
was temporally coupled to the seasonally increased reproductive
activity reported by Cantillánez et al. (2005) between September
and April. However, a strong increment of larval abundance
between October 1999 and January 2000 was the main feature
in the variability of larval abundance. This was likely related
to the establishment of La Rinconada Marine Reserve in
1997, that implied the increased abundance of large (sell
length > 90 mm), sexually mature scallops (Cantillánez et al.,
2007). Populations of A. purpuratus typically display outbreaks
during exceptionally strong El Niño episodes, resulting from
faster recovery between spawning events, increased larval
production, increased settlement of larvae and increased survival
rate and somatic production of juveniles (Illanes et al., 1985;
Wolff, 1987; Cantillánez et al., 2005; Wolff et al., 2007). These
changes seemingly herald responses of a relict of tropical Miocene
fauna that evolved in the cold Humboldt Current System but
retained warm water characteristics because recurrent El Niño
episodes (Wolff, 1987; Uribe et al., 2012; Riascos et al., 2017).
Therefore, it is surprising that larval abundance of A. purpuratus
increased only slightly during El Niño 1997–1998 (Figure 5A).
This can be explained by the fact that changes in gonado-
somatic indices were not necessarily related to gamete release but
also with atresia and oocyte lysis during this period. Moreover,
within-day changes in temperature, which may be stronger
than seasonal variations and important triggers of spawning
episodes, were more common under non-El Niño periods
(see Cantillánez et al., 2007).

Larval settlement of A. purpuratus in artificial collectors
increased through time while that on Rhodymenia spp. showed
a contrasting, decreasing trend. As artificial collectors are
designed to mimic natural settling surfaces, the clear drop in
the abundance of Rhodymenia spp. seems the factor driving this
shifting temporal pattern. Therefore, our results suggest that
the intra-annual dynamics in the scallop‘s larval settlement in
artificial surfaces was largely influenced by the typical pulses

1See http://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/
ONI_v5.php
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of larval release determined by the reproductive cycle in the
study area (Cantillánez et al., 2005). It is worth noting, however,
that larval settlement did not increase in artificial or natural
surfaces during the huge increase in larval abundance in the
water column observed between November and December 1999,
hinting on the strong influence of stochastic processes on larval
settlement of scallops documented by Wolff (1988). Our results
show that changes in temperature and the larval abundance of
A. purpuratus in the water column were significant predictors
of subsequent settlement in artificial collectors, but not of
settlement in Rhodymenia spp. This, and the fact that those
factors have been portrayed in the literature as determinants of
larval settlement of A. purpuratus (Illanes et al., 1985; Wolff,
1988) suggest either additional influencing factors or increased
stochasticity associated to larval settlement in the red algae. In
turn, larval settlement in artificial or natural substrates did not
show a significant relation to LN and EN thermal anomalies,
despite clear thermal shifts related to this cycle in the study area.
Instead, the strong and systematic reduction in the abundance
of Rhodymenia spp. (from ∼1,300 to ∼7 g m−2) was the most
important predictor of changes in larval settlement. Taylor et al.
(2008) reported that the abundance of macroalgae, including
Rhodymenia spp. decreased in response to warmer EN conditions
in Independence Bay (Peru). However, the algal abundance was
decreasing rapidly already in April 1996 under LN conditions and
kept decreased during and after EN, hence we could not claim an
effect of LN or EN episodes.

Owing to the observed shift in the larval settlement between
artificial and natural surfaces, the question arises whether
density of settled larvae in each surface changed through time,
as a consequence of the reduction in the abundance of the
macroalgae. To assess this, we plotted the number of larvae per
gram of netlon rigid mesh or Rhodymenia spp. (Figure 7) and
show that while the density of larvae settled on the artificial
surface significantly increased as a function of time, the density
on the natural surface did not. This suggests that intraspecific or
interspecific interactions limits the settlement density in the red
algae (as reported by Cragg, 2006 for the Anctarctic scallop) and
precludes the increase in density as a mechanism to compensate
the loss of natural settlement surfaces. Alternatively, this may
indicate that other substrates may be substituting the red algae
as a settlement surface.

Rhodymenia spp. have been reported as the preferred
settlement surface for A. purpuratus in the study area and
elsewhere (Navarro et al., 1991; Avendaño and Cantillánez, 2008).
Pectinid larvae generally use living (e.g., coralline algae, hydroids,
briozoans, red algae) and non-living structures (e.g., empty shells,
pebbles, mooring lines) above the seabed as a primary settling
surface, probably to protect themselves from silting on bottom
sediments (Orensanz et al., 1991; Harvey et al., 1993; Steller
and Cáceres-Martínez, 2009). The importance of these structures
for scallop recruitment has led to the suggestion that algal or
rhodolith beds may serve as nursery grounds (Thouzeau, 1991)
and that when they are not available they may limit scallop
population size and stability (Orensanz et al., 1991).

CONCLUSION

Our study showed a clear relationship between regional thermal
anomalies related to EN-LN phases of ENSO and local variability
in sea surface and bottom temperature in La Rinconada Marine
Reserve, with a stronger signal during the Austral winter. Despite
these strong thermal changes, the observed variability in the
transition from the larval stage to the subsequent settlement of
A. purpuratus was mainly influenced by the continuous reduction
in the availability of its preferred settlement surface – the red algae
Rhodymenia spp. This reduction may have consequences for the
stability of natural stocks of A. purpuratus, which is thought to be
mainly affected by ENSO dynamics and misleading management.
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