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Cetaceans are ecologically important marine predators, and designating individuals
to distinct populations can be challenging. Passive acoustic monitoring provides
an approach to classify cetaceans to populations using their vocalizations. In the
Hawaiian Archipelago, three genetically distinct, sympatric false killer whale (Pseudorca
crassidens) populations coexist: a broadly distributed pelagic population and two island-
associated populations, an endangered main Hawaiian Islands (MHI) population and a
Northwestern Hawaiian Islands (NWHI) population. The mechanisms that sustain the
genetic separation between these overlapping populations are unknown but previous
studies suggest that the acoustic diversity between populations may correspond to
genetic differences. Here, we investigated whether false killer whale whistles could be
correctly classified to population based on their characteristics to serve as a method of
identifying populations when genetic or photographic-identification data are unavailable.
Acoustic data were collected during line-transect surveys using towed hydrophone
arrays. We measured 50 time and frequency parameters from whistles in 16 false
killer whale encounters identified to population and used those measures to train and
test random forest classification models. Random forest models that included three
populations correctly classified 42% of individual whistles overall and resulted in a low
kappa coefficient, κ = 0.15, indicating low agreement between models, and the true
population. Whistles from the MHI population showed the highest correct classification
rate (52%) compared to pelagic and NWHI whistles (42 and 36%, respectively). Pairwise
random forest models classifying pelagic and MHI whistles proved slightly more accurate
(62% accuracy, κ = 0.24), though a similar pelagic-NWHI model did not (56% accuracy,
κ = 0.12). Results suggest that the time-frequency whistle characteristics are not suitable
to confidently classify encounters to a specific false killer whale population, although
certain features of whistles produced by the endangered MHI population allow for overall
higher classification accuracy. Inclusion of other vocalization types, such as echolocation
clicks, and alternative whistle variables may improve correct classification success for
these sympatric populations.

Keywords: cetaceans, false killer whale, passive acoustic monitoring, population classification, Hawaiian
archipelago, machine learning
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INTRODUCTION

Cetaceans are top predators widely distributed throughout
the world’s oceans and can play specific roles in maintaining
ecosystem function and structure due to their higher trophic
level (Estes et al., 1998; Roman and McCarthy, 2010; Roman
et al., 2014). Changes to their abundance and distributions
have cascading effects that affect complex interactions between
multiple trophic levels within the oceanic food web (Heithaus
et al., 2008; Baum and Worm, 2009; Estes et al., 2011; Kiszka et al.,
2015). Conservation and management efforts for cetaceans are
complicated by the inherent challenges associated with studying
animals that live primarily underwater. Most statistical analyses
for estimating cetacean density, abundance, and distribution
only include data collected by visual observers (Buckland et al.,
2001; Durban et al., 2005; Palacios et al., 2013; Urian et al.,
2015; Bradford et al., 2017). Visual observations contribute
valuable information about cetacean distribution, abundance,
and population structure, but poor weather conditions, lack of
daylight, and high sea state can limit their effectiveness (Barlow
et al., 2001; Barlow, 2015). Some species are also missed by visual
observers due to long dive periods or cryptic surface behavior,
which then biases the statistical results (Buckland, 2004).

Fortunately, various research tools have emerged to improve
empirical data collection for cetaceans, such as unmanned aerial
vehicles (UAVs; Aniceto et al., 2018; Torres et al., 2018), satellite
and multisensory tags (Woodworth et al., 2012; Citta et al., 2017),
and passive acoustic monitoring (PAM; Mellinger et al., 2007;
Van Parijs et al., 2009; Bittle and Duncan, 2013). PAM methods
are complementary to visual observer methods during shipboard
line-transect surveys (Evans and Hammond, 2004; Barlow and
Taylor, 2005; Rankin et al., 2008) and do not depend on weather
or daylight, nor do they require direct interactions with the
animals. Current PAM technology can record all frequencies of
known cetacean vocalizations, offering an alternative method
for assessing cetacean biodiversity, distribution and occurrence
patterns, and behavior.

Acoustic-based detection and classification methods continue
to improve for many cetacean species (Charif and Clark, 2009;
Delarue et al., 2009; Roch et al., 2011; Baumann-Pickering et al.,
2013; Rankin et al., 2017). Many dolphin species can be identified
based on characteristics of their whistle and click vocalizations,
and in some cases, population-level differences are evident
(Rendell et al., 1999; Oswald et al., 2007; Soldevilla et al., 2008;
Gannier et al., 2010; Azzolin et al., 2014; Baumann-Pickering
et al., 2015). For example, dolphin whistles vary geographically in
many species, including striped dolphins (Stenella coeruleoalba),
short-beaked common dolphins (Delphinus delphis), Guiana
dolphins (Sotalia guianensis), common bottlenose dolphins
(Tursiops truncatus), and Indo-Pacific bottlenose dolphins
(Tursiops aduncas) with variation found in duration, number
of contour inflections points, and the beginning or maximum
frequency of whistles (Morisaka et al., 2005; Rossi-Santos and
Podos, 2006; May-Collado and Wartzok, 2008; Azzolin et al.,
2013; Papale et al., 2013a). Killer whales (Orcinus orca) in
the temperate coastal waters of the eastern North Pacific have
sympatric ecotypes with corresponding differences in vocal

repertoires between social groups (Ford, 1991; Yurk et al., 2002;
Saulitis et al., 2005; Deecke et al., 2010; Riesch and Deecke,
2011). Methods to acoustically distinguish reproductively and
socially isolated sympatric dolphin populations, such as killer
whales, are useful for assessing the population status of these
highly mobile marine predators. Differentiation in dolphin
whistle characteristics between and within dolphin populations
suggest fine-scale adaptations may be driven by different context-
specific factors, such as environmental conditions, behavioral
states, group composition, or ambient noise levels (Norris
et al., 1994; Nowacek, 2005; Oswald et al., 2008; Henderson
et al., 2012). False killer whales, Pseudorca crassidens, (Owen,
1846) are a large, highly social dolphin found throughout
tropical and semi-tropical waters. In the Hawaiian Archipelago,
three genetically differentiated populations of false killer whales
are recognized and managed, including a pelagic population
dispersed throughout offshore waters, an insular population
associated with the Northwestern Hawaiian Islands (NWHI),
and an endangered insular population associated with the main
Hawaiian Islands (MHI) (Baird et al., 2008, 2013; Chivers
et al., 2010; Martien et al., 2014). Abundance estimates for
the pelagic, NWHI, and MHI populations indicate population
sizes of 1,540, 617, and 167 individuals, respectively (Bradford
et al., 2015, 2018). Several years of photo-identification data
coupled with genetic analyses and telemetry data from satellite-
tagged individuals suggest the populations are demographically
independent and do not readily interbreed despite overlapping
habitat use (Baird et al., 2010; Martien et al., 2014; Baird, 2016),
including areas where the pelagic population overlaps with both
island-associated populations and an offshore area near Kauai
where all three populations overlap (Bradford et al., 2015).
Additionally, individuals from the MHI population associate
at a finer scale in five social clusters that also overlap in
their habitat ranges with some genetic differentiation (Baird
et al., 2012; Martien et al., 2014; pers. comm. R. Baird,
October 12, 2018). The mechanisms maintaining the separation
between and within these disparate, yet overlapping, populations
are unknown.

The three Hawaiian false killer whale populations face
threats from multiple human activities, including fisheries
interactions (Shallenberger, 1981; Nitta and Henderson, 1993;
Baird and Gorgone, 2005; Forney et al., 2011). False killer
whales primarily feed on fish and squid, and many of the
same fish species are also targeted by Hawaii-based fisheries
(Baird, 2009, 2016). Interactions between the longline and
other hook-and-line fisheries and Hawaii’s false killer whales
have been documented for decades and lead to death or
serious injuries of individuals incidentally hooked or entangled
(Baird and Gorgone, 2005; Gilman et al., 2006; Baird et al.,
2014; Bradford and Forney, 2014; Bradford and Lyman, 2018).
The currently estimated ranges of all three of the Hawaiian
populations overlap the commercial longline fisheries and
recreational fisheries (Bradford et al., 2015; Bayless et al., 2017).
As long as the Hawaii-based fisheries continue to target the
same fish species as false killer whales and the full ranges of
the false killer whale populations are uncertain, these marine
predators remain at risk.
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Because of human-caused threats to this species, and given
the endangered status of the MHI population (Oleson et al.,
2010), it is critical to track false killer whale abundance
in Hawaiian waters at the population level. False killer
whales are primarily monitored by collecting abundance and
distribution data during shipboard visual and acoustic line-
transect surveys but require genetic samples and photo-
identification data to confirm the population identity of
sighted individuals, data which are often unavailable due to
the challenges inherent to sampling cetaceans. Hawaiian false
killer whales are particularly challenging to study due to their
low densities, dispersed subgrouping behavior, and tendency
to approach research vessels from behind (Bradford et al.,
2014). Fortunately, they are vocally active, commonly detected
using PAM methods during line-transect surveys (Barlow
and Rankin, 2007; Bradford et al., 2014) and their whistles
can be classified correctly to species with a high level of
certainty compared to other dolphin species (Oswald et al.,
2007; Barkley et al., 2011). No studies have examined and
compared the characteristics of each Hawaiian false killer whale
population’s whistle repertoire. If population-level differences
exist between the whistles of the different populations, PAM
could provide a method for determining their abundance, ranges,
and occurrence patterns.

In this study, we examine the variation in whistle
characteristics between and within the three Hawaiian Islands
false killer whale populations and build classification models
utilizing random forest (RF) classification methods (Breiman,
2001; Liaw and Wiener, 2002). Advancing PAM methods to
identify populations of marine predators enhances our ability to
address more complex research questions to further understand
the distributions and ecological roles of cetacean populations
for more robust management and conservation (Fleming et al.,
2018; von Benda-Beckmann et al., 2018).

MATERIALS AND METHODS

Data Collection
Acoustic recordings and visual sighting data were collected
during several line-transect cetacean abundance surveys
conducted by the Pacific Islands Fisheries Science Center (PIFSC)
of the National Oceanic and Atmospheric Administration
(NOAA) aboard the NOAA Ship Oscar Elton Sette in 2012, 2013,
and 2016. This study also included data from surveys organized
by PIFSC and the NOAA Southwest Fisheries Science Center
(SWFSC) in 2010 and 2017. All efforts used consistent protocols
to search for cetaceans and collect sighting data, methods
developed by SWFSC in the 1980s (Kinzey et al., 2000; Bradford
et al., 2017). In brief, three marine mammal observers searched
for cetaceans 180◦ forward of the ship from the flying bridge.
The port and starboard observers used 25 × 150 binoculars and
the third observer in the center searched with unaided eyes or
7× binoculars and acted as the data recorder. When cetaceans
were sighted within 5.6 km (3 nmi) of the transect line, the ship
diverted from the transect line to estimate group size and identify
the species present. A small boat was launched on some cetacean

groups to collect photo-identification images, biopsy samples,
and deploy satellite telemetry tags when possible.

Continuous acoustic recordings were collected during
daylight hours using custom-built hydrophone arrays towed
at approximately 4–10 m deep, 300 m behind the ship while
traveling at 18.5 km/h (10 kt). Trained acousticians monitored
the hydrophones aurally with headphones and visually
using spectrographic software (ISHMAEL, Mellinger, 2002;
PAMGuard, Gillespie et al., 2008). When cetacean vocalizations
were detected, a phone-pair bearing algorithm in ISHMAEL
or PAMGuard was used to calculate the direction of the sound
source relative to the bow of the ship. These bearings were
plotted using a mapping software with a GPS interface, either
Whaltrak or PAMGuard, and target motion analysis was used
to localize the animals based on the convergence of plotted
bearings with left/right ambiguity. The ambiguity in the acoustic
location estimate was often resolved either by turning the ship
or matching the bearings to an associated sighting by the visual
observers (Rankin et al., 2008). Each survey used a different array
of hydrophones made up of 4–7 hydrophone elements from
various manufacturers, but all had a flat frequency response from
2 kHz to at least 40 kHz and acoustic data were digitized with
sampling rates of 192 or 500 kHz, providing sufficient bandwidth
for capturing dolphin whistles in their entirety (Table 1).

A two-phase protocol specific to false killer whale sightings
and acoustic detections was developed to reduce bias in
abundance estimates introduced by their subgrouping behavior
(Bradford et al., 2014; Yano et al., 2018). All acoustic recordings
included in this analysis were collected during the first phase,
when the ship traveled in a straight line through the entire false
killer whale group. Visual observers estimated the number of
individuals in the group (when possible), their initial behavior,
and identified the group to the level of species and population
(pelagic, NWHI, and MHI) using photo-identification analysis,
genetic analysis, and/or satellite telemetry data.

Whistle Selection and Measurement
Acoustic recordings of false killer whales were organized into
acoustic encounters, defined as the total length of recording
time during the first phase of the associated false killer
whale sighting. Recordings were decimated to 192 kHz to
maintain consistency in measurements for all surveys. An
equal subset of whistles from each acoustic encounter was
randomly selected to avoid oversampling individuals and obtain
a representative sample of whistle characteristics across the
populations. The number of whistles selected for each subset
was determined by considering prior whistle classification
studies in which total selected whistles ranged between 35
and 811 whistles per acoustic encounter (Bazúa-Durán and
Au, 2004; Oswald et al., 2007; May-Collado and Wartzok,
2008) and the constraints of this data set. Initially, we
selected 100 whistles per encounter based on the acoustic
encounter with the shortest duration (3540 s), which equaled
approximately one whistle every 35 s. Selected whistles had
signal-to-noise ratios ranging from 0.5 to 8.8 dB and all had
clearly visible continuous contours and distinct start and end
frequencies for accurate measurement of whistle variables. The
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TABLE 1 | Specifications of towed hydrophone array data collected during each survey.

HICEAS 2010
(PIFSC/SWFSC)

PICEAS 2012 (PIFSC) PACES 2013
(PIFSC)

HITEC 2016 (PIFSC) HICEAS 2017
(PIFSC/SWFSC)

NOAA ship & Sail Dates Oscar Elton Sette: September
2 – October 29, 2010

Oscar Elton Sette: April
23 – May 17, 2012

Oscar Elton Sette:
May 7 – June 5, 2013

Oscar Elton Sette: June
28 – July 27, 2016

Oscar Elton Sette: July
6 – October 10, 2017

McArthur II: August 13 –
December 1, 2010

Reuben Lasker: August
17 – December 1, 2017

Total Acoustic Effort
(hours)

371
1074

263 293 350 857
886

Population recorded Pelagic, NWHI Pelagic Pelagic MHI MHI

Hydrophone EDO EC65 EDO EC65 APC 42-1021 HTI-96-MIN HTI-96-MIN

Hydrophone flat
response range

2–40 kHz 2–40 kHz 2–40 kHz 2–85 kHz 2–85 kHz

A/D converter MOTU mK3 MOTU mK3 MOTU mK3 SA Instrumentation
SAIL DAQ

SA Instrumentation
SAIL DAQ

Sampling rate 192 kHz 192 kHz 192 kHz 500 kHz 500 kHz

Recorder
bit-depth/resolution

16-bit 16-bit 16-bit 16-bit 16-bit

Pre-amplifier flat
response range

>2 kHz >2 kHz >2 kHz >2 kHz 2–50 kHz

High pass filter 1.5 kHz 1.5 kHz 1.5 kHz 1.5 kHz 1.5 kHz

recordings were partitioned into 100 equal time increments
(in seconds) and the first clear whistle was selected from a
spectrogram of each time increment using Raven Pro (4096
FFT, Hann window, 50% overlap, version 1.5; Bioacoustics
Research Program, 2017). If a time increment did not include
whistles, a whistle was chosen from a different, randomly selected,
time increment. Fifty additional whistles were included from
randomly selected time increments to increase the sample size for
each acoustic encounter.

After whistles were selected and annotated using Raven
Pro, whistle contours were manually traced from spectrograms
(4096 FFT, Hann window, 50% overlap) using the Real-time
Odontocete Call Classification Algorithm (ROCCA) module
(Oswald and Oswald, 2013) within PAMGuard (version 1.15.1;
Gillespie et al., 2008). ROCCA contains several semi-automated
whistle classifiers, including one for eight delphinid species
recorded in the eastern tropical Pacific Ocean with particularly
high accuracy for false killer whales (Barkley et al., 2011). ROCCA
automatically measures 50 time and frequency measurements
from traced whistle contours, which can be used in other analyses
(Table 2; Oswald, 2013).

Model Configuration
The 50 whistle measurements from ROCCA were used as the
predictor variables in RF classification models (Breiman, 2001;
Liaw and Wiener, 2002) to test whether the three false killer
whale populations could be distinguished based on their whistles.
The RF algorithm is a non-parametric statistical method capable
of modeling complex interactions among ordinal and nominal
predictor variables (Cutler et al., 2007). The RF models are
an ensemble of decision trees designed to recursively partition
data based on the values of the predictor variables (e.g., whistle
measurements). Decision trees are grown from a bootstrap
sample of the model data with approximately 1/3 of the data
omitted as the out-of-bag (OOB) sample for cross-validating

the classification accuracy of the model (Efron and Tibshirani,
1997). At each node, predictor variables are selected from a
random subset of the predictor variables to split the data into
the most homogeneous daughter nodes until the trees are
grown to their maximum depth. Data are classified to a target
variable (e.g., population) based on the majority vote of the
predictions of all trees. The output of RF models includes variable
importance measures, a ranking of the predictor variables based
on their importance in predicting the outcome. We calculated
variable importance as the mean decrease in accuracy (MDA) by
permuting each variable and comparing the OOB error rates of
the model before and after permutation. Here, RF classification
models were developed in the R programing environment
(version 3.5.2; R Core Team, 2018) using the randomForest
package (version 4.6-14; Liaw and Wiener, 2002).

We developed two RF model configurations to classify
the whistle measurement data: one configuration incorporated
all false killer whale populations (RF_PNM) and the second
configuration was composed of pairwise models incorporating
only two populations. The pairwise configurations only applied
to regions of the archipelago assumed to be inhabited by two
of the three populations, resulting in two pairwise RF models:
one for the pelagic and insular northwest Hawaiian populations
(RF_PN) and the other for the pelagic and insular main Hawaiian
populations (RF_PM). We assumed that no region existed in
the archipelago inhabited by only the insular MHI and insular
NWHI populations.

Figure 1 provides a schematic diagram detailing the sampling
and processing procedures of the whistle measurement data
to configure each RF model. For each RF model, an equal
number of acoustic encounters (including all 150 whistles) were
randomly selected from each population. Next, we performed a
correlation analysis on the data to measure the linear dependence
between pairs of whistle variables, removing variables if the
Pearson’s correlation coefficient exceeded ±0.8. Typically, model
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TABLE 2 | Fifty time and frequency whistle variables measured by the real-time odontocete call classification algorithm (ROCCA) were considered in the
random forest models.

Variable name Description Units Type

MaxFreq Maximum frequency of whistle Hertz Continuous

MinFreq Minimum frequency Hertz Continuous

Duration Duration of whistle in time Seconds Continuous

BegFreq Frequency at the beginning of the whistle Hertz Continuous

EndFreq Frequency at the end of the whistle Hertz Continuous

FreqRange Frequency range for the entire whistle Hertz Continuous

MeanDC Mean duty cycle (proportion of time signal “on” vs. ”off”) Seconds Continuous

StdDevDC Standard deviation of the duty cycle Seconds Continuous

MeanFreq Mean frequency of whistle Hertz Continuous

StdDevFreq Standard deviation of the frequency Hertz Continuous

MedFreq Median of the frequency Hertz Continuous

CenterFreq Frequency at the center of the whistle Hertz Continuous

FreqRelBW Frequency of the relative bandwidth Hertz Continuous

MaxMinRatio Ratio of the max and min frequencies NA Continuous

BegEndRatioFreq Ratio of the beginning and end frequencies NA Continuous

QuarterFreq1 Frequency of the first quarter of the whistle Hertz Continuous

QuarterFreq2 Frequency of the second quarter of the whistle Hertz Continuous

QuarterFreq3 Frequency of the third quarter of the whistle Hertz Continuous

FreqSpread Frequency spread Hertz Continuous

CoeffFreqMod Coefficient of frequency modulation: take 20 frequency measurements equally
spaced in time, then subtract each frequency value from the one before it.
COFM is the sum of the absolute values of these differences, all divided by
10000 (McCowan and Reiss, 1995)

NA Continuous

StepsUpFreq Number of steps that have increasing frequency NA Count

StepsDwnFreq Number of steps that have decreasing frequency NA Count

StepsTotal Total number of steps NA Count

MeanSlope Frequency of overall mean slope calculated every three contour points Hertz Continuous

MeanAbsSlope Frequency of absolute mean slope calculated every three contour points Hertz Continuous

MeanPosSlope Frequency of mean positive slope calculated every three contour points Hertz Continuous

MeanNegSlope Frequency of mean negative slope calculated every three contour points Hertz Continuous

PosNegSlopeRatio Ratio of positive and negative mean slope Hertz Continuous

BegSwpFreq Frequency of the beginning of the sweep Hertz Continuous

BegUpFreq Frequency as slope begins to go up 1, beginning slope is positive;
0, beginning slope is negative

Binary

BegDwnFreq Frequency as slope begins to go down 1, beginning slope is positive;
0, beginning slope is negative

Binary

EndSwpFreq Frequency of the end of the sweep 1, ending slope is
positive; –1, ending slope is
negative; 0, ending slope is 0

Categorical

UpEndFreq Frequency of the up end 1, beginning slope is positive;
0, beginning slope is negative

Binary

DownEndFreq Frequency of the down end 1, beginning slope is positive;
0, beginning slope is negative

Binary

NumInflPosToNeg Number of inflection points that go from positive slope to negative slope NA Count

NumInflNegToPos Number of inflection points that go from negative slope to positive slope NA Count

NumTimesPosToZero Number of times the slope changes from positive to zero NA Count

NumTimesNegToZero Number of times the slope changes from negative to zero NA Count

NumTimesZeroToPos Number of times the slope changes from zero to positive NA Count

NumTimesZeroToNeg Number of times the slope changes from zero to negative NA Count

PctPosSlope Percent of the whistle that has a positive slope NA Continuous

PctNegSlope Percent of the whistle that has a negative slope NA Continuous

PctZeroSlope Percent of the whistle that has zero slope NA Continuous

NumInfl Total number of inflection points NA Count

MaxTimeBtwnInfl Maximum time between inflection points Seconds Continuous

(Continued)
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TABLE 2 | Continued

Variable name Description Units Type

MinTimeBtwnInfl Minimum time between inflection points Seconds Continuous

MaxInflTime/MinInflTime Inflmaxdelta/inflmindelta NA Continuous

MeanTimeBtwnInfl Mean time between inflection points Seconds Continuous

SDTimeBtwnInfl Standard deviation of the time between inflection points Seconds Continuous

MedTimeBtwnInfl Median of the time between inflection points Seconds Continuous

overfitting due to correlation does not occur with RFs (Cutler
et al., 2012). However, studies have shown that correlated
variables strongly bias the ranking of important variables, making
it difficult to interpret the results (Strobl et al., 2008; Gregorutti
et al., 2017). The subset of whistle data with uncorrelated
variables was then partitioned by acoustic encounter into
independent training and test data sets for each population, with
75% of the acoustic encounters included in the training data
and 25% included in the test data. The RF model configurations
include two parameters that can be adjusted to achieve the
highest accuracy rate from the model training data: the number
of variables randomly selected at each node (mtry) and the
number of trees in the forest (ntree). The number of variables
was set to the default (the square root of the total number of

whistle measurements) and the number of trees was optimized.
Optimized RF models sampled 100 different combinations of
acoustic encounters (with replacement) to train and test the
model configurations and obtain average classification rates.

The RF models used the whistle measurement data to classify
individual whistles to a population to obtain overall classification
rates. Then, since the MHI population associates in social
clusters and any form of stable social groups are unconfirmed
for the pelagic and NWHI populations, we also examined the
variability of whistle measurements within populations in two
ways. First, whistles were classified to a given acoustic encounter
instead of a population by creating separate RFs per population
using the same steps described for classifying individual whistles
to a population. Second, acoustic encounters were classified

FIGURE 1 | Schematic diagram outlining the modeling approach for sub-sampling the whistle measurement data for each random forest model configuration. This
workflow was performed 100 times for each model configuration.
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to a population based on the majority of individual whistle
classifications within encounters.

Model Evaluation
Classification results for all RF models were summarized in
confusion matrices, which included the proportion of correctly
and incorrectly classified whistles by population. Cohen’s Kappa
statistic, κ, was calculated to evaluate model performance by
comparing the classification results of the test data (observed
accuracy) to random chance (expected accuracy) (Cohen, 1960).
The strength of agreement for κ coefficients is outlined by Landis
and Koch (1977) as the following: 0.01–0.20 slight, 0.21–0.40 fair,
0.41–0.60 moderate, 0.61–0.80 substantial, and 0.81–100 nearly
perfect. This is a statistic originally used to measure interrater
reliability, but is also commonly used for evaluating results of
machine learning classification methods as a more informative
metric as it accounts for random chance versus only reporting the
observed accuracy (Titus et al., 1984; Garzón et al., 2006; Cutler
et al., 2007; García et al., 2009).

Variable importance was measured using the mean decrease
in accuracy calculated by permuting each variable in the
RF model and comparing OOB accuracies for models with
and without permutation. We summarized variable importance
using the minimum, maximum, and median MDAs for the
10 most important variables from all iterations of each
model configuration to better understand which variables
contributed the most to the classification results. Pairwise

Kolmogorov-Smirnov tests compared cumulative frequency
distributions of the most important whistle variables to
examine which whistle characteristics significantly differed
between populations.

RESULTS

A total of 40.7 h of recordings were analyzed from 16 acoustic
encounters of false killer whales identified to a population
using visual observer data, including 8 encounters for the
pelagic population and 4 encounters for each of the NWHI
and MHI populations (Figure 2). Initial behaviors of individuals
within encounters varied primarily between foraging, traveling,
porpoising, and bow-riding, with no obvious dominant behavior.
Photo-identification analyses found a total of 17 individuals
resighted between the acoustic encounters, resulting in 1 pelagic
animal resighted between P1 and P7, 10 NWHI animals resighted
primarily between N1 and N4, and 6 MHI animals from M1
resighted in M2 and/or M4.

A total of 2400 whistles were manually extracted using
ROCCA, including 1200 whistles for the pelagic population,
600 whistles for the NWHI population, and 600 whistles for
the MHI population. Table 3 summarizes the metadata for
each acoustic encounter. Four acoustic encounters were sampled
from each population for each model iteration as that was the
number of acoustic encounters available for the NWHI and MHI
populations. Three acoustic encounters from each population

FIGURE 2 | Map of false killer whale acoustic encounters identified to population based on photo-identification data, genetic samples, or satellite telemetry data.
Gray dashed line indicates boundary of study area (Hawaiian Exclusive Economic Zone) and gray solid lines indicate transect lines from all line-transect surveys. “P”
denotes the pelagic population, “N” denotes the Northwestern Hawaiian Island population, and “M” denotes the main Hawaiian Island population.
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TABLE 3 | Summary table listing information for each acoustic encounter, including population, acoustic encounter ID (“P” denotes the pelagic population, “N” denotes
the Northwestern Hawaiian Island population, and “M” denotes the main Hawaiian Island population), social cluster (when applicable; pers. comm. R. Baird), date, time
(GMT), survey, group size (the geometric mean of observer best estimates), the acoustic and visual sighting survey IDs, and total duration of the recordings analyzed (s).

Population ID Social cluster Date GMT Survey Group size Acoustic ID Sighting ID Total duration Initial behavior

Pelagic P1 NA 9/2/2010 2:39 HICEAS 2010 36 71 35 11795 Travel

Pelagic P2 NA 9/5/2010 17:23 HICEAS 2010 10.3 83 47 7278 Porpoise, breach

Pelagic P3 NA 9/7/2010 19:47 HICEAS 2010 32 98 61 9683 Porpoise

Pelagic P4 NA 9/10/2010 21:25 HICEAS 2010 18.3 116 74 15068 Porpoise

Pelagic P5 NA 11/10/2010 21:38 HICEAS 2010 51 325 241 7635 Travel, forage

Pelagic P6 NA 5/16/2012 22:59 PICEAS 2012 18 186 76 9925 Travel

Pelagic P7 NA 5/15/2013 0:55 PACES 2013 42 39 20 15484 Travel

Pelagic P8 NA 5/27/2013 1:35 PACES 2013 27 88 59 13184 Mill, forage

NWHI N1 NA 9/26/2010 1:12 HICEAS2010 52 33 86 9420 Forage, breach

NWHI N2 NA 10/8/2010 3:16 HICEAS 2010 13.8 224 140 13601 Porpoise

NWHI N3 NA 10/20/2010 2:29 HICEAS 2010 8.8 291 200 4448 Travel

NWHI N4 NA 10/22/2010 21:25 HICEAS 2010 20.4 299 206 5312 Travel

MHI M1 1,3,5 7/5/2016 1:45 HITEC 2016 48 10 18 7200 Travel, breach

MHI M2 2,3,5 10/8/2017 20:12 HICEAS 2017 NA 338 178 5200 Rest

MHI M3 4 10/9/2017 23:15 HICEAS 2017 15 214 86 7680 Travel, forage

MHI M4 3,5 11/17/2017 18:31 HICEAS 2017 43 331 136 3540 Travel, forage

(150 whistles each) were allocated to a training data set with
one acoustic encounter allocated to the test data set. For the
100 models of RF_PNM, the total training data set included
135,000 whistles (150 whistles × 3 acoustic encounters × 3
populations × 100 model runs) and the total test data set
included 45,000 whistles (150 whistles × 1 acoustic encounter × 3
populations × 100 model runs). The training data for each
pairwise model totaled 90,000 whistles (150 whistles × 3 acoustic
encounters × 2 populations × 100 model runs) with the test data
totaling 30,000 whistles (150 whistles × 1 acoustic encounter × 2
populations × 100 model runs).

The final combination of optimized parameter values for
each model included the square root of total uncorrelated
variables (∼5) for mtry and 501–5001 decision trees for ntree
for all configurations. The resulting OOB accuracy rates for each
optimized model are presented in Table 4. The highest accuracy
rates across 100 models of RF_PNM ranged between 0.51 to 0.63,
with a mean of 0.56. Both pairwise models resulted in higher
accuracy rates. RF_PN ranged between 0.68 and 0.69, with a
mean of 0.68 and RF_PM showed the highest accuracy rates of
0.68–0.75, with a mean of 0.72.

TABLE 4 | Mean OOB accuracy rates (with variances) of the training data for each
model configuration.

Mean OOB accuracy rates

RF_PNM RF_PN RF_PM

Pelagic 0.53 (0.002) 0.68 (0.001) 0.68 (0.001)

NWHI 0.51 (0.002) 0.69 (0.001) –

MHI 0.63 (0.001) – 0.75 (0.001)

Overall 0.56 (0.001) 0.68 (0.001) 0.72 (0.001)

Accuracy rates are presented for individual populations across all models.

Classification results of test data for all model configurations
were organized into separate confusion matrices. RF_PNM
resulted in a mean observed accuracy of 0.42 and κ = 0.15
when compared to the expected accuracy of 0.33. According to
the suggested kappa coefficient scale, the classification results of
the test data for RF_PNM are in “slight” agreement with the
true population of the test data. The confusion matrix (Table 5)
also provides information about how the populations were
misclassified – the pelagic whistles where mostly misclassified
to the NWHI population, and the NWHI whistles were
misclassified evenly between the pelagic and MHI population.
The MHI whistles had the highest correct classification rate
with misclassifications spread evenly between the pelagic and
NWHI populations.

Table 6 shows separate confusion matrices for both pairwise
models. RF_PN resulted in a mean observed accuracy of 0.56 and
κ = 0.12 calculated using an expected accuracy of 0.5. The mean
observed accuracy for RF_PM equaled 0.62 and κ = 0.24. The low
kappa coefficient for RF_PN indicates low agreement between
classification results of the test data with the true population while
the higher kappa coefficient for RF_PM suggests fair agreement.
Correct classification rates of the pelagic population were similar
between pairwise models but improved compared to RF_PNM
results (by ∼15%), which we expected since fewer populations
were included in the pairwise models. The MHI population
consistently showed the highest correct classification results for
all model configurations while classification results for pelagic
and NWHI whistles performed similarly throughout all models
relative to the MHI population.

This study also aimed to better understand the variability in
whistle measurements within populations by classifying whistles
to acoustic encounters instead of populations (Table 7). Since
our data set included an unequal number of acoustic encounters
per population (Table 3), we built separate RFs for each
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TABLE 5 | Confusion matrix displaying classification results for test data (with
variances) using the RF_PNM model.

PREDICTED POPULATION

Pelagic NWHI MHI

TRUE POPULATION

RF_PNM

Pelagic 0.42 (0.008) 0.26 (0.009) 0.32 (0.01)

NWHI 0.31 (0.007) 0.36 (0.007) 0.33 (0.008)

MHI 0.25 (0.004) 0.23 (0.011) 0.52 (0.017)

The proportion of whistles correctly classified are in bold. A total of 150 whistles
were tested from three populations for 100 models (n = 45,000).

TABLE 6 | Confusion matrices displaying classification results for populations
using the pairwise models, RF_PN, and RF_PM.

PREDICTED POPULATION

TRUE POPULATION

RF_PN Pelagic NWHI

Pelagic 0.57 (0.009) 0.43

NWHI 0.44 0.56 (0.005)

RF_PM Pelagic MHI

Pelagic 0.58 (0.014) 0.42

MHI 0.34 0.66 (0.009)

The proportion of whistles correctly classified are in bold. A total of 150 whistles
were tested from two populations for the 100 models (n = 30,000).

TABLE 7 | Mean observed accuracies and Kappa coefficients for acoustic
encounter classification models.

Acoustic encounter classification

Population Mean observed
accuracy

Kappa Total acoustic
encounters

n

Pelagic 0.31 0.21 8 29600

NWHI 0.46 0.32 4 14800

MHI 0.45 0.26 4 14800

The total number of whistles included in the test data from all model iterations for
each population are listed under n.

population. We selected the training and test whistle data using
the same 75%/25% split and included equal proportions of
whistles from each acoustic encounter. Pelagic whistles were
classified to pelagic encounters with a mean observed accuracy
of 0.31 (κ = 0.21) while whistles from the NWHI and MHI
populations received higher mean accuracies of 0.49 (κ = 0.32)
and 0.45 (κ = 0.26), respectively. These results suggest that
the whistles from the NWHI and MHI acoustic encounters
maintain certain time-frequency characteristics that allow them
to be classified to the correct acoustic encounter more often than
pelagic whistles.

Acoustic encounters were also classified to a population based
on the majority classification of individual whistles for each
model iteration to examine the variability of classification results

among acoustic encounters within populations. Table 8 provides
the percentages of correctly classified acoustic encounters for
all models. Acoustic encounters of the MHI population were
classified correctly more frequently than the pelagic and NWHI
encounters. On average, 87% of MHI encounters were correctly
classified across models, with the highest average score resulting
from the RF_PM model (93%). The averages for the pelagic
and NWHI acoustic encounters were lower (72 and 63%,
respectively). Specific acoustic encounters, M1, N1, N2, and P7,
showed the lowest scores in the RF-PNM model. Upon inspection
of how these encounters were misclassified, we found that M1
classified as NWHI 67% of the time (7% as MHI), 100% of the
N1 encounters classified as MHI, while 70% of the N2 encounters
classified as pelagic. P7 encounters were always classified as MHI.
Classifications improved for most acoustic encounters using the
pairwise models.

The important variables from RF classification models of
populations were ranked by MDA. Whistle variables with a
negligible decline in accuracy when permuted received a lower
MDA while permuted variables causing a larger decline in
accuracy were deemed more informative and received a higher
measure of MDA. Whistle variables that ranked within the top
10 important variables (from approximately 26 uncorrelated
variables depending on the model) were consolidated to assess
which whistle variables consistently contributed to the most
accurate RF models (Figure 3). Not all model configurations
resulted in the same top 10 important variables with 14 variables
occurring in the top 10 for all model configurations. Since RF
models included different numbers of trees and different whistles,

TABLE 8 | Percentage of models in which acoustic encounters were correctly
classified based on a majority of whistle classifications.

Model RF_PNM RF_PN RF_PM

Acoustic
encounter
ID

n Percent n Percent n Percent
correctly correctly correctly
classified classified classified

P1 11 90.9 9 66.7 9 100

P2 12 75 4 75 4 100

P3 17 64.7 16 81.3 16 43.8

P4 12 66.7 14 42.9 14 100

P5 6 50 17 76.5 17 100

P6 12 83.3 13 69.2 13 100

P7 11 0 14 92.9 14 0

P8 19 73.7 13 100 13 76.9

N1 17 0 23 82.6 − –

N2 27 29.6 28 64.3 − –

N3 28 71.4 26 100 − –

N4 28 71.4 23 87 − –

M1 27 25.9 − – 23 73.9

M2 20 100 − – 28 100

M3 23 100 − – 26 100

M4 30 100 − – 23 100

The total number of times the model included a given acoustic encounter is
listed under n. “P” denotes the pelagic population, “N” denotes the Northwestern
Hawaiian Island population, and “M” denotes the main Hawaiian Island population.
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FIGURE 3 | Range of mean decrease accuracies for whistle variables ranked as the 10 most important across all model iterations. Higher values of mean decrease
in accuracy indicate whistle variables that are more important to classification. Whistle variables selected in the top 10 for only one model iteration are represented as
a single dot.

variable importance is not directly comparable. However, two
variables (mean negative slope and third quarter frequency)
consistently produced the highest median values of MDA for
all model configurations. Other slope variables (mean slope,
percentage of negative slope, and percentage of zero slope) also
ranked within the top 10 important variables for 75–100% of all
models for each configuration.

Pairwise Kolmogorov-Smirnov tests examined whether the
14 whistle variables deemed most important for all model
configurations were also significantly different between the
populations. Results showed that six out of 14 important whistle
variables differed significantly between all populations, including
some slope variables, frequency spread, and the third quarter
frequency (Figure 4).

DISCUSSION

The marine environment contains few barriers to the genetic
dispersal of cetaceans, yet fine-scale genetic differentiation
exists for these highly mobile species. For many cetacean
species, measurable differences in their vocal repertoires are
consistent with the genetic differentiation between geographically
isolated populations and the intricate social structure within
a population (Rendell et al., 2012; Papale et al., 2014; Van
Cise et al., 2018). This study aimed to develop a whistle
classifier to identify whistles from acoustic encounters of

Hawaiian false killer whales to the population level. Identifying
Hawaiian false killer whale populations using characteristics of
their whistle repertoire could complement other population-
specific data or provide population identity when other data
are unavailable.

We applied the RF machine learning classification method
to analyze whistle characteristics of the three false killer whale
populations because of its high performance with diverse
variables, including prior work differentiating dolphin species
based on their whistle characteristics (Pal, 2005; Cutler et al.,
2007; Oswald, 2013; Keen et al., 2014; Li et al., 2016; Rankin et al.,
2017). Overall, RF classification models poorly differentiated the
three populations as is evident from the low correct classification
rates and low kappa coefficients for each model. The pelagic
and NWHI whistles were correctly classified at similar rates in
both RF_PNM and RF_PN models but whistles and acoustic
encounters from the MHI population were consistently correctly
classified at higher rates for all models.

Previous studies that examined geographic variation in
whistle characteristics of allopatric populations found significant
differences between several variables and achieved classification
scores significantly higher than expected by chance (May-Collado
and Wartzok, 2008; Azzolin et al., 2013; Papale et al., 2013b).
For this study, the populations are sympatric and overlap in part
of their range. Our results indicated that most whistle variables
are similar between these populations given that only 6 out of
50 whistle variables significantly differed between all populations
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FIGURE 4 | Results of Kolmogorov-Smirnov tests comparing uncorrelated important whistle variables between populations. Red dashed line represents α = 0.05.
Points to the left of the red dashed line indicate whistle variables that are significantly different for a given pairwise comparison of populations.

(Figure 4). An additional RF was configured using only these
six significantly different variables and resulted in even lower
classification scores (0.40 overall accuracy, κ = 0.1) suggesting
simplified models do not perform better and that a variety of
variables should be included in this type of classification model
for this species.

Despite the poor classification performance, our results
provide insight into potential patterns of whistle characteristics
between populations. While each RF model was built using
balanced training and testing data, the total whistle data set
included twice as many pelagic whistles and acoustic encounters
than the NWHI and MHI populations. The pelagic whistle
data presumably captured more variability due to behavioral
states, group composition, and environment. This additional
variability may be responsible for the lower classification scores
of the pelagic whistles. Interestingly, while pairwise RF models
improved classification scores for all populations, classification
results of pelagic whistles still performed similarly to the NWHI
whistles despite the disproportionate number of whistles and
acoustic encounters.

False killer whale whistles tend to be lower in frequency
and less frequency-modulated than most delphinid whistles and
have among the highest correct classification rates when other
delphinid species are included in the classifier (Oswald et al.,
2007). However, these whistle characteristics may make it difficult
to discern the subtle differences between populations using
the time-frequency measurements commonly implemented in
whistle classification analyses. Frequency-modulated calls, e.g.,
whistles, have been categorized into call types to identify
geographically isolated populations of some odontocetes based
on contour shape and time-frequency characteristics (Saulitis
et al., 2005; Van Cise et al., 2017). No attempt was made
to categorize whistle types for false killer whales since this

study was interested in the overall classification of all whistles.
A cursory look at the whistle data set shows there is potential to
identify whistle categories, but it is unknown whether this would
improve our ability to classify the three populations since whistle
categories types may share the same magnitude of similarities as
individual whistles.

Dolphin whistles are thought to act as a mechanism for group
cohesion (Janik and Slater, 1998) and may differ depending on
differences in the physical and social environments (May-Collado
and Wartzok, 2008). Sympatric killer whale populations in the
eastern North Pacific maintain social cohesion using dialects of
stereotyped calls that are highly modulated in frequency and
amplitude and vary between and within ecotypes (Ford, 1991;
Thomsen et al., 2002; Saulitis et al., 2005; Riesch et al., 2006;
Riesch and Deecke, 2011). In contrast, the sympatric false killer
whale populations in Hawaii produce less frequency-modulated
whistles overall but can maintain social cohesion between
subgroups that can span tens of kilometers (Bradford et al., 2014;
Baird, 2016). The overlapping ranges of the populations imply
that they experience similar environments and perhaps optimize
their whistle characteristics according to the same types of habitat
features (such as bathymetry, bottom type, proximity to land or
seamounts, and upwelling zones), which may explain the similar
time-frequency measurements found in our data set.

Characteristics of vocal repertoires have been used as a
proxy for defining geographically separate and/or ecologically
distinct populations, as well as different social groupings within
populations (Rendell and Whitehead, 2003; Saulitis et al., 2005;
Riesch and Deecke, 2011; Rendell et al., 2012; Gero et al., 2016).
Social clusters have been recognized for the MHI population
from social network analysis of photo-identification data where
three main clusters and two additional smaller social clusters
were identified (Baird et al., 2012). Results from classifying
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whistles to an acoustic encounter instead of a population may
reflect the finer-scale social structuring of the MHI population
and suggest that social clusters may also be present in the
NWHI population given the higher kappa coefficients for
both populations (Table 7). Although photo-identification data
are limited for the NWHI population, acoustic encounter
classification results reveal that it may be of value to test whether
social structuring exists for this island-associated population
using the available association data (Baird et al., 2013).

Classification results of MHI whistles appeared to be
influenced by the social clusters present during an acoustic
encounter. When acoustic encounters were classified based
on the majority of whistles for RF_PNM, M1 classified most
frequently as “NWHI” while M2, M3, and M4 always classified
as “MHI” (Table 8). Classification of M1 improved dramatically
for RF_PM since the NWHI population was not included as
a possible target variable. M1 was the only acoustic encounter
containing individuals from Cluster 1. Differences in whistle
characteristics between false killer whale social clusters have
not been examined, nor can we with this data set. Some social
clusters may have more highly variable whistles, and groups
containing aggregations of several social clusters may use a
different collection of whistles than those in single cluster
groups (Van Cise et al., 2018). Identifying variability in whistle
characteristics among social clusters would require encounters
with single cluster groups or accurate localization of vocalizing
individuals matched with photographic data to confirm their
identity within multi-cluster groups, data not currently available
for Hawaiian false killer whale populations.

Several factors affect the vocal repertoire of any species,
including behavior, social context, environmental factors, and
even data collection methods. The challenge is capturing enough
variability to build a successful classification model that can be
applied under a variety of circumstances. Whistle quality may
influence classification results if they are not representative of
the species or population. This study included whistles of various
quality to create a more flexible classifier for real-time and post-
process classification since, often, there are not enough “high
quality” whistles available to confidently classify an encounter.
Using various levels of whistle quality presumably captures a
variety of individuals engaged in different behaviors that may be
located at various distances relative to the hydrophones and result
in a more representative, and perhaps, successful classifier. Future
studies may test this theory by building separate whistle classifiers
based on discrete levels of whistle quality or behavioral states.

Investigating the acoustic classification of whistles for the
Hawaiian false killer whale populations is an important step
in furthering our understanding of this species for better
management and conservation efforts. While overall whistle
classification results from this study did not perform well,
patterns emerged suggesting characteristics of the endangered
MHI population’s whistles are more distinguishable and
that there may be fine-scale social structure in the NWHI
population, similar to that seen in the MHI population.
Additional whistle data for all populations may increase
classification performance to differentiate the populations
with more confidence and allow further investigation into

social and population structure as well as how the populations
remain demographically independent. Future analyses may
also incorporate characteristics of echolocation clicks to
improve classification, hybrid versions of important variables
(Rankin et al., 2017) or incorporate additional population or
behavior variables (social cluster, group size, etc.) to better
capture variability in whistle context and therefore whistle
characteristics. Results from this study will inform future
acoustic classification analyses for sympatric species that share
similar traits in their acoustic repertoire and ecology.
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