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Shallow water coral reefs and deep sea coral communities are sensitive to current

and future environmental stresses, such as changes in sea surface temperatures

(SST), salinity, carbonate chemistry, and acidity. Over the last half-century, some reef

communities have been disappearing at an alarming pace. This study focuses on the

Gulf of Mexico, where the majority of shallow coral reefs are reported to be in poor

or fair condition. We analyze the RCP8.5 ensemble of the Community Earth System

Model v1.2 to identify monthly-to-decadal trends in Gulf of Mexico SST. Secondly,

we examine projected changes in ocean pH, carbonate saturation state, and salinity

in the same coupled model simulations. We find that the joint impacts of predicted

higher temperatures and changes in ocean acidification will severely degrade Gulf of

Mexico reef systems by the end of the twenty-first century. SSTs are likely to warm by

2.5–3◦C; while corals do show signs of an ability to adapt toward higher temperatures,

current coral species and reef systems are likely to suffer major bleaching events in

coming years. We contextualize future changes with ancient reefs from paleoclimate

analogs, periods of Earth’s past that were also exceptionally warm, specifically rapid

“hyperthermal” events. Ancient analog events are often associated with extinctions, reef

collapse, and significant ecological changes, yet reef communities managed to survive

these events on evolutionary timescales. Finally, we review research which discusses

the adaptive potential of the Gulf of Mexico’s coral reefs, meccas of biodiversity and

oceanic health. We assert that the only guaranteed solution for long-term conservation

and recovery is substantial, rapid reduction of anthropogenic greenhouse gas emissions.

Keywords: climate change, coral reefs, coral bleaching, hot-house paleoclimates, adaptation, ocean acidification

1. INTRODUCTION

Coral Reefs constitute some of the most biodiverse ecosystems in Earth’s oceans. They are critical
to the socioeconomic health of 500 million people globally, providing billions of dollars in tourism
and food sources for island and coastal communities (Frieler et al., 2013). Coral reefs support 25%
of all of Earth’s marine species during various stages of their life cycle (NOAA Ocean Service
Education, 2017) and throughout geological time reefs have produced high diversity in Earth’s
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oceans (Kiessling et al., 2010). Anthropogenic climate change is
threatening reefs globally via multiple stressors including higher
water temperatures, changes in water acidity, and fluctuating
salinity. Today, there are no coral reefs left on the planet in
pristine condition (Jackson et al., 2001; Hughes et al., 2003).
Long-term surface temperature observations show a rate of
global warming of 0.13◦C per decade since 1979 (Trenberth et al.,
2007), with an increase to 0.27◦C per decademeasured from 1985
to 2009 (Chollett et al., 2012).

Anthropogenic climate change affects coral biology via
multiple compounding pathways (Rodolfo-Metalpa et al., 2011;
Prada et al., 2017); multiple pressures (e.g., warming and
acidification) combine to be significantly more damaging than
either stressor alone. The majority of shallow-water, reef building
corals are a holobiont consisting of an animal host (the coral)
and zooxanthellae (photosynthetic endosymbiotic dinoflagellates
of the family Symbiodiniaceae; LaJeunesse et al., 2018); this
holobiont produces a skeleton made of calcium carbonate
(aragonite). Scleractinian corals (or stony corals) are stenohaline
and typically prefer a narrow range of water temperatures and
carbonate saturation states. While they do have the ability
to modify the saturation state (�aragonite) of the fluid from
which they calcify their skeleton (e.g., Cohen and Holcomb,
2009; Ries et al., 2010; Anthony et al., 2011; Comeau et al.,
2017a,b), changes in seawater pH and seawater carbonate
chemistry can significantly reduce coral biomineralization,
diversity, recruitment, and abundance (Fabricius et al., 2011).
During times of extreme stress, in particular elevated sea
surface temperatures (SST) or acidification, coral will expel their
zooxanthellae, resulting in coral bleaching (Anthony et al., 2008;
Baird et al., 2009; Frieler et al., 2013); in some cases on a global,
sustained scale (Eakin et al., 2019; Skirving et al., 2019).

While much attention has been cast toward the sharp decline
of coral reef systems in the Australia’s Great Barrier Reef and
across the tropical Pacific since the early 1980s (Frieler et al.,
2013), considerably less work has been devoted to examining
climate projections focused on corals and reef organisms from
the Gulf of Mexico (GoM hereafter). The GoM is home to many
coral reefs growing along coastal Texas, Louisiana, Florida, and
Mexico in the upper ∼1,500 m, and houses a wide array of
deep sea coral species (as well as other reef builders, such as
sponges) found along the continental shelf and slope (Figure 1,
Figures S1, S2). Most of these reefs are within managed areas
including Dry Tortugas National Park and Veracruzano Coral
Reef System National Park, Flower Garden Banks and Florida
Keys National Marine Sanctuaries, and Florida State Park John
Pennekamp. Other coral reefs include Campeche Bank, Tuxpan,
Tuxtlas, Yucatan Shelf, Florida Middle Grounds, and Pulley
Ridge, the deepest stony coral reef in the US (Waddell and Clarke,
2008; Wilkinson and Souter, 2008; Ortiz-Lozano et al., 2013).

GoM reef systems are subject to myriad anthropogenic
stressors including rising SSTs, over-fishing, bleaching, chemical
pollution and increasing terrestrial runoff, coral mining, and
unrestricted tourism (Jordán-Dahlgren and Rodríguez-Martínez,
2003), as well as disease and sedimentation (Tunnell et al.,
2007; Carricart-Ganivet et al., 2011; Horta-Puga et al., 2015).
The once structurally complex coral reefs in the GoM and

Caribbean have declined since the 1970s, and very few reefs
still exhibit a mean live coral coverage >10% (Waddell and
Clarke, 2008; Wilkinson and Souter, 2008). The majority of GoM
coral reefs are reported to be in poor or fair condition with the
exception of Flower Garden Banks (a protected National Marine
Sanctuary) in the northern Gulf and Dry Tortugas National
Park in the westernmost Florida Keys (Waddell and Clarke,
2008; Wilkinson and Souter, 2008; Johnston et al., 2017). The
largest changes, documented since the 1970s, indicate that the
most prevalent branching corals, the Acroporid corals, have
experienced population declines >90% (Acropora Biological
Review Team, 2005). Two of these corals, Acropora palmata
and Acropora cervicornis, are listed as threatened species under
the Endangered Species Act of 2006 (Hogarth, 2006). In 2010,
the National Marine Fisheries Service found significant evidence
to list 82 coral species as threatened species, including eight
Caribbean species (NOAA, 2010).

At present, there is strong evidence that GoM reefs have
experienced thermal stress since 1878 (Kuffner et al., 2015) with
recent bleaching events in 2016/2017 (Johnston et al., 2019a). In
situ SST records show a 0.8◦C increase over the last century in the
Florida Keys, where corals have declined especially in the later
part of the twentieth century. Observed rates of SST warming
are spatially and temporally variable throughout the Gulf, but
the highest warming rates tend to occur in summer months
(June, July, and August); most recently, the highest heating rates
have been observed in the central GoM in the Loop Current
region (Chollett et al., 2012; del Monte-Luna et al., 2015; Allard
et al., 2016). Multiple studies suggest higher probabilities of
coral bleaching in mid-latitude reefs (15–20◦ of latitude) despite
similar levels of thermal stress compared to equatorial reefs (Sully
et al., 2019). Coral accretion rates must keep up with the current
rate of sea level rise for these ecosystems to survive (Toth et al.,
2015); today, sea level rise threatens Florida Keys reefs and other
GoM reefs, which cannot keep pace (Shinn, 1976).

Many of the climatic changes affecting the future of coral
reefs have been examined in climate model projections. Given
a business as usual (RCP8.5) greenhouse gas forcing scenario,
simulations from the Climate Model Inter-Comparison Project
(CMIP5) indicate that by 2090–2100, temperatures will increase,
pH will decrease, oxygen content in the oceans will drop, and
there will be a decrease in primary productivity (Bopp et al., 2013;
Freeman, 2015). Tropical oceans are warming the fastest of any
region globally in most of the CMIP5 projections, but with lower
acidification rates. GoM SSTs are projected to rise by 0.37◦C per
decade. This substantial rise in SST would severely stress GoM
coral reefs. Indeed, research shows that Gulf corals are stressed
when SSTs approach 31◦C; today, summertime temperatures
frequently reach 30◦C in the Florida Keys and Veracruz. These
simulations suggest that more than 50% of coral reefs globally
will undergo frequent and severe thermal stress by the year 2080
(Donner et al., 2005).

For this special issue on GoM coral reef systems, we zero
in on climate change in the GoM and future threats to the
region’s reef ecosystems. Recent catastrophic environmental
events, such as hurricanes Harvey and Irma (Hickerson et al.,
2008; Viehman, 2017), have cast justified attention to GoM

Frontiers in Marine Science | www.frontiersin.org 2 November 2019 | Volume 6 | Article 691

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Dee et al. Gulf of Mexico Climate Change

FIGURE 1 | Gulf of Mexico shallow and deep sea coral and sponge sites as reported in the deep sea coral database (NOAA, Figures S1, S2). Color scale along

y-axis indicates depth of reef organism and symbols denote organism type (e.g., scleractinian coral vs. sponge). (A) Scleractinian corals (stony corals), (B) all other

species reef locations. See also Figures S1, S2. From https://deepseacoraldata.noaa.gov/website/AGSViewers/DeepSeaCorals/mapSites.htm.

climate and ocean dynamics, including the well-being of Gulf
species and ecosystems (Zavala-Hidalgo et al., 2014). This
motivates careful examination of future climate predictions of
all relevant variables to accurately capture spatial heterogeneity
in reef response. In this work, we address the question: what
changes in climate and ocean chemistry will influence the corals
and reef systems in the Gulf of Mexico? We hypothesize that
new model simulations confirm that the GoM will warm and
acidify such that substantial coral bleaching will occur. A general
circulation model (GCM) with a fully coupled ocean model
is employed to test for changes in multiple environmental
stressors that impact coral reefs in the GoM through 2100.
The individual impacts of changes in temperature, salinity, and
ocean acidification are partitioned to drive a more targeted
reef impact mitigation plan. We contextualize future impacts to
GoM reefs through the lens of geological time, exploring how
present-day corals’ predecessor species were able to adapt to
analogous climate change events in the past. Finally, we discuss
the future of GoM reefs in the Anthropocene, and provide a
preview of the threats these ecosystems will soon face in this
particular region.

2. METHODS

2.1. GCM Simulations
To build a Gulf of Mexico-centric forecast of the various
conditions that interfere with coral reef health over the
next several decades, we evaluated simulations from the
Community Earth System Model version 1.2 (CESM) (Kay et al.,
2015). CESM is a state-of-the-art, Intergovernmental Panel on
Climate Change (IPCC)-class general circulation model (GCM)
developed at the National Center for Atmospheric Research.
We compared two periods from a high-CO2 forcing IPCC
representative concentration pathway (RCP) scenario (RCP8.5,
which corresponds to 8.5 W/m2 of radiative imbalance due
to anthropogenic greenhouse gas emissions). RCP8.5 assumes

a “business as usual” radiative forcing consistent with minimal
mitigation; we chose to employ this high-forcingmodel ensemble
in light of the fact that emissions trends over the past few
decades track slightly above RCP8.5 (Peters et al., 2012). CESM
1.2 simulations include a large ensemble (n = 33) of simulations
spanning the period 2006–2100, from which we extracted four
decades (2006–2026 and 2080–2100) for a modern vs. future
comparison. From the early twenty-first century control period
and the high-CO2 RCP8.5 scenario, the model ensemble mean
was computed for the following variables: SST, salinity (SALT),
alkalinity (ALK), dissolved inorganic carbon (DIC), and pH
for the upper-most ocean layer of POP2, the ocean model
component of CESM. We additionally analyzed the RCP4.5
medium ensemble of CESM1.2 to contextualize the changes
in RCP8.5 with those likely under a lower emissions scenario.
Note that all of the scripts used in the extraction and analysis
of climate model output are documented in section S2, and
provided directly in the Supplementary Material.

While the CESM model keeps track of the saturation
state of seawater with respect to the carbonate minerals
calcite and aragonite, these values are not directly included
as part of the standard model output. Thus, we recomputed
saturation states (�) using the MATLAB implementation
of the CO2SYS software (https://www.nodc.noaa.gov/ocads/
oceans/CO2SYS/co2rprt.html) (Lewis and Wallace, 1998). The
CESM model outputs of Alkalinity, DIC, salinity, water depth
(pressure), and temperature were used alongside assumptions
of phosphate and silicate concentrations of 0 µM, and the
dissociation constants of carbonic acid, bicarbonate, and sulfuric
acid from Mehrbach et al. (1973); Dickson and Riley (1979);
Dickson and Millero (1987), and Dickson (1990). This “offline”
approach to evaluating carbonate mineral saturation states also
allows us to apportion the predicted changes between each of the
input variables by sequentially holding each variable constant at
its 2006–2026 mean values and allowing the remaining variables
to change.
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To evaluate the accuracy of the model predictions for the
modern period, the model output was compared to field data
from multiple sites within the GoM. The field data were all
taken from the Global Ocean Data Analysis Project Version
2 (GLODAPv2) and include sites off of the coasts of Texas,
Louisiana, and Florida that range in depth from the surface to
500 m water depth. Using the same CO2SYS approach, the field
measurements of alkalinity, DIC, salinity, and temperature were
used to calculate �aragonite.

2.2. Defining Coral Reef Stress Factors
Based on CESM’s available output history files, we define the
following stressors on GoM reefs, and examine changes in these
stressors from 2006–2026 to 2080–2100. It should be noted that
many of these factors are synergistic (e.g., Rodolfo-Metalpa et al.,
2011; Prada et al., 2017).

• Degree HeatingMonths (DHM), a standard predictor for coral
bleaching (Gleeson and Strong, 1995; Liu et al., 2003). DHM =
1 refers to heating in excess of or equal to 1◦C above the long-
term monthly climatology of the warmest month in a given
region (Sully et al., 2019). DHM gives a measure of thermal
stress applied to corals, which leads to bleaching. DHM is
easier to compute given that coupled GCMs usually archived at
monthly time steps; however, degree heating weeks (DHW) is
considered the more accurate predictor of bleaching (Liu et al.,
2003; Kayanne, 2017; Sully et al., 2019).

• SSTVariance: Sully et al. (2019) show in a global survey of coral
bleaching from 1998 to 2017 that higher SST variance zones
over reefs are less susceptible to bleaching.

• Mean annual SST: an upper temperature limit for coral
bleaching in the Pacific has been reported as 28.1◦C, but
more recent work shows an increasing bleaching threshold of
28.7◦C (Sully et al., 2019). In the GoM, reported bleaching
thresholds are higher, approaching 30–31◦C. Wilkinson and
Souter (2008) found corals bleached in the Caribbean when
SST reached 31◦C and were sustained; Florida Keys and
Flower Garden Banks reefs bleach when SST reached 30–
31◦C (Johnston et al., 2019b) or 29.5◦C if temperatures were
sustained for 50 days (Johnston et al., 2019a). We consider
mean annual SSTs approaching 30◦C as high risk for coral
bleaching in the GoM.

• Salinity: in laboratory experiments, some species of Acropora
corals are sensitive to low salinity values, exhibiting threshold
behavior below∼22 g/kg (Berkelmans et al., 2012).

• Carbonate Chemistry: The saturation state of seawater with
respect to aragonite (�aragonite) is an important control
on coral growth as modern scleratinian (stony) corals
biomineralize an aragonite skeleton. The saturation state of
seawater is also a factor in coral growth and reef stabilization.
The modern distribution of coral reefs is largely limited to
regions of the ocean where �aragonite exceeds 3 (modern
distribution threshold; Kleypas et al., 1999; Fine and Tchernov,
2007; Hoegh-Guldberg et al., 2007; Guinotte and Fabry, 2008)
and experimental studies suggest that the calcification rate of
corals drops to zero when �aragonite reaches 2 (experimental
calcification threshold; Langdon et al., 2000; Albright et al.,

2008). Nevertheless, there are some examples of corals and low
diversity reefs growing inmore acidified waters in both natural
systems (Fabricius et al., 2011; Shamberger et al., 2014) and in
controlled experiments (Cohen andHolcomb, 2009; Ries et al.,
2010; Anthony et al., 2011). Finally, �aragonite = 1 is a strong
thermodynamic limit as, below this value, it is more likely for
aragonite to dissolve in seawater than to precipitate.

3. THE FUTURE OF GULF OF MEXICO
REEFS IN 21ST CENTURY PROJECTIONS

3.1. SST Changes
Corals demonstrate species-specific variable responses to
increasing surface ocean temperatures (Sully et al., 2019) as
well as changing carbonate chemistry (Bahr et al., 2018); this
response can also vary regionally and within micro-climates. In
the GoM, the CESM RCP8.5 ensemble mean SSTs rise to 28.5◦C
in the northernmost sector of the Gulf, and 29–30◦C in the
central and southeastern regions (Figure 2) for the end of the
twenty-first century. There is some indication that global mean
thermal bleaching thresholds may be shifting toward warmer
temperatures as global SSTs rise (Sully et al., 2019). Nevertheless,
the projected annual mean warming for the GoM exceeds the
most recent thermal threshold estimates of 30◦C (Johnston et al.,
2019b) in several locations in the southern and central GoM,
especially in the Caribbean.

The difference in 2080–2100 and 2006–2026 average SST
is given in Figure 3. In most areas of the Gulf of Mexico,
temperatures rise by ∼3◦C; in the central GoM and the
Caribbean, the SST changes are closer to ∼2.2–2.7◦C. At 100 m
depth, ocean temperatures increase more modestly by 1–1.5◦C
(Figure S3). The corals lining the Texas, Louisiana, and Florida
coastlines are likely to experience the greatest temperature stress
in the coming decades. Previous analyses of coupled climate
model simulations (CMIP3) indicate that SST increases of just 1–
1.5◦C relative to the pre-industrial era places most reefs at a high
risk for long-term degradation; an increase of 2◦C will increase
the risk of degradation or bleaching to 100% (Frieler et al., 2013).
In all zones of the GoM, the change in surface ocean temperatures
exceeds 2◦C. Thus, the RCP8.5 changes in SST suggest wide-
spread bleaching is likely by 2100 if a more aggressive mitigation
strategy is not adopted in the coming decades.

To explore the potential influence of increased climate
mitigation, we performed the same analysis of SST changes
in the CESM RCP4.5 medium ensemble, corresponding to a
lower greenhouse gas emissions scenario (Figure S4). GoM
temperatures rise more modestly by 2060–2080 with lower
forcing. While this ensemble only extends to 2080 (precluding
a direct comparison of the RCP8.5 2080–2100 conditions), SST
changes range from 0.92◦C to 1.3◦C by 2080. Despite the
reduction in warming, this still constitutes changes leading to
high risk of long-term degradation as defined by Frieler et al.
(2013).

3.1.1. Degree Heating Months
We computed the cumulative number of months above the
mean of maximum monthly SST climatology in each GoM
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FIGURE 2 | Projected mean Gulf of Mexico SST for 2080–2100, RCP8.5 Large Ensemble, CESM1.2, with all reported Gulf of Mexico reef organism locations overlain.

Colors of coral sites indicates reef organism depth [meters] and symbols denote type of reef builder, as in Figure 1. Continental regions are shown in white.

FIGURE 3 | Simulated changes in Gulf of Mexico SST [◦C] in the RCP8.5

Large Ensemble, CESM1.2. (2080–2100 mean minus 2006–2026 mean).

Continental regions are shown in white.

grid cell (following our definition of DHM, see section 2.2)
(following Liu et al., 2003; Donner et al., 2005; Frieler et al.,
2013). Multiple studies (Glynn and D’Croz, 1990; Hoegh-
Guldberg, 1999; Sheppard, 2003; Donner et al., 2005) show
that a SST exceedance threshold of 1◦C in a given month
will lead to bleaching; Donner et al. (2005) consider a higher
temperature threshold to be anything exceeding 2◦C above

FIGURE 4 | Simulated changes in Degree Heating Months (DHM) in GoM SST

[◦C] in the RCP8.5 Large Ensemble. DHM climatology is based on the period

2006–2080. DHM are defined as months that exceed 1◦C of the hottest

month in the grid cell climatology. Continental regions are shown in white.

monthly climatologies, corresponding to a degree heating week
(DHW) exceeding 8 weeks of high heating. Figure 4 shows the
difference in DHM between the beginning (2006–2026) and end
of the twenty-first century. The number of DHM increases for
the lower threshold of 1◦C throughout the GoM, with the largest
increases in DHM in the southern GoM and Caribbean (an
increase of 75–90 DHM across the 20 year period). Along the
Texas, Louisiana, and Florida coasts, DHM increases by 50–
55 months total compared to the 2006–2026 base period. Put
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FIGURE 5 | Simulated changes in the standard deviation (1-σ ) of GoM SST [◦C] in the RCP8.5 Large Ensemble, CESM1.2. (A) 2006–2026 SST σ . (B) 2080–2100

SST σ . (C) (2080–2100 mean σ minus 2006–2026 mean σ ). Continental regions are outlined in black contours.

another way, GoM corals are likely to experience thermal stress
for approximately 2–4 more months of the year by 2080–2100.

3.1.2. SST Variance
Coral bleaching is less frequently observed in zones that
experience high variance in SST anomalies (see Sully et al., 2019,
for a review). To assess the potential for changes in SST variance
to either dampen or amplify thermal stressors on GoM reefs,
we computed the change in variance in the earlier part of the
twenty-first century (Figure 5A) compared to the last 20 years
(2080–2100) (Figure 5B). The overall spatial variance of SSTs
remains largely unchanged throughout the twenty-first century:
higher latitude GoM SSTs are highly variable, with more muted
changes in the southern Gulf and Caribbean. The change in
variance (Figure 5C) between the two time periods is close to
zero degrees across much of the GoM with the exception of a
few zones surrounding the Caribbean islands, which show an
increase in overall variance. We note that these areas of higher
SST variance correspond to main ocean currents driving GoM
circulation, the Loop and Caribbean currents.

Given that increased variance is likely to help prevent
bleaching, there is no modeling evidence that reductions in
SST variance in the GoM will contribute to exacerbated
coral bleaching.

3.2. Changes in Salinity and Carbonate
Chemistry
While warming SSTs are expected to exert a primary influence
on coral reefs over the coming decades, other hydrological and
chemical changes in the ocean can also impact reef survival. Like
SSTs, changes in variables such as salinity and pH exhibit spatial
heterogeneity in simulations spanning the twenty-first century.

3.2.1. Salinity
GoM salinity is projected to increase; Figure 6 shows the average
salinity for 2080–2100 (a) and the change from 2006 to 2026 (b).
Salinity in the GoM and Caribbean is quite high, 36–37 g/kg, and
the CESM RCP8.5 ensemble exhibits a trend toward saltier water
characterizing the twenty-first century. Salinity falling below 22
psu is thus unlikely to stress GoM coral reefs. High salinities can
also be a stress on coral reef communities, but the maximum

salinities predicted for the GoM in the 2080–2100 simulation are
well within the range of naturally observed salinities near reefs,
and far lower than some regions (e.g., the Red Sea) (Coles and
Jokiel, 1992). That said, changes in community structure among
reef dwellers are possible with projected salinity shifts.

3.2.2. Ocean Carbonate Chemistry
To measure the potential for ocean acidification to obstruct
aragonite calcification and degrade coral skeleton growth, we
examined changes in both pH and �aragonite (see section 2).
For the modern period, the model predictions under-predict
�aragonite relative to field observations (Figure 7). For the surface
ocean (0–50 m), the offset between the model and data is
relatively small with the exception of the highest latitude sites
(Figure 7). At 100 m water depth, the model-observation offset
is greater (due to higher model-predicted DIC at depth), but
a general trend of decreasing �aragonite with depth is present
in both the field data and the model predictions. We note
that the field data were collected in 2007 while the model
predictions for the “modern” period span from 2006 to 2026.
As a result, it is possible that the model-data discrepancy is due
to the impacts of atmospheric CO2 on carbonate chemistry that
occurred after the field data were collected. Alternatively, the
model predictions for deep-water reefs may be inaccurate in their
absolute value.

Figure 8 shows the CESM results for changes in pH across the
GoM for the end of twenty-first century. The surface ocean in
the entire GoM regions is predicted to acidify by approximately
−0.265 pH points on average, with the largest drop in pH
along the northern Gulf coast (Figure 8). To assess the direct
impacts of this change in ocean chemistry on coral growth, we
computed �aragonite in CESM’s ensemble mean for the 2080–
2100 period (Figure 9). Given potential model biases at depth
(see above), we focus on the surface (0–50 m), though model
predictions for 100m depth are shown in Figure S5; additionally,
the model prediction for alkalinity changes at the surface is given
in Figure S6.

As shown in Figure 9, our results suggest that the surface
ocean of the entire GoM region will drop below �aragonite = 3.
This is notable as the modern scleractinian corals are largely
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FIGURE 6 | Simulated changes in GoM salinity in the RCP8.5 Large Ensemble, CESM1.2. (A) 2080–2100 mean. (B) (2080–2100) mean minus (2006–2026) mean.

Continental regions are shown in white.

FIGURE 7 | Modern observations of carbonate chemistry in the GoM. (A) Map showing the locations of the GLODAPv2 stations within the GoM that are used for

comparison to the CESM predictions. The displayed region (83◦W to 95◦W and 22◦N to 33◦N) defines the GoM region used for displaying the model predictions in (B)

as well as Figure 10. (B) Field measurements (circles) and model predictions (squares) of changes in �aragonite with depth in the GoM. For the surface ocean (0–50 m),

the model reproduces most of the data with the exception of the highest latitude sites. However, at 100 m water depth, the model under-predicts �aragonite relative to

all of the field observations.

restricted to areas of the ocean where �aragonite exceeds this value
(Kleypas et al., 1999). No surface regions of the Gulf of Mexico
are predicted go below the experimental calcification threshold
of �aragonite = 2 (Langdon et al., 2000; Albright et al., 2008)
or to reach the thermodynamic limit for aragonite precipitation
(�aragonite = 1; Figure 10).

Compared to reefs in the upper 50 m of the water
column, deeper water reefs would experience lower saturation
states because aragonite has retrograde solubility (i.e., �aragonite

decreases with depth due decreased temperature and increased
pressure). Modern field observations show that �aragonite values
at 100 m depth in the GoM are approximately 1 unit lower than
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FIGURE 8 | Simulated changes in GoM pH in the RCP8.5 Large Ensemble,

CESM1.2. (2080–2100 mean minus 2006–2026 mean). Continental regions

are shown in white.

surface waters (Figure 7; Wanninkhof et al., 2015; Feely et al.,
2018). This means that some of the deeper, mesophotic reefs
(even those as shallow as 100 m) may already be experiencing
stress due to low�aragonite values. Alternatively, deeper-water reef
builders (e.g., glass sponges, gorgonian corals, and sea pens) are
likely adapted for those conditions.

The model predicted change in �aragonite at 100 m depth
is much less severe than at the surface; the CESM model
estimates only a 0.3 unit change in �aragonite at 100 m between
the beginning and end of the century, with almost no change
at the 500 m horizon (not shown). As mentioned above, the
model predicted value for �aragonite at 100 m water depth
over the modern (2006–2026) period does not match existing
field measurements (Figure 7) due to model-predicted DIC
concentrations that are too high. While the model is inaccurate
in terms of the absolute value for �aragonite at depth, this
does not necessarily mean that the magnitude of the change
predicted by the model for 100 m water depth is also inaccurate.
For example, the model prediction that changes in carbonate
chemistry are greater in the surface ocean is consistent with
the underlying driver being the addition of CO2 to atmosphere,
which exchanges more rapidly with the surface ocean relative to
below the mixed layer.

The small change in �aragonite predicted at depth may stress
coral communities. That said, it is also possible that the predicted
changes would not be as damaging as the changes predicted for
shallow water reefs in that the deeper communities are already
adapted/acclimatized to lower �aragonite values (Farfan et al.,
2018).

Due to the retrograde solubility of aragonite, the predicted
increase in temperature acts to slightly increase �aragonite

(Figure 10); however, the effect of increasing atmospheric CO2

and associated ocean acidification greatly exceeds the effect of

temperature and leads to an overall decline in �aragonite for
the whole region (Figure 10). Similarly, the effect of increasing
salinity on �aragonite is negligible compared to the predicted pH
changes. More importantly, the combination of heat and acidity
stresses can often act synergistically (e.g., Rodolfo-Metalpa et al.,
2011; Prada et al., 2017), meaning that evenmoderate heating and
�aragonite decreases can amplify each other leading to intolerable
conditions for coral reefs. Furthermore, with surface oceans
getting warmer and more acidic (low �) waters at depth, it is
possible that surface-adapted reef communities in the GoM will
have no suitable refuge by the end of the century (e.g., Pereira
et al., 2018; Rocha et al., 2018).

4. CONTEXTUALIZING ANTHROPOGENIC
CHANGES WITH HOT-HOUSE CLIMATES
OF THE PAST

Scleractinian coral reefs have a long history extending back to
the Middle Triassic (242–247 million years ago) (Martindale
et al., 2019). Specifically, there are numerous records of reefs
in the paleo-GoM, including microbial reefs from the Upper
Jurassic (164–153 Ma) (Mancini and Parcell, 2001), coral and
rudist bivalve reefs from the Cretaceous (145–90 Ma) (e.g.,
Enos, 1974; Scott, 1984; Höfling and Scott, 2002; Hattori et al.,
2019), sponge and coral reefs from the Paleocene (66 to 59 Ma)
(Bryan, 1991), as well as the drowned and living reef banks that
initiated during the last deglacial period (∼14,500 years ago)
(Khanna et al., 2017).

Ancient coral reefs that grew during (or were killed off by)
hyperthermal (sudden, extreme heating) events can be seen
as analog case studies for changes in reef communities today.
When looking at the entire Phanerozoic (the last 541 million
years), many of the worst reef collapses are coincident with
evidence of thermal stress and ocean acidification (Kiessling
and Simpson, 2011). When scleractinian reef systems are
considered (the last 250 million years), this trend is even more
concerning. Heat stress and acidification occur coincident with
the last 3 greatest metazoan reef collapses: the Triassic/Jurassic
mass extinction at 201 Ma (a 99.4% loss of reef volume),
Pliensbachian/Toarcian extinction and Toarcian Oceanic Anoxic
Event at ∼183 Ma (a 98.3% loss of reef volume), as well as
the early Cenozoic Hyperthermal Events [e.g., Paleocene-Eocene
Thermal Maximum at 56 Ma (a 99.6% loss of reef volume) and
Early Eocene Climate Optimum (54 Ma)] [reef loss calculated
from metazoan reef volumes reported in Kiessling and Simpson,
2011]. It should be noted that since acidification events are
so geologically short-lived, it is often difficult to attribute this
stress to long-term community change (Hönisch et al., 2012).
Ancient reefs are imperfect analogs; modern fast growing coral
species, such as A. cervicornis, generally evolved in the last half
million years (Hoegh-Guldberg et al., 2007) and thus the reef
communities are not identical. Nevertheless, many coral genera
(from the Cenozoic in particular) are extant (not extinct), so
reasonable comparisons can be made between groups (Weiss and
Martindale, 2019). Further, many important reef forming corals
were present in the GoM as far back as the early Eocene, including
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FIGURE 9 | Simulated values of �aragonite for the GoMand northern Caribbean region in the RCP8.5 Large Ensemble (CESM1.2) in the surface ocean (0–50 m). Reef

organisms and depth at which they occur [m] overlain (see Figure 1). (A) 2006–2026 mean, (B) 2080–2100 mean. Continental regions are shown in white.

FIGURE 10 | Simulated values of �aragonite for the GoM and northern

Caribbean Region (i.e., the region shown in Figure 7A) in the RCP8.5 Large

Ensemble, CESM1.2. The dark blue and dark red probability density functions

(PDFs) show the model predictions for the 2006–2026 and 2080–2100

periods, respectively. The light blue and orange PDFs show the model

predictions for the 2080–2100 period where either ocean chemistry or water

temperature is held constant at the 2006–2026 values. The gray shading and

dashed lines indicate the typical limits for the presence of scleractinian corals

in the modern ocean (� > 3; Kleypas et al., 1999), the experimentally

measured limits for calcification by coral reef communities (� > 2; Langdon

et al., 2000; Albright et al., 2008), and the thermodynamic limit for aragonite

precipitation (� = 1).

Astrocoenia, Favia, Goniopora, Montastraea, Siderastrea, and
Stylophora (Budd, 2000).

The Paleocene-Eocene Thermal Maximum in particular has
been noted as one of the better analogs for modern climate

change due to the similarities in the cause (i.e., greenhouse
gas emissions) and its consequences (e.g., ocean acidification,
increases in temperature) (Hönisch et al., 2012). In the Tethys
Ocean, Paleocene coral reefs underwent a protracted, three-step
collapse, from coral-dominated to foraminiferal or microbial
reefs, before the complete demise of reef ecosystems near
the Paleocene/Eocene boundary (Scheibner and Speijer, 2008;
Zamagni et al., 2012). Nevertheless, these reef ecosystems were
able to maintain a relatively high diversity (Zamagni et al., 2012).
The main driver of the reef turnover is thought to be elevated
temperature, but ocean acidification (Kiessling and Simpson,
2011), excessive sedimentation, and nutrification (Zamagni et al.,
2012) are also implicated. In the GoM region, temperature,
increased sedimentation, and nutrient input due to tectonism
(Galloway et al., 2000) led to the development of sponge
and coralline algae dominated reefs. Some zooxanthellate and
apozooxanthellate massive and platy corals were also present
(Bryan, 1991). Weiss and Martindale (2019) show that corals
with particular traits, such as flexible photosymbiosis and feeding
strategies and those that lived in siliciclastic environments,
were better able to withstand change during the Cenozoic
hyperthermal events. Because the GoM is largely siliciclastic, it is
possible that GoM corals may prove more resilient than those in
carbonate environments. Importantly, the rates of climate change
in the modern are faster than during the Paleocene (Zeebe et al.,
2016), barring direct comparison between the two time periods.

Finally, the Last Interglacial (LIG, ∼129–116 ka) was the
last time the Earth was as warm as today with 11% warmer
temperatures in the northern hemisphere, a greater loss of
Arctic sea ice, and a partial loss of the Greenland ice sheet
(Kukla et al., 2002; CAPE-Last Interglacial Project Members,
2006); these conditions are all possible in the near future under
realistic carbon emissions scenarios. The Florida Keys in the
southeastern GoM had extensive coral reef coverage during the
LIG. These reefs contained many of the coral species we find
in the Florida Keys today with branching Acropora and Porites,
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and boulder-shapedMontastraea, Diploria, and Siderastrea corals
with ooid banks to the west and east of the reef (Stanley,
1966). Reconstructions from Tropical Atlantic locations find
temperature and seasonality variability similar to present (Felis
et al., 2015; Brocas et al., 2016, 2018). However, sea level was
up to 6 m higher than today during the LIG, and likely exerted
a dominant control on coral reef distributions. Evidence from
Florida Keys, Bahamas, and Cayman Islands for the LIG found
corals grew to about 3 m above current sea level, but not
the peak 6 m (Blanchon, 2011). Evidence from the northern
Yucatan peninsula suggest that a rapid depth change from
3 to 6 m induced a higher-energy wave environment that
remobilized lagoonal sediments and buried or eroded adjacent
reef framework resulting in marine sand bodies that prevented
the submerged reefs from recovering (Blanchon et al., 2009).
While the LIG is not a perfect analog for the current climate
change, it provides some insights into coral response to quick
pulses in sea level rise due to collapsing ice sheets and shifts
in oceanic-atmospheric conditions. Coral reefs did exist and
flourish in many locations during the LIG, but rapid changes in
sea level given, for example, a partial collapse of the Greenland
ice sheet could severely inhibit future growth.

These ancient events provide useful information regarding
sensitivities, survival, and recovery during extreme stress events,
as well as natural reef ecosystem responses to climate change in
the absence of human-induced changes or interventions.

5. DISCUSSION: GULF CORALS IN THE
ANTHROPOCENE

This study examines future projections for oceanic conditions
in the GoM and the potential impacts of multiple stressors on
coral reef ecosystems. Using CESM 1.2, a state-of-the-art coupled
GCM, we compared two key 20-year periods: 2006–2026 (a base
control) and 2080–2100 (end of twenty-first century). We find
that GoM SSTs are likely to warm by 2.5–3◦C, elevating mean
temperatures to a range of 28–30.5◦C in a high-CO2 forcing
scenario. While corals do show signs of an ability to evolve
toward higher temperatures (e.g., Howells et al., 2012; Palumbi
et al., 2014; Dixon et al., 2018), there are annual mean SST
thresholds (e.g., 30◦C, Wilkinson and Souter, 2008; Johnston
et al., 2019b) beyond which corals simply bleach and die. By the
end of the twenty-first century, the ensemble mean SST fields are
spatially heterogeneous, but a great number of reefs, particularly
off the coast of Belize, Florida, and Cuba, may experience mean
annual temperatures closer to 30◦C by 2100; further, these
estimates potentially contain a cold bias (Liu L. et al., 2012),
and in reality, GoM temperature observations are already hotter
(Johnston et al., 2019b). Taken together, these results suggest that
Gulf reef systems will experience frequent and severe thermal
stresses by the end of the twenty-first century. Preventing such
widespread and severe bleaching to the Earth’s coral reef systems
likely requires limiting global warming to 1.5◦C, which is, at
present, a lofty target (Frieler et al., 2013). To avoid widespread
degradation of Gulf corals and reef communities, atmospheric

CO2 levels would likely need to be stabilized below measured
2005 levels (Donner et al., 2005).

The CESM1.2 RCP8.5 large ensemble provides no evidence
that changes in GoM SST variance or salinity will adversely
impact coral reef ecosystems. That said, an evaluation of relevant
carbonate chemistry variables (i.e., pH and carbonate saturation
state), suggest that a threshold may be crossed by the end of the
century. Scleractinian coral reefs that are currently growing in
supersaturated waters of �aragonite greater than 3.4 (Figures 9,
10) will experience significant pH and carbonate saturation
state drops (Figures 8, 9). These changes in carbonate chemistry
will negatively impact GoM reef biomineralization. Today,
scleractinian coral reefs that are found in low pH or �aragonite

waters have lower biodiversities and abundance of reef builders
or dwellers than reefs in higher �aragonite waters (Fabricius
et al., 2011). Reefs in low �aragonite regions are typically poorly
cemented, have higher bioerosion, and have fewer structurally
complex framework builders, which together result in lower
structural integrity of the reef (Fabricius et al., 2011; DeCarlo
et al., 2015). If the GoM becomes more acidic (lower �aragonite)
we should expect the reef ecosystems to become less diverse and
structurally weakened with a higher likelihood of significant coral
bleaching. These issues are important on their own, but also lead
to secondary issues; for example, lessened structural integrity can
lead to more significant storm damage during hurricanes (Cheal
et al., 2017), which will also increase in intensity and severity with
rising temperatures (Molina et al., 2016; Murakami et al., 2018);
reef species may also become more susceptible to disease or see a
decline in fecundity.

The combination of thermal and chemical stress will make
these environmental changes even more damaging (e.g., Donner
et al., 2007, 2018; Rodolfo-Metalpa et al., 2011; Prada et al., 2017;
Bahr et al., 2018). Deeper water, mesophotic reefs have distinct
communities and ecosystems when compared to shallow water
reefs (e.g., Bongaerts et al., 2010; Pereira et al., 2018; Rocha et al.,
2018) but are, nevertheless, likely to experience severe thermal
stress (Schramek et al., 2018). Given the issues of accuracy
and resolution in predicting �aragonite values at 100 m depth
shown in this work, it is hard to make confident conclusions
about the fate of mesophotic reefs. On the one hand, the
predicted amount of �aragonite change at 100 m depth is minimal
(especially when compared to the surface), but on the other
hand, these values are already below an important calcification
threshold for scleractinian corals. If deep Mesophotic reefs are
primarily inhabited by organisms that are well adapted to these
lower �aragonite conditions, the communities may not experience
a catastrophic change. Future research should focus on the
physiological limits of deep mesophotic reef communities as
there is still very little known about these ecosystems (Bongaerts
et al., 2010; Kahng et al., 2010).

We acknowledge several important caveats of this work.
Coupled atmosphere-ocean GCMs contain significant cold
temperature biases in the GoM and Caribbean (Liu L. et al.,
2012; Martin and Schumacher, 2012; Ryu and Hayhoe, 2015;
Exarchou et al., 2018; McGregor et al., 2018). Analysis of the
Coupled Model Intercomparison Project (CMIP3) revealed that
SST variability in the Intra-Americas Sea is less than observed in
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historical simulations (Liu L. et al., 2012); many GCMs produce
large cold biases across the Intra-Americas Sea when assessed
with gridded SST data products. This is crucially important
for coral bleaching thresholds, likely leading to underestimated
temperature maxima in the GCM predictions. In Key West,
for example, summer water temperatures during 2019 were
frequently observed above 32◦C (National Data Buoy Center,
NOAA). Coral bleaching may thus be underestimated in CESM
1.2 as well, and anthropogenic bleaching events may occur with
greater severity than projected in this study.

Recent event-based evidence demonstrates that increases in
upwelling from stronger winds, frequent during tropical storms,
can lead to cold water events and anoxic conditions, promoting
coral death and disease (Lirman et al., 2011). An anomalous
cold event in 2010 killed numerous near-shore corals in the
Florida Keys (Colella et al., 2012) and in the winter of 1969–
1970 (Hudson et al., 1976). Cold coral bleaching events might
also be altered by climate change, but the evaluation of changes in
frequency in such events requires analysis of daily wind patterns,
which is beyond the scope of this work.

Finally, the spatial resolution of CESM is 1× 1◦; reefs typically
occupy spatial scales at tens to hundreds of meters (Donner et al.,
2005). This discrepancy in scale creates uncertainties related to
downscaling and microclimate affects. While GCM simulations
afford important future mean state projections, an inability to
resolve details at the reef scale and examine local circulation
changes may inhibit our ability to make robust predictions
about the future of GoM reef bleaching. Advances in regional
ocean modeling and downscaling climate model outputs may
facilitate the simulation of local upwelling and upper-ocean
heating processes; such advances would refine projections of
reef impacts (Donner et al., 2005, 2007, 2018). Further, recent
work shows 1 × 1◦ IPCC-class GCMs contain biases in the
simulation of the Loop Current, which largely moderates GoM
temperatures (Liu Y. et al., 2012). The Loop Current carries
warm waters into the central GoM; if this current slows, it could
reduce the warming in the central GoM, mitigating the impacts
of global warming. Adding embedded, online ecological models
that explicitly simulate reef response to temperature and acidity
changes would enhance the accuracy of the results presented
here. These advances in model development are forthcoming
(Bopp et al., 2013; Jones et al., 2019).

6. THE FUTURE OF THE GULF OF
MEXICO’S CORAL REEFS

6.1. Climate Change and Biodiversity Loss
Coral reefs are critical ecosystem focal points in marine
environments, supporting the world’s fisheries, protecting
coastlines, and promoting tourism. Through all of these
structures, coral reefs generate hundreds of billions of dollars
to the global economy each year (Mora et al., 2011; NOAA
Ocean Service Education, 2017; Reef Relief, 2019). In the GoM
alone, reef-related expenditures generate more than $4.4 billion
annually in southeast Florida and reef recreation supports
more than 70,000 jobs (Carnes, 2010). The many threats posed

by climate change to coral reefs, including bleaching and
acidification, motivates a pointed look toward reef systems lining
GoM coastlines. The reefs that protect the coastline of the GoM
are subject to unique regional ocean changes, warranting this
geographically-focused study.

Multiple secondary impacts are likely to accompany rising
temperatures and climate change in the GoM. Warm SSTs
drive stronger tropical storms (Molina et al., 2016; Murakami
et al., 2018). In recent decades, major hurricanes (e.g., Mitch,
which decimated reefs in Belize) have wiped out coral reefs.
During the 2005 hurricane season, coral reefs in the GoM
(Flower Garden Banks, the Dry Tortugas, and the Florida Keys)
experienced extensive damage; however, these reefs were spared
from widespread bleaching event that occurred that year because
the passing hurricanes reduced water temperatures (Stone et al.,
2005; Gierach and Subrahmanyam, 2008; Wilkinson and Souter,
2008). Recovery timescales are on the order of multiple years
to decades in a relatively healthy reef. In reefs that are already
degraded or experience repeated storm events, recovery from
physical disturbance can take even longer (Dollar and Tribble,
1993; Edmunds and Gray, 2014). Given consistent projections
showing increases in the frequency and severity of tropical
storms and Gulf hurricanes (Balaguru et al., 2018; Klotzbach
et al., 2018; Trenberth et al., 2018; Ting et al., 2019), it is likely
that high storm surge and wave impacts could further degrade
GoM reefs, especially if they are less robust due to weakened
cementation. This could initiate a positive feedback loop: coral
reefs in the GoM protect local shorelines and infrastructure
throughwave energy dissipation, prevention of shoreline erosion,
import of sediments, and via stabilizing mangrove and seagrass
populations (NOAA Ocean Service Education, 2017; Reef Relief,
2019). Storm-driven losses of coral reefs may further reduce the
resilience of the built environment along Gulf coastlines. Indeed,
the economic damages imparted by hurricane activity in Texas
and Florida in 2017 alone surpassed a staggering 125 billion
dollars (Klotzbach et al., 2018). Some of these storms also cause
unpredictable damages such as low salinity runoff or pollution
(Rice University, 2019).

Additional anthropogenic stressors will interact to further
degrade coral reefs in the GoM. These include increased
sedimentation, fresh-water run-off and pollution due to
development (Yeats et al., 1978; Nelsen et al., 1994; Osterman
et al., 2008; Liu et al., 2013; Ren et al., 2015), and nutrification,
particularly due to agricultural sources such as fertilizers (Nelsen
et al., 1994; Osterman et al., 2008) and hydrocarbon extraction
(Guzman and Jarvis, 1996). A combination of the above can lead
to hypoxia (Justić et al., 2003; Osterman et al., 2008; Rabalais
et al., 2010). Many of these effects favor the growth of coral
competitors, such as macroalgae, that can further hamper
reef development and growth (Gorgula and Connell, 2004;
Vermeij et al., 2010). In a healthy ecosystem, herbivorous fishes
and invertebrates can help to balance the overgrowth of algae
(Williams and Poulnin, 2001; Bellwood et al., 2006; Smith et al.,
2010); however, the physiology and reproductive capabilities of
these organisms are also compromised by climate change and
ocean acidification (Munday et al., 2008; Pankhurst andMunday,
2011). Further, because fish depend on the structural complexity
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of reefs (Graham and Nash, 2013), losing coral reefs can lead to a
feedback where loss of fish leads to algae overgrowth, which then
dampens reef development, leading to even fewer fish (Graham
et al., 2007; Wilson et al., 2010; Nyström et al., 2012).

6.2. Adaptation and Mitigation
The ability of GoM reefs to adapt to the stressors outlined
in section 3 is an open question. Corals may be able to
survive in warmer temperatures through adaptation, epigenetic
modification, or the utilization of thermal-tolerant symbionts
(Howells et al., 2012; Palumbi et al., 2014; Dixon et al., 2018; Sully
et al., 2019); however, acclimatization to acidification has not
yet been demonstrated (Comeau et al., 2019). The adaptability
of coral symbionts will likely play a key role in determining
thermal resistance of GoM reefs. Reef structures may acclimate
rather than completely dying off if symbiont species more
tolerant to high temperatures and bleaching re-occupy coral
tissues over time (Hughes et al., 2003) or if corals can acquire
thermal tolerant symbionts (Howells et al., 2012). Coral reef
generation times are on the order of several years and depend
on favorable environmental conditions (Hughes et al., 2003),
so if existing corals in a given community are stressed, they
will not spawn. Bleaching onset research indicates adaptation
via re-population of thermally tolerant symbionts occurs within
0–0.5◦ warming; given that most GoM SSTs warm by more
than 2◦ in the CESM RCP8.5 ensemble mean, we must not
discount the fact that zooxanthellate Gulf corals may disappear
completely by 2100. Future reefs may shift toward populations
typical of the late Cretaceous and early Cenozoic, when reefs
were dominated by non-corals (i.e., rudists, sponges and red
algae) and azooxanthellate coral types (Bryan, 1991; Kiessling and
Baron-Szabo, 2004).

Coral communities could also migrate toward more favorable
environments and regrow. The rate and direction of climatic
shifts will likely drive coral species shifts across the GoM, and
these changes in climate velocity (Pinsky et al., 2013) are crucial
to robust predictions of reef survival (Figure S7). Projected
climate velocities for the GoM in terms of SST changes indicate
rapid shifts of up to 10 km/yr throughout the forthcoming
twenty-first century (Figure S7). While some marine species can
migrate rapidly, coral reefs are largely stationary and migrate
over generations of new reefs established in new regions. The
establishment process requires many factors to encourage reef
growth, including the presence of crustose coralline algae (Morse
et al., 1994, 1996; Heyward and Negri, 1996), low sediment
input (Gilmour, 1999), lithified substrate (Jackson, 1977; Purkis
et al., 2011), and precise water quality conditions (Negri and
Hoogenboom, 2011). On evolutionary timescales, reefs often
shift poleward to avoid thermal stress (e.g., Kiessling, 2001) and
this has already been documented in geologically-recent and
modern reefs (e.g., Greenstein and Pandolfi, 2008; Yamano et al.,
2011; Pandolfi and Kiessling, 2014). Poleward migration may not
be a feasible option since GoM corals are limited latitudinally
and are already positioned at their northern limit (e.g., Kiessling,
2001; Jones et al., 2019).

It is also hypothesized that reefs may find refuge from thermal
stress in the surface waters by migrating to deeper habitats where

temperatures are lower (Riegl and Piller, 2003; Bongaerts et al.,
2010; Bridge et al., 2013; Padilla-Gamiño et al., 2019); this has
occurred to some extent in Pulley Ridge, though recent surveys
have found that these deep water hermatypic corals are not
surviving (Slattery et al., 2018). Deeper water, mesophotic reefs
have distinct communities and ecosystems when compared to
shallowwater reefs (e.g., Bongaerts et al., 2010; Pereira et al., 2018;
Rocha et al., 2018); thus these deeper habitats likely would make
poor refuges for shallow-water reef species. Vertical migration in
the water column is harder for the reef builders, which require
clear water and sunlight for photosynthesis. With sea level rise,
many deeper reefs that have narrow depth ranges will not be
able to keep pace with increasing water depth. Furthermore,
mesophotic reefs inhabit waters with lower �aragonite values,
leading to the possibility that GoM reef communities would
experience an environmental pincer movement: thermal stress
from above as well as acidification stress from below (which
would also make pole-ward migration problematic). In general,
there are myriad conditions that would prevent this from being a
feasible adaptation for coral survival on a large scale (Smith et al.,
2016; Bongaerts et al., 2017).

Even if corals adapt or acclimatize to some environmental
stresses (e.g., temperature or salinity), they may not be able
to adapt or acclimate to all of them (e.g., ocean acidification)
(Okazaki et al., 2013; Comeau et al., 2019). A controversial
solution involves geoengineering via reef-shading, covering large
portions of reefs to reduce direct heating via solar radiation
(Coelho et al., 2017). This is an expensive and precarious
solution which cannot bolster coral resistance to thermal
stress. Increasing coral tolerance through assisted evolution,
such as selective breeding, assisted gene flow, transplanting of
juveniles, epigenetic programming or conditioning, and coral
microbiome manipulation may be viable within the next decade
(Horoszowski-Fridman et al., 2011; van Oppen et al., 2015;
Van Oppen et al., 2017), and would directly bolster reef resiliency
to ecosystem collapse.

6.3. Looking Ahead
The marine organisms occupying the GoM evolved in the
last 420,000 years; now, atmospheric ρCO2 levels dramatically
exceed ice core measurements of greenhouse gas concentrations
spanning their entire evolutionary history (Hoegh-Guldberg
et al., 2007). In an even broader geologic context, the rate of
greenhouse gas emissions, and therefore the rate of climate
change, during the Paleocene-Eocene Thermal Maximum was
orders of magnitude slower than the modern warming trend,
meaning modern climate change is unprecedented in geological
history (Zeebe et al., 2016). Given the innumerable benefits
that coral reefs in the GoM provide to coastal societies, it is
our hope that this work sheds light on future risks specific
to this highly vulnerable ecosystem. While reef systems can
recover from bleaching events, reefs generally require decades
to return to their pre-bleached state (Frieler et al., 2013). It is
likely that the accelerating rate of global climate change will
exceed the speed at which corals reefs and their symbionts
can adapt (multiple decades), a defining feature of abrupt
climate change (Hughes et al., 2003; Frieler et al., 2013).
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Widespread degradation of GoM reefs is especially likely
under the RCP8.5 “business-as-usual” scenario considered in
this work. To avoid consequential environmental, social, and
economic damages (e.g. Chen et al., 2015) and promote long-
term conservation and recovery of GoM coral reefs, substantial,
rapid reductions of anthropogenic greenhouse gas emissions are
past-due.
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