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For decades now, satellite altimetric observations have been successfully integrated

in numerical oceanographic models using data assimilation (DA). So far, sea surface

height (SSH) data were provided by one-dimensional nadir altimeters. The next

generation Surface Water and Ocean Topography (SWOT) satellite altimeter will

provide two-dimensional wide-swath altimetric information with an unprecedented high

resolution. This new type of SSH data is expected to strongly improve altimetric

assimilation. However, the SWOT data is also expected to be affected by spatially

correlated errors and, hence, can not be assimilated as easily as nadir altimeters. The

present paper proposes to embed a state-of-the-art correlated-error reduction (CER)

method for the SWOT data into an ensemble-based DA scheme. The DA with the

new correlated-error reduced-data (CER-data) is implemented and tested in a simple

SSH reconstruction problem using artificial SWOT data and a quasi-geostrophic model.

The results show that, in an energetic large scale region, the DA with CER-data—in

comparison to the classical DA—reduces the root-mean-square-error (RMSE) of the

reconstruction in SSH by approximately 10%, in relative vorticity by 5% and in surface

currents by 5–10%, and also slightly improves the noise-to-signal ratio and spectral

coherence of the SSH signal at mesoscale (100–200 km) but with a small degradation on

the large scales (>300 km). In a less energetic region, the DA with CER-data cuts down

the RMSE in SSH by more than 50% on average therefore allowing a significantly more

accurate reconstruction of SSH at mesoscale in terms of noise-to-signal ratio, spectral

coherence, and power spectral density.

Keywords: sea surface height, reconstruction, SWOT, OSSE, ensemble transform Kalman filter, NATL60, quasi-

geostrophic model

1. INTRODUCTION

In operational oceanography, the assimilation of altimetric data has become crucial to control
the time evolution of oceanic surface flows as well as its impact on the circulation in the deeper
ocean (Chelton et al., 2001; Fu and Cazenave, 2001; Fu and Chelton, 2001; Morrow and Le Traon,
2012; Stammer and Cazenave, 2017). Indeed, the increasing number of satellite missions providing
a large quantity of along track altimetric measurements has allowed oceanographic operational
centers to better understand and to better constrain the sea surface height (SSH) and the associated
surface currents in their models. Assimilating along track altimetric data has led to more accurate
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representations and predictions of the oceanic properties at large
and meso-scales, i.e., down to 150 km at midlatitudes.

The new Surface Water and Ocean Topography (SWOT)
satellite altimeter, planned for launch in 2021, will bring a large
amount of two-dimensional high resolution data that should
significantly improve altimetric assimilation. The SWOT satellite
will use a Ka-band radar interferometer instrument mapping
the globe with a repeat period of 21 days and generating a
120 km swath (with a 20 km gap at its center) of SSH data.
The final data products are expected to reach a 15–30 km
effective resolution (Morrow et al., 2019). The high resolution
two-dimensional SWOT data will, however, inevitably lead to
new challenges for SSH data assimilation (DA). For instance,
assessing and understanding the respective contributions from
the balanced motions and the internal waves will be crucial
to control surface currents with the SWOT data. Also, a 4D
reconstruction of the upper ocean circulation has never been
performed at these small scales, and will be difficult due to
the discrepancy between the spatial and temporal resolutions.
Another important challenge which is the focus of this article,
comes from the fact that the SWOT data are expected to be
impacted by large spatially correlated errors, especially in the
across track direction (Gaultier et al., 2016; Esteban-Fernandez,
2017; Metref et al., 2019).

For computational reasons, it is common practice in
operational DA systems dealing with large observation datasets
to make the assumption of uncorrelated observation errors,
i.e., to assume the observation covariance matrix diagonal (Liu
and Rabier, 2002; Oke et al., 2008; Janjić et al., 2018; Guillet
et al., 2019). Indeed, the computational cost of the filters
formulated in square root form (e.g., the ensemble transform
Kalman filter) becomes linear in the number of observations
for a diagonal observation covariance matrix (Brankart et al.,
2009). Some DA filters solving the inverse problem in the
observation space allow the full representation of the observation
error covariance matrix. Their computational cost is still high
for operational use, hence requiring the aggregation or the
dropping of a large number of observations. This data thinning
strategy is not aligned with the goal of the SWOT DA where
we want to fully take advantage of the two-dimensional high-
resolution SWOT data. In the present study, we focus on
the assimilation of SWOT data for an operational context,
i.e., under the assumption of a diagonal observation error
covariance matrix. Over the years, several techniques have been
proposed to reduce the effect of neglecting the observation-
error covariances, for instance, by inflating the observation
error variances or by parameterizing the error covariances
with a diffusion operator (Stewart et al., 2008, 2013; Brankart
et al., 2009; Miyoshi et al., 2013; Waller et al., 2014; Ruggiero
et al., 2016; Guillet et al., 2019). None of these techniques
are equipped to deal with non-local error correlations (i.e.,
correlations that do not decrease with the distance). In the
present paper, we make the case that the SWOT errors will be so
large and so non-locally correlated that SWOT data should not
be assimilated as is. Instead, we propose to assimilate a modified
SWOT data.

In the present paper, we embed the correlated-error reduction
(CER) procedure—that was developed by Metref et al. (2019)—
into an assimilation scheme: the local ensemble transform
Kalman filter (Hunt et al., 2007). The CER procedure focuses
on the across-track variations of the correlated SWOT errors,
its aim is to remove the part of the signal potentially impacted
by these errors. The method only considers the errors with
non-local across-track correlations (e.g., the roll error) and does
not deal with more locally correlated errors such as the wet
troposphere errors. The reduction consists, first, in projecting
the data onto the across-track variations that correspond to the
SWOT error correlations geometrical structure. The residual of
this projection, the SWOT correlated-error reduced-data (CER-
data), is then used in the assimilation process instead of the
SWOT data. As mentioned in Metref et al. (2019), the CER-data
are not a direct observation of SSH but a proxy of SSH. Hence,
to keep the assimilation process consistent, the CER must be
embedded in the observation operator of the DA scheme.

The goal of this paper is to evaluate the improvement
brought by this new CER-data on a SWOT DA cycled
in time. The DA with CER-data is tested for solving an
SSH map reconstruction problem, in order to assess in a
simplified three-dimensional problem (sea surface and time)
the performance of the scheme. The numerical experiments
are observation system simulation experiments (OSSE), set in
two regions of different energetic intensities: the Gulf Stream
region, hereafter called GULFSTREAM (with energetic flows
at both large and meso-scales) and the Porcupine Abyssal
plain region, hereafter called OSMOSIS (with energetic flows
at mesoscale but relatively weak large scale flow) named after
the OSMOSIS observation experiment (Buckingham et al.,
2016). These two regions exhibit very distinct characteristics
in terms of SSH variability (with respect to the magnitude
of the additive SWOT errors) and observation frequency
(which increases with the latitude, see Figure 1). Using the
SWOT simulator (Gaultier et al., 2016; SWOT simulator,
2016), artificial SWOT data with their corresponding errors
are created from outputs of a North Atlantic high resolution
numerical simulation (NATL60, 2018) generated with the
NEMO 3.5 (Nucleus for European Modeling of the Ocean)
modeling system (Madec, 2015). These artificial SWOT data
are then assimilated in a one and half layer quasi-geostrophic
(QG) model. The performances of the reconstructions are
evaluated over a 2 month period in comparison to the
supposed truth (i.e., the NATL60 simulation) with root-mean-
square errors (RMSE) on the SSH, the relative vorticity ζ

and the surface currents (u, v); and with power spectral
densities, noise-to-signal ratios, and spectral coherences on
the SSH.

The paper is structured as follows. Section 2 recalls the errors
expected to impact the SWOT data, describes the CER procedure
from Metref et al. (2019) and provides the theoretical grounds
to embed the CER in an ensemble-based DA scheme. Section 3
implements the DA with CER-data and tests it in the assimilation
problem of SSH reconstruction using a one and a half layer QG
model. Conclusions and perspectives are drawn in section 4.
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FIGURE 1 | Figure from Ubelmann and Fu (personal communications) and from Vignudelli et al. (2019). Meridional distribution of the number of SWOT observations

per satellite cycle (left) and distribution of the maximum gap in days between two consecutive SWOT observations (right). The black boxes have been added to

illustrate the OSMOSIS and GULFSTREAM regions span over the latitude.

2. CORRELATED-ERROR REDUCED-DATA
ASSIMILATION METHOD

2.1. SWOT Errors
The SWOT project team maintains a document describing the
expected SWOT error budget (Esteban-Fernandez, 2017). The
budget is made both in terms of spatial RMSE and wavenumber
spectra, so that the SWOT mission is the first altimetric mission
able to also set error requirements at different wavelengths.
Indeed, standard SSH range errors have been given as a target
for SWOT in the spatial domain and in the spectral domain
(see Morrow et al., 2019, Figure 3). Based on this error budget,
a simulator of SWOT-like observations was developed by the
NASA Jet Propulsion Laboratory (Gaultier et al., 2016). This
SWOT simulator allows the scientific community to produce
artificial SWOT data for OSSE. The SWOT simulator interpolates
any SSH simulation onto the SWOT swath groundtrack and
computes and adds a realization of the SWOT errors. The SWOT
simulator only generates the main SWOT errors described
in Esteban-Fernandez (2017): Ka-Band Radar Interferometer
(KaRIn) error, residual roll error, phase error, baseline dilation
error, timing error, wet-troposphere error. Of those six errors,
only four are concerned by the CER procedure. The KaRIn

error is the instrumental random error, uncorrelated in space
with a non-constant variance across track (see Appendix). This
uncorrelated error is not taken into account in the procedure.
However, uncorrelated errors are by construction well dealt
with by the assimilation process, as confirmed by the results in
section 3. The wet-troposphere error corresponds to the signal
path delay due to the variability of the water vapor content in
the troposphere. This delay introduces small scale isotropically
correlated errors. In the CER formulation, we do not consider
the wet-troposphere error as it has local across-track correlations
that are smaller than the across-track swath and the method only
deals with non-local across-track correlations that have specific
geometries on the swath. Moreover, the wet-troposphere error
is not expected to be the largest contributing error. However,
combining the CER method with existing techniques for locally
correlated errors (Brankart et al., 2009; Ruggiero et al., 2016;
Yaremchuk et al., 2018) in order to take into account the wet-
troposphere error should be investigated in future studies and
should further improve the results. The four errors concerned
by the reduction procedure are the timing error, the roll error,
the baseline dilation error and the phase error. The timing error
is only due, at first order, to a timing drift in the instrument
signal propagation and can be assumed to be constant across
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track. The roll error is generated by the satellite roll angle, which
impacts the measurement linearly across-track and is zero at
its center. The baseline dilation error comes from the length
variation of the satellite mast which creates a deviation between
the two calibrated sensor signals. This creates a quadratic error
distribution in the across-track direction. Finally, the phase error
is due to the relative phase variations of the two sensors which
produce cross-track linear errors independent in each half-swath.
The across-track correlation structure of the four cumulated
sources of error can be modeled by:

etotal = α0+α1xc+α2x
2
c+[α3+α4xc]H(−xc)+[α5+α6xc]H(xc),

(1)
with xc the across-track distance to the nadir, i.e., from −50 to
−10 km and from 10 to 50 km; H(x) the Heaviside function
which equals 1 when x > 0 and 0 otherwise; and where {αi}i=0,...,6

are unknown constant coefficients. In Equation (1), the first term
corresponds to the timing error, the second to the roll error,
the third to the baseline dilation error and the last two terms
correspond to the phase error in each half-swath.

Note that another source of error might indirectly impact the
SWOT data. In order to be able to assimilate altimetric data
in a model, the SSH must be converted to sea level anomalies
by removing an estimated mean dynamic topography (MDT).
An inaccurate MDT estimation could lead to additional SWOT
errors. The estimation of MDT is a large field of investigation
in itself and will not be addressed in this study. Here, we
make the assumption of a perfect MDT and directly assimilate
SSH. However, we believe that this issue should be independent
enough to have no impact on the CER method tested here.

2.2. Correlated-Error Reduction Procedure
In order to remove the part of the SWOT signal h impacted by
the errors, we first calculate the projection of h onto the subspace
spanned by the modeled errors in Equation (1). This projection
is performed by calculating the coefficients minimizing the
following cost function:

J ({αi}i=0,...,6) =

nc
2

∑

xc=−
nc
2

(

h̄(xc)− {α0 + α1xc + α2x
2
c

+[α3 + α4xc]H(−xc)+ [α5 + α6xc]H(xc)}
)2
, (2)

with nc the number of across track grid points and where h̄ is the
SWOT signal h averaged along-track on the region. Indeed, if the
coefficients {αi}i=0,...,6 are not estimated accurately, the process
could actually introduce artificial variations in the CER-data.
Hence, similarly to Metref et al. (2019), in order to increase the
accuracy of the coefficient estimation, we make the assumption
that the coefficients are constant along-track over each pass.
Further, we justify the small impact of this assumption by the
relatively small size of the regions of interest GULFSTREAM
and OSMOSIS. In other words, the scale of the along-track
correlations of the errors considered in the reduction method is
assumed larger than the size of the regions.

The CER-data is then defined as the residual between the
SWOT signal h and the projection of h̄:

T (h(xc, xa)) = h(xc, xa)− {α1xc + α2x
2
c

+[α3 + α4xc]H(−xc)+ [α5 + α6xc]H(xc)}, (3)

for all across- and along-track grid points (xc, xa) and with
{αi}i=1,...,6 the coefficients minimizing J in Equation (2). Note
that the constant term of the projection α0 has to be removed
from Equation (3) due to the fast variations of the timing error
that are not in agreement with the constant projection in the
along-track direction (more details in Metref et al., 2019).

2.3. Embedding the Correlated-Error
Reduction Procedure in Data Assimilation
In the present paper, we make the case that the SWOT data h are
too strongly affected by large and non-locally correlated errors to
be directly assimilated in most operational systems. Indeed, the
presence of correlated errors leads to non-diagonal observation
error covariancematrices whichmost DA schemes need to invert.
In large dimension, the cost of this inversion is too high for
operational systems assimilating a large number of observations
and, in practice, they commonly use diagonal matrices thus
ignoring the error correlations. This approximation can no
longer stand for the strongly spatially correlated SWOT errors.
However, by construction and as shown in Metref et al. (2019),
the SWOT CER-data T have reduced correlations. Hence, in
this paper, we propose to assimilate ho = T (h) instead of h. In
order to be consistent, it is important to realize that T (h) is not a
direct observation of SSH but a proxy. Therefore, the observation
operator linking the model state to the observation must also
include the CER procedure. If we note hm the SSH described by
the model and I the interpolation from the model grid to the
SWOT grid, the observation operator is now:

H ≡ T ◦ I (4)

and the innovation, i.e., the difference between the model state
and the observation in the observation space, becomes [ho −

T (I(hm))].
The CER procedure can be embedded in any DA method that

uses the observation operator. Once the {αi}i=1,...,6 coefficients
have been computed, T is linear in h and it is possible to compute
the adjoint observation operator for variational DA schemes, for
instance. The algorithms for the CER of the SWOT data and
for the embedding of the CER in the observation operator are
summed up in Figure 2.

In this study, we focus on ensemble-based DA. In particular,
the numerical experiments presented in section 3 implement the
CER procedure in an ensemble transform Kalman filter (ETKF).
In practice, this implementation corresponds to Ne + 1 CERs
at each analysis time step, where Ne is the number of ensemble
members: Ne CERs for the ensemble and one CER for the SWOT
data. Note that the computational cost for theseNe+1 operations
remains small in comparison with the DA process itself.
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FIGURE 2 | Algorithms for (A) the CER of the SWOT data and (B) the embedding of the CER in the observation operator H (see Equation 4).

3. NUMERICAL EXPERIMENTS

3.1. Experimental Setup
In the following OSSE, we consider the North Atlantic high
resolution (1/60◦ at the Equator) numerical simulation (NATL60,
2018), generated with the NEMO model, as the true ocean. The
NATL60 simulation has been used in several studies (Amores
et al., 2018; Fresnay et al., 2018; Metref et al., 2019) and is one
of the most advanced basin-scale high resolution simulations
available to this day (approximately 10 km effective resolution).

The goal of this study is the evaluation of the CER-data in a DA
problem cycled in time. The assimilation experiments start on
October 1st, 2012 and end on December 31st, 2012. Only the last
2 months of the experiments are considered for the evaluation
in order to let the DA processes converge, i.e., the diagnostics
are performed from November 1st, 2012 to December 31st, 2012
(respectively referred to as t = 0 and t = 61 in Figures 6, 7).
During these 2 months, the SWOT satellite almost completes
three repeat cycles of the globe.

Figure 3 shows a snapshot of the SSH (in meters), in the two
regions of interest: GULFSTREAM (left panel) and OSMOSIS
(right panel), on November 4, 2012. The GULFSTREAM region
is defined from 33 to 43◦N in latitude and 53 to 65◦W in
longitude. The OSMOSIS region (defined from 45 to 55◦N in
latitude and 11 to 19◦W in longitude) is part of the Porcupine
Abyssal plain region and was intensively studied during the
OSMOSIS campaign (Buckingham et al., 2016). The two regions

differ in the intensity of their SSH variations. GULFSTREAM
is zonally crossed by the Gulf Stream current which has a
strong signature on SSH with heights reaching one meter.
The OSMOSIS region rarely reaches 20 cm SSH but displays
numerous small-scale eddies. Also, the difference in latitude
between the regions impacts the frequency of observation by
the SWOT satellite. The OSMOSIS region is at least partially
observed every day while the GULFSTREAM region can be
unobserved during 5 days straight. The two regions hence
provide two distinct situations that SWOT will encounter.

From the “true ocean,” artificial SWOT data are created using
the SWOT simulator (see Appendix A of Metref et al., 2019,
for the detailed SWOT simulator parameters). The SWOT data
were generated on the “Science orbit” which has a repeat cycle
of approximately 21 days and corresponds to an orbital scenario
of 77.6◦ inclination and 891 km elevation (SWOT simulator,
2016). Four DA experiments will be compared: (i) ETKF no
error, which assimilates the SWOT data without error; (ii) ETKF
KaRIn error, which assimilates the SWOT data with only the
uncorrelated KaRIn error; (iii) ETKF full errors, which assimilates
the SWOT data with all errors available on the simulator (see
section 2.1); and (iv) ETKF reduced errors, which assimilates the
SWOT CER-data.

The model used for SSH propagation is a one and a half layer
QGmodel as described in Ubelmann et al. (2015). The QGmodel
propagates the SSH by advecting the corresponding potential
vorticity with the geostrophic currents. The first Rossby radius
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FIGURE 3 | SSH fields (in meters), in the two regions of interest: GULFSTREAM (left) and OSMOSIS (right), on November 4, 2012.

of deformation used are approximately 36 and 22 km in the
GULFSTREAM and OSMOSIS region, respectively. The model
time step is 10 min.

The DA scheme implemented is an ensemble transform
Kalman filter with domain localization (Hunt et al., 2007). The
DA localization function is L(r) = e−r2/L2H(R − r), for r
the distance to the observation and where H is the Heavyside
function (see Equation 1). The localization radius L is set to 30
km and the localization cutoff R to 90 km. The codes for the
DA scheme used in this study are available at SeSAM (2019).
The filter is used sequentially with a 3 h cycle time step, i.e.,
an analysis is performed every 3 h if an observation is available
in the region at that time. The filter runs with 50 ensemble
members, which are initialized by randomly selecting NATL60
SSH fields between April and September 2013. An inflation
of 1% is applied on the ensemble before every analysis for
all assimilations. The observation error covariance matrix R

is assumed diagonal for the four assimilations, as previously
discussed. For the ETKF no error assimilation, R is prescribed
constant along the diagonal of standard deviation 2 cm. The
standard deviation is not set to 0 because the observation error
covariance matrix represents the instrumental or measurement
errors (which are not present in the ETKF no error experiment)
but also the representativity errors. The SWOT grid is different
from the model grid therefore an interpolation is performed by
the observation operator H. This interpolation generates errors
which are hard to quantify a priori. We have performed the ETKF
no error experiment with various values of standard deviation on
the diagonal observation error covariance matrix and we have
selected the one providing the smallest RMSE which is a 2 cm
standard deviation. For the ETKF KaRIn error assimilation, R
is prescribed with the error standard deviations used to create
the KaRIn error (see Appendix). The ETKF full errors and ETKF
reduced errors assimilations use the same matrix R as the ETKF
KaRIn error assimilation but with an inflation of 30 and 10%,
respectively in GULFSTREAM and of 40 and 20%, respectively
in OSMOSIS. These inflation coefficients were manually tuned
to provide the smallest SSH RMSE (not shown here). The ETKF
reduced errors needs less inflation because the CER method

reduces the non-local correlations. However, it does not remove
them entirely so that some inflation is still needed.

3.2. Results
Figures 4, 5 display, in GULFSTREAM and OSMOSIS,
respectively, the SSH reconstructions (left columns) obtained
with the four assimilations corresponding to the true SSH fields
in Figure 3. The right columns of Figures 4, 5 are the point-wise
differences with the true SSH fields. These fields correspond to
November 4, 2012, more than a month after the beginning of
the assimilation processes. In GULFSTREAM, a SWOT pass
has just been assimilated which explains the white track on
the right of the panels corresponding to the local analysis of
the ETKF. In OSMOSIS, no analysis was recently performed at
day November 4, 2012 but the error across-track variations of
previous observations that were forecast remain visible in the
ETKF full errors reconstruction. This confirms the importance of
assessing the impact of the SWOT errors and the CER-data in an
assimilation problem cycled in time.

The first result is that the reconstruction produced by the
assimilation without error and with the KaRIn error only are very
similar. This indicates that, as expected, the ETKF seems well-
suited to deal with the uncorrelated KaRIn error. However, in
both GULFSTREAM andOSMOSIS cases, the ETKF assimilating
the full errors is very much affected by the spatially correlated
errors. As previously mentioned, in both cases, the satellite tracks
and the error across-track variations impact the reconstructions.
This is particularly visible on the recently assimilated SWOT
track on the right of the panels in GULFSTREAM, where a
large error across-track variation appears in the ETKF full errors
reconstruction. The CER does not entirely remove the spatially
correlated errors impact but strongly reduces it. Unlike the SSH
fields reconstructed by ETKF full errors, the fields reconstructed
by ETKF reduced errors seem geophysical, visually at least,
in the sense that there are no unrealistic strong gradients or
discontinuities in the SSH.

In order to quantify the improvement brought by the CER-
data, we compute the RMSE of the SSH reconstructed fields
at each time to obtain RMSE time series. The RMSE of a 2D
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FIGURE 4 | SSH (in meters) field reconstructions (left column), in GULFSTREAM, performed by the four assimilations and their differences (right column) to the true

state on November 4, 2012 displayed in Figure 3.
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FIGURE 5 | Same as Figure 4 but in OSMOSIS.
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reconstructed field x = {x}i=1,...N with respect to the true field
xt = {xt}i=1,...N is calculated as such:

RMSE(x) =

√

√

√

√

1

N

N
∑

i=1

(xi − xti)
2 (5)

with N the number of grid points. Figure 6 shows the RMSE
time series calculated in GULFSTREAM during the 2 month
experiment for the SSH, the relative vorticity ζ and the currents
(u, v). The RMSE show the cycles of the SWOT track crossing the
GULFSTREAM region with approximately 9 day periods when
the region is well-observed and 5 day periods with almost no
observation in the region. In this configuration, it is interesting
to note that during the forecasting periods (i.e., when there is
no available observation), all the DA experiments deviate quickly
from the truth which is due to the idealistic QG model used for
the propagation. The first important result of these experiments
is the very close RMSE on all four variables produced by the
assimilation of the error-free SWOT data and the KaRIn error
only SWOT data. This means that in terms of RMSE the KaRIn
error is being well delt with by the ETKF assimilation scheme.
During the time periods without observation, ETKF full errors
and ETKF reduced errors assimilations have approximately the
same errors. Figure 6 also shows that, after a 6 day period without
observation, the ETKF reduced errors can sometime produce
more inaccurate SSH fields than ETKF full errors. If this behavior
persists in amore realistic setting, this could be problematic when
using SWOT to initialize a long forecasting phase. This result
should be further investigated in future studies. However, when
the region is well-observed, using the CER-data helps reduce
the RMSE. At day 39, for instance, the SSH RMSE of the ETKF
reduced errors is half the one of the ETKF full errors. The RMSE
on average over the 2 month experiment are listed in Table 1.
The averaged RMSE confirm the improvement brought by the
CER-data. Indeed, in GULFSTREAM, the averaged SSH RMSE
of the reconstruction is 9.3 cm without error, 12.1 cm with full
errors, but is reduced to 10.9 cm by the CER, i.e., a 10% RMSE
reduction. Similarly, on the relative vorticity and on the surface
currents, the RMSE reduction is between 5 and 10% when using
the CERmethod. In OSMOSIS, because of the smaller magnitude
of the SSH variations, the impact of the SWOT errors on the
reconstruction in that region is very substantial. Figure 7 shows
the large benefit of using the CER-data in the OSMOSIS region
with, at day 15 for example, an SSH RMSE reduction of over
60%, and on average (see Table 1) the SSH RMSE reduction is
around 45%.

As mentioned in section 2.1, the SWOT errors were
designed to respect error specifications in the spectral domain,
however, the RMSE does not allow to assess the reconstructions
independently in the different spatial scales. Moreover, the
SWOT mission objectives were defined in terms of spectra, with
a resolution on the swath of 15–30 km (Morrow et al., 2019).
Hence, it is necessary to assess the impact of the full SWOT errors
on the small scales. Here, we perform three two-dimensional
spectral diagnostics on the SSH: the power spectral density,
the noise-to-signal ratio and the spectral coherence. The power

spectral density (PSD) is a 2D wavenumber spectrum which
describes the energy of the signal at the different spatial scales.
In order to compute this two-dimensional PSD (described in
more details by Ajayi et al., 2019), a two-dimensional fast Fourier
transform (FFT) is applied to the SSH fields (after removing
the linear biases, in both latitude and longitude directions, and
tapering the data using a Tukey window). We then average this
2D FFT in the azimuthal direction to obtain a one-dimensional
isotropic spectrum. The noise-to-signal ratio NSR (Ballarotta
et al., 2019) compares an estimated signal x to a true signal xt

such that:

NSR(x) = 1−
PSD(x− xt)

PSD(xt)
. (6)

When the energy of the residual x − xt is small compared with
the energy of the true signal xt, the NSR should be close to 1.
And finally, the spectral coherence is the square of the cross-
spectral density between two signals divided by the product
of the autospectral densities of both signals and describes the
spatial correlations between the signals (here, the estimated
signal and the true signal) at the different scales. The spectral
coherence should be also close to 1 if the estimated signal and
the true signal are strongly correlated. The numerical codes
used to compute all the spectral diagnosis described above are
available online at PowerSpec (2019). Figure 8 shows these three
diagnostics, averaged over the 2 month experiment, for the four
assimilations in GULFSTREAM (left column) and in OSMOSIS
(right column). The PSD show very similar energy reconstruction
at large scales for ETKF no error and ETKF KaRIn error in
both regions which is consistent with the previous RMSE results.
Also, the noise-to-signal ratio and the spectral coherence remain
unaffected by the KaRIn error. However, the PSD also show that
the KaRIn error degrades the small scale energy reconstruction,
especially in the low energy region OSMOSIS. In fact, ensemble
Kalman filters in general are known to focus on the large scales
and underperform in the small scales as they are based on a finite
number of ensemble members. Hence, this result suggests that
a pretreatment of the SWOT data to reduce the KaRIn error
before assimilation may help. In GULFSTREAM, the spatially
correlated errors do not seem to have a significant impact on
the reconstruction in terms of spectral diagnostics, especially
for the PSD. This is probably due to the averaging over the
2 month experiment in a very energetic region. Nonetheless, a
slight improvement made by the DA with CER-data can be seen
in terms of noise-to-signal ratio NSR and spectral coherence at
mesoscale (100–200 km) but with also, a slight degradation at
large scales (>300 km). In OSMOSIS, on the other hand, the
full errors strongly impact the energy reconstruction at large
scales. And, even if the spectral coherence is around 0.6 in the
large scales the noise-to-signal ratio shows that the PSD of the
residual (i.e., estimate minus truth) is larger than the PSD of
the truth, resulting in a negative noise-to-signal ratio. The DA
with CER-data restores a well estimated energy at large scales
and significantly increases the noise-to-signal ratio and spectral
coherence at all scales.

In a nutshell, the spectral diagnostics confirm that the
GULFSTREAM region is less impacted by the SWOT full
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FIGURE 6 | RMSE time series for the four assimilations during the 2 month experiment in GULFSTREAM for SSH (in meters, first line), ζ (adimensional, second line), u

(in m/s, third line), and v (in m/s, fourth line).

errors than OSMOSIS which is explained by the large SSH
variability in comparison to the error variability and by the
lower observation frequency in GULFSTREAM. Also, in terms

of energy reconstruction, the PSD show that DA with CER-data
removes the impact of the correlated errors on the energy of
the reconstructed signal. The only difference left between the
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TABLE 1 | RMSE averaged over the 2 month experiment for the four assimilations in GULFSTREAM and OSMOSIS for SSH (in meters), ζ (adimensional), u (in m/s), and v

(in m/s).

GULFSTREAM OSMOSIS

SSH ζ u v SSH ζ u v

ETKF no error 0.093 0.281 0.201 0.203 0.019 0.127 0.057 0.062

ETKF KaRIn error 0.094 0.283 0.204 0.207 0.020 0.127 0.058 0.062

ETKF full errors 0.121 0.308 0.224 0.255 0.064 0.182 0.095 0.162

ETKF reduced errors 0.109 0.298 0.216 0.229 0.029 0.134 0.065 0.079

ETKF reduced errors and the ETKF no error can be explained
by the impact of the KaRIn error on the small scales and
the inability of the ETKF to deal with them. Finally, in terms
of noise-to-signal ratio and spectral coherence, the full errors
strongly degrade the reconstruction at all scales in OSMOSIS.
The reconstruction with the CER procedure does not produce a
signal as coherent as the one produced by the ETKF no errors,
but manages to strongly improve the reconstruction from the
large scales down to between 100 and 50 km. In GULFSTREAM,
however, the full errors are small relative to the SSH signal and,
in this case, the CER procedure causes degradation at scales
over 300 km.

4. CONCLUSIONS

The goal of this study was to assess the embedding of the
correlated-error reduction (CER) procedure proposed by Metref
et al. (2019) in an ensemble-based data assimilation (DA)
scheme in order to better assimilate the SWOT data with
spatially correlated errors. The assimilation problem proposed
for that assessment was an OSSE for SSH field reconstruction
using a one and a half layer QG model in two different
regions: GULFSTREAM (defined from 33 to 43◦N and from
53 to 65◦) and OSMOSIS (defined from 45 to 55◦N and
from 11 to 19◦W). By comparing ETKF assimilations of: (i)
the error-free SWOT data, (ii) the KaRIn error SWOT data,
(iii) the SWOT data with full errors; and (iv) the SWOT
correlated-error reduced-data (CER-data), the study has reached
three major results.

The first major result is not directly related to the CER-data
assessed in this experiment but is a first answer to one of the
major questions in the SWOT community (Rodriguez et al., 2017;
Chelton et al., 2019; Morrow et al., 2019) about the impact of
the KaRIn error on SWOT DA. We have shown that, when
assimilating SWOT data with an ETKF, the presence of KaRIn
error does not have a significant effect on the SSH, the relative
vorticity, and the currents neither in terms of RMSE nor in
terms of noise-to-signal ratio and spectral coherence. However,
the presence of KaRIn error slightly dampens the energy at
small scales (under 200 km in GULFSTREAM and below 100
km in OSMOSIS). This result suggests that a pretreatment of
the SWOT data to reduce the KaRIn error would help provide
a better resolution of SWOT DA reconstructions in terms
of energy.

The second major result is that, in strongly energetic and
less frequently observed regions such as GULFSTREAM, the
DA with CER-data manages to reduce the SSH RMSE by 10%
on average. The RMSE of relative vorticity and currents are
also reduced by between 5 and 10%. Nevertheless, the DA with
CER-data can sometimes slightly degrade the solution after a
6 day period without observation. This limitation may be due
to the use of an idealistic model in this study and should be
investigated in a more realistic setting in future works. During
an intensely observed time period, however, the experiments
showed that DA with CER-data can reduce the SSH RMSE by up
to 50%. This result shows that using CER-data could be of crucial
importance during the fast sampling phase of SWOT where the
satellite will have a 1 day revisit time and several regions of
the globe will be intensively observed. The energy distribution
throughout the spatial scales does not seem to be impacted by
the spatially correlated errors. The DA with CER-data slightly
improves the noise-to-signal ratio and spectral coherence at
mesoscale (100–200 km). However, the method also slightly
degrades the noise-to-signal ratio and spectral coherence at large
scales (>300 km).

Finally, the thirdmajor result is the importance of assimilating
a SWOT CER-data in less energetic regions such as OSMOSIS.
The average SSH RMSE are more than halved when assimilating
the CER-data rather than the raw data and the RMSE of relative
vorticity and currents are significantly reduced as well. The signal
energy at large and meso-scales is very well-estimated and the
noise-to-signal ratio and spectral coherence are much improved
by the DA with CER-data from the large scales down to small
mesoscale (between 100 and 50 km).

The study presented here was an OSSE that focused on the
effects of the SWOT errors on the assimilation in the ocean
surface using a QG model and the improvements brought by
the CER-data. The possible limitations of this study are that
(i) the OSSE experiments were based on simulations without
internal tides which would further complexify the SSH signals,
(ii) the DA experiments only targeted the reconstruction of
surface fields, (iii) the assimilation system used a QG propagator
which does not account for some aspects of the dynamics
of oceanic flows at fine scale (intense ageostrophic flows
at submesoscale fronts and internal waves). Future works
should expand this study by implementing a more complex
assimilation system and assess the benefits of DA with CER-
data on the vertical dimension of the ocean. Also, as already
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FIGURE 7 | Same as Figure 6 but in OSMOSIS.
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FIGURE 8 | Power spectral density in m2/cycle/km (first line), noise-to-signal ratio (second line), and spectral coherence (third line) on SSH, for the four assimilations,

averaged during the 2 month experiment in GULFSTREAM (left column) and OSMOSIS (right column).

stated in Metref et al. (2019), the CER should be tested in
larger regions with an adaptative computation in the along-
track direction. Finally, as part of a larger challenge mobilizing
the SWOT community, it will be crucial to investigate the
behavior of the CER-data methodology in the presence of
internal tides.
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APPENDIX

The KaRIn instrumental error is simulated by the SWOT
simulator (2016) as an uncorrelated zero-centered Gaussian
noise of standard deviation dependent on the distance with
the nadir. The standard deviation of the KaRIn error is also
dependent on the significant wave height (SWH) parameter
which is a value between 0 and 8 m. Figure A1 represents the
standard deviation with respect to the distance with the nadir
(in one half-swath only) and for different SWH parameters.
The KaRIn error used in the present study was produced with
the parameter SWH = 2 m corresponding to the dark blue
curve in Figure A1. As discussed in section 3.1, this standard
deviation was also used to prescribe the diagonal observation
error covariance matrix R for the assimilation ETKF KaRIn error
(directly) and for the assimilations ETKF full errors and ETKF
reduced errors (after inflation, see section 3.1).

FIGURE A1 | Figure extracted from the SWOT simulator (2016) manual. The

example curves of the standard deviation (cm) of the KaRIn errors as a

function of cross-track distance (km).
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