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Triportheus (Characiformes, Triportheidae) is a freshwater fish genus with 18 valid
species. These fishes are widely distributed in the major river drainages of South
America, having commercial importance in the fishing market, mainly in the Amazon
basin. This genus has diverged recently in a complex process of speciation carried out
in different river basins. The use of repetitive sequences is suitable to trace the genomic
reorganizations occured along the speciation process. In this work, the 5S rDNA
multigene family has been characterized at molecular and phylogenetic level. The results
showed that other multigene family has been found within the non-transcribed spacer
(NTS): the U1 snRNA gene. Double-FISH with 5S and U1 probes were also performed,
confirming the close linkage between these two multigene families. Moreover, evidences
of different transposable elements (TE) were detected within the spacer, thus suggesting
a transposon-mediated mechanism of 5S-U1 evolutionary pathway in this genus.
Phylogenetic analysis demonstrated a species-specific grouping, except for Triportheus
pantanensis, Triportheus aff. rotundatus and Triportheus trifurcatus. The evolutionary
model of the 5S rDNA in Triportheus species has been discussed. In addition, the
results suggest new clues for the speciation and evolutionary trend in these species,
which could be suitable to use in other Characiformes species.

Keywords: Triportheus, 5S rRNA, U1 snRNA, transposable elements, speciation

INTRODUCTION

Multigene families correspond to a group of genes that have originated by duplication of a common
ancestral gene and therefore have similar DNA sequences and related overlapping functions
(Martins and Wasko, 2004; Nei and Rooney, 2005). The 5S rDNA array is characterized by multiple
copies of one conserved transcriptional unit of about 120 base pairs, separated from each other
by a non-transcribed spacer (NTS), which is variable in length and sequence between species
(Rebordinos et al., 2013). The NTSs have been subjected by intense mechanisms of evolution,
allowing a broader understanding of the organization and evolution of the 5S rDNA array in many
organisms (Martins and Wasko, 2004). Additionally, the 5S rDNA can be found linked to other
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multigene families, including major ribosomal genes, histones,
and small nuclear RNA (snRNA) genes (Drouin and Moniz de
Sá, 1995; Manchado et al., 2006; Cabral-de-Mello et al., 2010).

The levels of intra or intergenomic divergence displayed by
5S rRNA genes have led the discussion of different evolutionary
models to explain the evolution pattern found in each species
or between species. A vast number of studies have pointed
that the concerted evolution has driven the evolution of 5S
rDNA and other multigene families (Drouin and Moniz de
Sá, 1995; Eirín-López et al., 2012). However, further studies
have demonstrated that the concerted evolution does not
clarify the intragenomic divergence of several multigene families
found in some organisms, and another model called birth-
and-death was proposed (Nei and Hughes, 1992). Besides,
a growing number of studies have combined these both
models to illustrate the diversified scenarios regarding the 5S
rDNAs evolution (Merlo et al., 2012a, 2013). Therefore, NTS
regions seem to be subject to rapid evolution, which makes
them important for studies concerning the organization and
evolution of the 5S multigene family, and as markers for
species-specific studies or tracing recent evolutionary events
(Rebordinos et al., 2013).

Triportheus (Characiformes, Triportheidae) is a freshwater
fish genus with 18 valid species (Froese and Pauly, 2019).
These fishes are widely distributed in the major river drainages
of South America, having commercial importance in the
fishing market, mainly in the Amazon basin (Malabarba, 2004;
Gonçalves and Batista, 2008). According to a recent phylogenetic
study established for this genus, Triportheus originated at
26.2 ± 6.5 Myr and represents a monophyletic group in
which T. auritus is the oldest living species within the genus
(Mariguela et al., 2016). Triportheus has stood out in many
cytogenetics studies, mainly because all species studied so far
have a ZW sex chromosomes system well characterized (Artoni
et al., 2001; Diniz et al., 2009; Yano et al., 2016, 2017a). In
addition, the rDNAs (Diniz et al., 2009; Marquioni et al., 2013;
Yano et al., 2017b) and the U2 snRNA genes (Yano et al.,
2017b) have been also investigated, highlighting the variability
in the syntenic configuration as well as in the number of sites
of these multigene families, mainly regarding the 5S rDNAs
(Yano et al., 2017b).

Large volumes of studies have been published on physical
mapping of rDNAs in divergent taxa, especially in fish. However,
the integration of cytogenetic data with molecular analysis has
increasingly brought insights about the evolutionary mechanisms
of multigenic families (Manchado et al., 2006; Cabral-de-Mello
et al., 2012; Merlo et al., 2012b, 2013). Hence, we have investigated
the 5S rRNA genes by molecular and cytogenetics analyses
in eight Triportheus species in order to better understand the
organization and the evolutionary pattern of this multigene
family within the genus. We described here a repeat unit
containing the 5S rRNA gene linked to U1 snRNA gene, and
therefore, the double-FISH technique was applied to ascertain the
results found in the sequences analyses. Finally, the nucleotide
variability and the evolutionary divergence between species were
estimated to assess if the concerted evolution or birth and death,
or if both models are driving the 5S rDNAs in Triportheus.

MATERIALS AND METHODS

Material Collection, Chromosome
Obtaining and DNA Extraction
Individuals of Triportheus albus, Triportheus auritus, Triportheus
guentheri, Triportheus nematurus, Triportheus pantanensis,
Triportheus aff. rotundatus, Triportheus signatus, and Triportheus
trifurcatus from different Brazilian river basins were analyzed.
The collections were authorized by the Brazilian environmental
agency ICMBIO/SISBIO (License number 48628-2). All species
were identified and deposited in the fish museum of the
Laboratory of Biology and Genetic of Fishes of the Universidade
Estadual Paulista (UNESP-Botucatu, SP), with the respective
deposit numbers (Table 1). The experiments followed ethical
conducts, in accordance with the Ethics Committee on Animal
Experimentation of the Universidade Federal de São Carlos
(Process number CEUA 1853260315). Mitotic chromosomes
were obtained from cell suspensions of the anterior kidney using
the conventional air-drying method, according to Bertollo et al.
(2015). Genomic DNA was isolated from liver, following the
protocol of Sambrook and Russel (2001), and the extraction
quality was validated by electrophoresis in agarose gel (1.5%),
using GelRed in the loading buffer.

5S rDNA Isolation, Cloning, and
Sequence Analysis
The PCR amplifications of the 5S rDNA were performed using
the following primers 5SF (5′-TACGCCCGATCTCGTCCGATC-
3′) and 5SR (5′-CAGGCTGGTATGGCCGTAAGC-3′), as
described in Pendas et al. (1994). Reactions were carried out
using 0.2 pmol of the forward and reverse primers, 100 ng of
genomic DNA, 3 mM Cl2Mg, 300 µM dNTP and 3 U of Taq
polymerase (Euroclone) in a final volume of 50 µl. The PCR
amplification reactions were performed in a Gene Amp_PCR
System 2700 (Applied Biosystems) thermal cycler, according to
Cross et al. (2005). The PCR products were purified applying
the NucleoSpin R© Extract II kit (Macherey–Nagel), cloned
into pGEM R©-T Easy (Promega) and TOPO R© TA Vectors, and
the plasmid DNA was extracted using NucleoSpin R© Plasmid
(Macherey–Nagel), all of these kits were used under the
manufacturer’s instructions. The positive clones were sequenced
using an ABI3100 Genetic Analyzer, with fluorescence-labeled
terminator (BigDye Terminator 3.1 Cycle Sequencing Kit;
Applied Biosystems).

Sequence and Phylogenetic Analysis
Sixty-six 5S rDNA-bearing clones were sequenced in this study,
and the number of clones for species and individual are described
in Table 2. The consensus sequences were obtained with the
Geneious software (Kearse et al., 2012), and were subjected
to BLASTn searches at the National Center for Biotechnology
Information website1 – NCBI. In addition, the CENSOR program
(Kohany et al., 2006) was used to search for repeated elements
inside spacers. The sequence alignments were performed using

1http://www.ncbi.nlm.nih.gov/blast
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TABLE 1 | Brazilian collection sites of the Triportheus species and number of individuals and cells examined in this study.

Species Site Basin N Number of cells Deposit number

Triportheus albus Araguaia river Araguaia-Tocantins 04♂; 04♀ 40 LBP18620

Triportheus auritus Araguaia river Araguaia-Tocantins 05♂; 04♀ 25 LBP18622

Triportheus guentheri Inhuma lake São Francisco 12♂; 06♀ 30 LBP18628

Triportheus nematurus Paraguai river Paraguai 09♂; 07♀ 20 LBP18624

Triportheus pantanensis Paraguai river Paraguai 01♂; 01♀ 30 LBP18623

Triportheus aff. rotundatus Paraguai river Paraguai 19♂; 21♀ 25 LBP18625

Triportheus signatus Piracicaba river Tietê 13♂; 24♀ 25 LBP18619

Triportheus trifurcatus Araguaia river Araguaia-Tocantins 04♂; 11♀ 20 LBP18621

MUSCLE (Edgar, 2004). Next, the sequences obtained in this
study were deposited in the NCBI database under the Accession
Numbers listed in Table 2. The nucleotide variability (π) within
species, the number of polymorphic sites (s) and the number
of haplotypes (h) in both transcribed and spacer regions were
estimated by the DnaSP version 5 program (Librado and Rozas,
2009). The evolutionary divergence among species was also
inferred using DnaSP, by the average number of nucleotide
differences per site using the Jukes and Cantor method [Dxy(JC)],
the number of fixed differences in transcribed region and NTS
was also inferred. The PhyML 3.0 program (Guindon et al., 2010)
was used to determine the best-fit phylogenetic model and then
to run the model. The resulting best-fit model was the generalized
time-reversible (GTR) model (Tavaré, 1986), considering the
proportion of invariable sites (+I) and gamma distribution (+G).
The statistic used for model selection was the akaike information
criterion (AIC), the value of which was 18315.92230, and the –
LnL was −8784.01056. Branch support was tested by the fast
likelihood-based method using aLRT SH-like (Anisimova et al.,
2011). Finally, the tree was edited in the MEGA7 program
(Kumar et al., 2016). Besides, 5S rDNA sequences were also
subjected to a neighbor-net analysis (Bryant and Moulton, 2004)
implemented in the SplitsTree 4 package (Huson and Bryant,
2006) using GTR distances.

Probe Preparation
The PCR product of 5S rDNA was labeled with Cy5-
dUTP using Nick-Translation Mix (Roche). The U1
snDNA probe was isolated using the following primers
U1F (5′-GCAGTCGAGATTCCCACATT-3′) and U1R
(5′-CTTACCTGGCAGGGGAGATA-3′), as described by

TABLE 2 | Species, number of individuals (N), number of clones sequenced (NC),
and GenBank accession number.

Species N NC GenBank Acc. No.

T. albus 3 9 MN708408 to MN708416

T. auritus 3 8 MN708417 to MN708423

T. guentheri 3 8 MN708424 to MN708431

T. nematurus 3 9 MN708432 to MN708440

T. pantanensis 2 6 MN708441 to MN708446

T. aff. rotundatus 3 9 MN708447 to MN708455

T. signatus 3 8 MN708456 to MN708463

T. trifurcatus 3 9 MN708464 to MN708472

Silva et al. (2015). The U1 snRNA probe was labeled via PCR
using the same set of primers and the cycle program described in
Silva et al. (2015) with Spectrum Orange-dUTP (Vysis).

Fluorescence in situ Hybridization
Chromosomal preparations of Triportheus species listed in
Table 1 were used for a double-color fluorescence in situ
hybridization (FISH) experiment, according to Yano et al.
(2017c). The slides were first dehydrated with 70, 85, and 100%
ethanol series, and incubated at 60◦C for 1 h. Subsequently,
they were treated with RNAse (10 mg/mL) for 1 h at 37◦C.
Next, a 5-min wash using 1× phosphate-buffered saline (PBS)
was performed and the slides were treated with 0.005% pepsin
solution in 10 mM HCl at 37◦C. The slides were washed again
with 1x PBS for 5 min. After further washing, the slides were
dehydrated with 70, 85, and 100% ethanol series, 3 min each.
The desnaturation of the chromosomal DNA was performed in
70% formamide/2× SSC for 3 min at 75◦C. The slides were
dehydrated in a cold ethanol 70%, and in 85 and 100% at RT,
3 min each. The hybridization mixture, containing 100 ng of each
probe, 10 mg/mL dextran sulfate, 2× SSC, and 50% formamide
in a final volume of 20 µL, was heated to 86◦C for 10 min and
then applied to the slides. Hybridization was performed during
16 h at 37◦C. After hybridization, the slides were washed in
1× SSC for 5 min at 44◦C, and in 4× SSCT using a shaker
at room temperature. The slides were dehydrated again in an
ethanol series, 3 min each. After the complete drying of the slides,
the chromosomes were counterstained with 4′,6-diamidino-2-
phenylindole/antifade (1.2 mg/mL; Vector Laboratories).

Microscope Analyses and Image
Processing
At least 30 metaphase spreads were analyzed per individual
to confirm the FISH results. Images were captured on an
Olympus BX50 microscope (Olympus Corporation, Ishikawa,
Japan) using CoolSNAP and the Image Pro Plus 4.1 softwares
(Media Cybernetics, Silver Spring, MD, United States).

RESULTS

5S rDNA Organization in Triportheus
Electrophoresis of PCR amplifications of 5S rDNAs revealed
fragments of ∼1600 bp in length for the Triportheus species.
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FIGURE 1 | Nucleotide sequence of the 5S rDNA from Triportheus nematurus. The sequence corresponding to the 5S rRNA transcribed region is highlighted in
yellow. The U1 snRNAs gene is highlighted in green. Dash-lined boxes indicate the primer sequences. Blue boxes denote the Internal Control Regions of 5S rRNA
(box A, intermediate element; box C, from left to right). The 5S rDNA external regulatory elements are boxed in yellow (poli-T termination region and TATA box, from
up to down). The U1 snDNA regulatory elements are boxed in green (DSE, PSE, and 3′ box, from up to down).

A total of 66 clones were sequenced in the present study, as
detailed in Table 2. After using BLASTn, 65 sequences matched
with the 5S rRNA gene, consisting in a conservative transcribed
region of 120 bp, and an adjacent and variable NTS. The Figure 1
shows an example of the 5S rDNA amplicon of T. nematurus, in
which the transcribed region shows the internal control regions
(ICR) for all species: Box A located at position 27–41 (positions
50–64 of the 120 bp-transcribed region); intermediate element
(IE) at position 44–49 (positions 67–72 of the 120 bp-transcribed
region); and Box C at position 57–74 (positions 80–97 of the
120 bp-transcribed region). The terminator region, a T-rich
stretch at the end, was also verified and consists of 4–7 thymidine
residues. In all sequences the TATA-like (conserved AT rich
region) is located at position −30 within the NTS, the GC
dinucleotide is at position −11, and the universally conserved
cytosine at position−1.

The NTS has a peculiarity, since an U1 snRNA gene was
found inside it at position 726–891 (Figure 1). The U1 snRNA
sequences show identities of 95% with Argyrosomus regius and
Takifugu rubripes fish species, and 92% with the frog Xenopus
laevis. This gene divide the NTS in two fragments, one before
the U1 gene (Spacer 1, at position 98–725) and other after U1
(Spacer 2, at position 892–1651 bp) (Figure 1). Therefore, 5S
rRNA and U1 snRNA sequences are linked in the same array
in all Triportheus species analyzed, and both genes displayed the
same orientation. The regulatory regions were identified: (i) a
proximal sequence element (PSE) is located at 56 nucleotides
upstream of the transcription point; (ii) a distal sequence element

(DSE) was identified at 204 nucleotides upstream of the PSE; (iii)
a 3′ Box was identified at 8 nucleotides downstream of the 3′
end of the gene.

The analysis using the CENSOR software identified six types
of LTR Retrotransposons, six types of non-LTR retrotransposon
and seven types of DNA transposon fragments in the NTS of
all sequences (Figure 2). All species, except T. albus, showed
fragments of several TEs; and the LTR BEL-52_DRe-I from Danio
rerio (Howe et al., 2013) was identified in five Triportheus species.

Variability Analysis
The transcribed region of 5S rDNA showed 22 polymorphic
sites (S), 23 haplotypes (h) and 0,011 ± 0,001 nucleotide
diversity (π). As expected, the NTS displayed higher values than
transcribed region, with 439 polymorphic sites, 58 haplotypes
and 0,065 ± 0,006 of nucleotide diversity. The nucleotide
variability (π) of the two transcribed regions and the two spacers
within each species was low in most species, especially in the
transcribed regions (Supplementary Tables S1–S4). T. guentheri
showed the highest values of nucleotide variability in the
transcribed regions; while T. auritus showed the lowest values
(Supplementary Tables S1, S3). In the spacers, T. trifurcatus
and T. aff. rotundatus presented the highest nucleotide variability
(Supplementary Tables S2, S4).

Concerning the nucleotide divergence inferred among species
(K), was low in the transcribed regions, being in many species
even lower than the nucleotide variability found within each
species (Supplementary Tables S1, S3). However, despite the
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FIGURE 2 | Schematic representation of the 5S rDNA sequences showing the different types of retrotransposons and DNA transposons found in the NTS of
Triportheus species.

low divergence value in the transcribed regions, T. auritus was
the species that showed the highest values of divergence and
one and two fixed differences with all species in the 5S and
U1 transcribed region, respectively. In addition, T. guentheri
presented a fixed difference in the U1 transcribed region with all
species, except with T. albus. Unlike the transcribed regions, the
two spacers showed higher nucleotide divergence among species,
especially T. auritus, since this species presented elevated values
with all species analyzed (Supplementary Tables S2, S4). The
number of fixed differences was much higher in the spacers,
with few exceptions; T. auritus again presented the highest values
(Supplementary Tables S2, S4).

Cytogenetic Analysis
All Triportheus species show 52 chromosomes, and a karyotype
composed by m/sm and some st chromosomes, with a
heteromorphic ZZ/ZW sex chromosome system. Concerning the

double-FISH results, the 5S rDNA probe hybridized the p arms of
the chromosome pair No. 9 in all species. Triportheus albus and
T. guentheri showed only this site; while T. auritus, T. nematurus,
T. signatus, and T. trifurcatus also showed 5S rDNA signals in the
chromosome pair No. 3. Triportheus auritus also presented this
cluster in chromosome pairs Nos. 4, 5, and 6, bearing a total of 10
sites in five chromosomes pairs (Figure 3). The U1 snDNA was
mapped for the first time in Triportheus and in each species these
sequences are clustered in the chromosome pair No. 9, being
co-localized with the 5S rDNA site (Figure 3).

Phylogenetic Analysis
The ML tree and the neighbor-network showed a clear clustering
by species for T. albus, T. auritus, T. guentheri, T. nematurus,
T. signatus, and T. trifurcatus, except for two sequences of
T. trifurcatus. Triportheus pantanensis and T. aff. rotundatus were
clustered in the same group, as two sequences of T. trifurcatus
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FIGURE 3 | Karyotypes of eight Triportheus species after the FISH
experiments, using the 5S rDNA (green) and U1 snDNA (red) probes on the
chromosomes. (A) Triportheus albus, (B) Triportheus auritus, (C) Triportheus
guentheri, (D) Triportheus nematurus, (E) Triportheus pantanensis,
(F) Triportheus aff. rotundatus, (G) Triportheus signatus, and (H) Triportheus
trifurcatus. The chromosomal pair No. 9 bearing syntenic sites are marked
with arrows and are boxed displaying each probe separately.

(Figure 4). Both analyses showed that, although the sequences
of T. signatus and T. trifurcatus are grouped by species, they are
very close to each other (Figures 4, 5). The network and the ML
tree also displayed that T. auritus is notably more distant from all
species. Additionally, the ML tree evidenced that the T. auritus
sequences occupy the most basal position in the tree (Figure 4).

DISCUSSION

All species showed a main 5S rDNA amplicon that is presumably
active, since both, ICR and the three external elements, are
conserved along the 5S rDNA sequences. All these regions are

necessary for the initiation of the transcription (Cloix et al.,
2000; Volkov et al., 2017). In addition, other interesting features
were observed in these sequences: (i) the U1 snRNA multigene
family was detected within the NTS of all Triportheus species by
sequencing and FISH technique; (ii) higher nucleotide divergence
(inside spacers) was found between T. auritus and all other
Triportheus species, which is supported by previously published
phylogenetic data and cytogenetic data; (iii) the presence of a
varied range of TE within the spacers.

The U1 snRNA multigene family was detected within the NTS
of all Triportheus species. This gene presented a high interspecific
similarity and there were detected the regulator regions, such as
the PSE, DSE and 3′ box. The PSE has a conserved position at 50–
60 bp upstream of the transcription starting point (McNamara-
Schroeder et al., 2001) and determines the transcription start-
site (Thomas et al., 1990). The DSE is an enhancer that, in
humans, activates the transcription about 100-fold (Boyd et al.,
2003). It is usually found about 200–250 bp upstream from PSE
(Parry et al., 1989). The 3′ box is a region for the transcription
termination and 3′ processing of the RNA (Cuello et al., 1999),
and it is located about 9–19 bp downstream of the transcribed
region (Barzotti et al., 2003). The conservation of these regulatory
regions supports the functionality of the U1 snRNA genes.

The karyotype and 5S rDNA-FISH results agreed with
previous studies (Artoni et al., 2001; Diniz et al., 2009; Marquioni
et al., 2013; Yano et al., 2016, 2017b). In all species, the double-
FISH results demonstrate that U1 snRNA and 5S rRNA are
colocalized in the ninth chromosome pair (Figure 3), including
T. auritus, which belongs to the first lineage that diverged
from the ancestor of the genus (Mariguela et al., 2016). Such
a co-localization is a plesiomorphic condition for the genus,
so the analysis of 5S-U1 co-localization in other closely related
genus should reinforce the taxonomic relationships of the
Characiformes order. An exhaustive cytogenetic analysis using
probes of ribosomal and spliceosomal RNA genes was carried
out in five Characiformes species belonging to the Astyanax
genus (Silva et al., 2015), and in four of them, 5S rDNA and U1
snDNA were localized in a same chromosome pair. These results
would indicate that the linkage in a same chromosome between
5S and U1 multigene families is a common feature within the
Characiformes; however, new analysis should be directed in other
representative families of the order. Anyway, such a linkage is a
promising marker to clarify the Characiformes taxonomy.

The linkage between 5S rRNA and U1 snRNA genes in
only one of the chromosome pairs bearing the 5S sequences,
indicate that this gene has frequently gone through mechanisms
of transposition in the Triportheus genome, as already suggested
by other authors (Drouin and Moniz de Sá, 1995). Although
both genes are linked, they are transcribed by different
RNA polymerases, ruling out the possibility of cotranscription
(Pelliccia et al., 2001). The 5S-U1 linkage has been described
in fish species such Oreochromis niloticus (Cabral-de-Mello
et al., 2012), Astyanax paranae, A. bockmanni, A. fasciatus and
A. jordani (Silva et al., 2015). A tandem linkage (co-localization)
between these two multigene families has only described in the
fish A. jordani (Silva et al., 2015) and the crustacean Asellus
aquaticus (Pelliccia et al., 2001). Astyanax and Triportheus genus

Frontiers in Marine Science | www.frontiersin.org 6 January 2020 | Volume 7 | Article 6

https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-00006 January 24, 2020 Time: 16:41 # 7

Yano et al. Evolutionary Dynamics of Multigene Families in Triportheus

FIGURE 4 | Phylogenetic Maximum Likelihood tree of NTS sequences based on GTR substitution model. Three sequences from Brycon brevicauda (Acc. No.
AF250541), B. cephalus (Acc. No. AF250529), and B. insignis (Acc. No. AF250544) were used as outgroup. The box shows the T. signatus-T. trifurcatus clade in
detail.

belong to the Characoidei suborder and both species present
the 5S-U1 linkage. However, in other species of the same
suborder, such as Leporinus spp. (Ferreira et al., 2007), Hoplias
malabaricus (Martins et al., 2006) and Brycon spp. (Wasko et al.,
2001), no 5S-U1 tandem linkage was observed, although a U1
snRNA localization by FISH has not been tested to ascertain
if the two multigene family are linked. An exhaustive analysis
of such linkage in other species of the same suborder (or the
Characiformes) would give new insights of the evolutionary
pathway of such species.

A noteworthy characteristic of the two spacer regions is the
presence of different traces of TE. The presence of TE remains
has been associated with an evidence for hybridization process
between species, since after hybridization occurs an explosion of

transpositions and a rapid genomic reorganization (Fontdevila,
2019). Similarly, in the species Diplodus sargus different TE were
also described within the NTS and multiple 5S rDNA types were
detected at both, electrophoretic and sequence level, probably
derived from a hybridization scenario between two subspecies
(Merlo et al., 2013). However, all Triportheus species showed
one main electrophoretic band, thus indicating a higher level
of intraspecific similarities than those observed in D. sargus. It
has been postulated that D. sargus subespeciation resulted from
a rapid series of colonization events (Summerer et al., 2001),
leading to a parapatric speciation, in which the distribution
boundaries could represent a hybridization area between two
subspecies (Merlo et al., 2013). Commonly, the characiform
fish diversification has been explained by allopatric speciation
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FIGURE 5 | Phylogenetic networks of 5S rDNA constructed using the neighbor net algorithm. Triportheus species are shown in different colors.

due to river vicariance (Seehausen and Wagner, 2014), but
recent works suggest that parapatric ecological speciation have
important role in this group (Cooke et al., 2012; Strecker
et al., 2012). Different causes could explain the differences of
5S rDNA variability between D. sargus and the Triportheus
species: (i) The transposition explosion within the Triportheus
species could be lesser than that of the D. sargus due to a
reduced hybridization episodes among the Triportheus species,
and (ii) the 5S-U1 linkage observed in Triportheus species, leads
to higher selective pressure in the spacers than in the NTS of
D. sargus, since there are more regulatory elements. Moreover,
a Tc1 retrotransposon located within NTS of the 5S rDNA has
been proposed as the agent that causes the large number of
5S rDNA loci observed in Gymnotus mamiraua (Silva et al.,
2016). Similarly, a Rex retroelement and a hAT transposon have
been suggested as the causative for the 5S rDNA dispersion in
Ancistrus and Rinelocaria species, respectively (Favarato et al.,
2016; Glugoski et al., 2018).

Among the TE found within spacers of Triportheus species
are several non-LTR retrotransposons. The short interspersed
elements (SINEs) are a class of non-LTR retrotransposons that
can be classified by the origin of the 5′ region. Thus, the SINE1
type has a head derived from 7SL RNA genes (Kriegs et al., 2007),
SINE2 from tRNA genes (Jurka et al., 2005) and SINE3 from
5S rRNA (Kapitonov and Jurka, 2003). Recently, a new class of
SINE derived from snRNAs (U1 and U2) has been described
(Kojima, 2015). Marks of non-LTR transposons have been found
immediately adjacent to 5S rRNA and/or U1 snRNA genes in
T. pantanensis and T. aff. rotundatus, and to U1 snRNA gene
in T. signatus and T. trifurcatus. Therefore, in these species, the
5S/U1 array could act as a source of 5S and U1-derived SINEs.

Nevertheless, TE copies in the genome are sometimes non-
functional due to distorted ORFs and are considered “molecular
fossils” (Richardson et al., 2015).

The low values of nucleotide variability found in both,
transcribed and spacer regions, demonstrate the high rate of
homogenization exerted in such regions, as could be predicted
by the concerted evolution model. It is well-accepted that the
concerted model drives the evolution of the 5S rDNA multigene
family within a given locus (Freire et al., 2010; Pinhal et al.,
2011; Vizoso et al., 2011; Merlo et al., 2013). The mechanisms
of unequal crossing over and gene conversion, in addition to
the purifying selection in transcribed regions, act homogenizing
the units of the multigene family (Nei and Rooney, 2005).
In the Triportheus species, the repetition unit is composed
by two transcribed regions and two reduced spacers with
regulatory elements for two genes that are transcribed by different
RNA polymerases, so the spacers also have additional selective
restrictions, thus making the homogenization more effective.

On the other hand, the nucleotide divergence was high
in the spacers between species, but with T. auritus clearly
standing out, since this species showed the most elevated values
when compared to other species. This high divergence between
T. auritus and all other Triportheus species studied here can be
perfectly associated to previous phylogenetic studies performed
by Mariguela et al. (2016), since T. auritus was showed to
be the oldest Triportheus species. As expected, the transcribed
region showed lower divergence among species, but even in
that, T. auritus was the species with higher divergence. Besides
nucleotide divergence, T. auritus also shows the most divergence
cytogenetic data concerning number of 5S rDNA sites (Yano et al.,
2017b). While all other species show one or two chromosome
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pairs bearing 5S rDNA sequences, T. auritus present 5 pairs
(Figure 3B). This high number of pairs could be explained by
the fact that this gene is located in the terminal regions of the
chromosomes, which could favor transposition events (Nakajima
et al., 2012); or by the association of 5S rDNA and transposable
elements, which was clearly evidenced in this study. According
to Drouin (2000), the presence of TEs can be responsible for
rRNA gene movements, and this process can be displayed by
the cytogenetic analysis performed here and in previous studies.
Moreover, it has been stated that a double strand break within
the 5S array, followed by a non-homologous recombination
repair mechanism during prophase, are events that lead to
share 5S sequences among chromosomes (Barros et al., 2017;
Glugoski et al., 2018).

Despite of the 5S-U1 co-localization found in all Triportheus
species, additional not U1-linked 5S loci are present in
T. signatus, T. nematurus, T. trifurcatus and, specially, in
T. auritus, which has four additional loci. These additional 5S
rDNA arrays could be generated during the evolutionary pathway
of the Triportheus species, helped by the TE present in the main
locus. These secondary 5S arrays could not be isolated in this
work, so a deep analysis of the 5S rDNA sequences should be
directed. However, the presence of a possible different array
of 5S rDNA could give a clue to conclude that the birth-and-
death evolution model is also acting in these species, since the
presence of multiple loci is a typical characteristic of this model,
that arise from duplication events (Nei and Rooney, 2005).
A mixed model between birth-and-death and concerted has
been already described for some fish species as stingrays (Pinhal
et al., 2011), Plectorhinchus mediterraneus (Merlo et al., 2012a),
Halobatrachus didactylus (Merlo et al., 2012b), and D. sargus
(Merlo et al., 2013).

The phylogenetic tree showed a robust clustering in a
species-specific manner in most species. However, three out
of the eight analyzed species do not grouped in a species-
specific form; these are T. pantanensis, T. aff. rotundatus,
and T. trifurcatus. This data is also supported by the
highest nucleotide variability observed in T. trifurcatus and
T. aff. rotundatus. Nevertheless, T. pantanensis presented an
intermediate nucleotide variability, despite it clustered beside
T. trifurcatus and T. aff. rotundatus. The species T. pantanensis
and T. aff. rotundatus belong to the Paraguay and lower
Paraná basins and T. trifurcatus to the Tocatins and Araguaia
Basins, a north-south adjacent basin. Some authors postulated
that the fish fauna from a specific basin could be a hybrid
combination of other existing in adjacent basins (Menezes, 1988;
Lima and Caires, 2011). The similarity observed in the spacer
regions among these three species and the close clustering
in the phylogenetic analysis, especially between T. pantanensis
and T. aff. rotundatus, suggest occasional introgression process
during the parapatric speciation of such species. Introgression
is often an integral component of species diversification and
evolution that might confer an increased genetic variation
(Hedrick, 2013) or exchange beneficial alleles (Arnold and Kunte,
2017). An introgression event was described between two hake
species based on 5S rDNA, microsatellites and COI markers
(Miralles et al., 2014).

In this work, it has been presented for the first time
an integrative genetic characterization of 5S rDNAs, using
extensive analysis to show the evolutionary model of these
sequences in the Triportheus genus. Two main facts can be
extracted as conclusions: First, a tandem linkage between 5S
rDNA and U1 snDNA multigene families has been found
in all Triportheus species, including T. auritus (a direct
representative of the first lineage that differentiated in the
genus), thus indicating that this feature emerged before the
genus differentiation. Secondly, many TE have been found in
the spacers of the array; this fact and the close clustering
of some species indicates that the evolution of the group
is driven by speciation-introgression process. In conclusion,
the 5S rDNA multigene family has been revealed as a good
marker for the evolutionary resolution of the Triportheus
genus, which also could be tested for others closely related
Characiformes species.
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