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Seagrasses provide multiple ecosystem services including nursery habitat, improved
water quality, coastal protection, and carbon sequestration. However, seagrasses are
in crisis as global coverage is declining at an accelerating rate. With increased focus
on ecological restoration as a conservation strategy, methods that enhance restoration
success need to be explored. Decades of work in coastal plant ecosystems, including
seagrasses, has shown that positive species relationships and feedbacks are critical
for ecosystem stability, expansion, and recovery from disturbance. We reviewed the
restoration literature on seagrasses and found few studies have tested for the beneficial
effects of including positive species interactions in seagrass restoration designs. Here
we review the full suite of positive species interactions that have been documented
in seagrass ecosystems, where they occur, and how they might be integrated into
seagrass restoration. The few studies in marine plant communities that have explicitly
incorporated positive species interactions and feedbacks have found an increase in
plant growth with little additional resource investment. As oceans continue to change
and stressors become more prevalent, harnessing positive interactions between species
through innovative approaches will likely become key to successful seagrass restoration.

Keywords: coastal management, facilitation, positive species interactions, seagrass restoration, seagrass

INTRODUCTION

Seagrasses are present on the coasts of all continents except Antarctica and are among the most
productive ecosystems on Earth (Hemminga and Duarte, 2000; Green and Short, 2003). They
provide habitat for multiple life stages of many commercially- and recreationally-important fishes,
shellfish, and crustaceans, improve water quality, sequester carbon, stabilize sediment, and reduce
coastal erosion (Nagelkerken et al., 2000; Jackson et al., 2001; Heck et al., 2003; Orth et al., 2006;
Fourqurean et al., 2012; Duarte et al., 2013; James et al., 2019; Lefcheck et al., 2019). However,
the total area covered by seagrass is estimated to have declined by 30–60%, including total loss in
some places (Evans et al., 2018). Losses of seagrasses have been caused by anthropogenic influences
including direct removal during coastal development (e.g., harbors, marinas, and channels),
destructive fishing methods (such as trawling), run-off of nutrients and other pollutants from
land-based sources, and climate change (Short and Wyllie-Echeverria, 1996; Orth et al., 2006;
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Hughes et al., 2013; He and Silliman, 2019). The causal
mechanisms typically involve increased frequency and intensity
of stressors such as light reduction, extreme weather events (e.g.,
heat waves or cold snaps), high nutrient concentrations, and poor
sediment conditions (e.g., high sulfide concentrations).

With recognition that seagrass habitats — together with the
many ecosystem services they offer — are in decline globally
(but see Santos et al., 2019), conservation and restoration of
seagrass has renewed urgency. Historically, seagrass conservation
has focused on decreasing environmental stressors (e.g., nutrients
and sediment that affect water quality, Lefcheck et al., 2018). In
addition, many restoration efforts have typically been conducted
across small spatial extents limited to a few hectares. This is partly
because of a perception that efforts would yield limited success
(∼30%), and partly because of the time and money required
for the methods used (Fonseca et al., 1998; Orth et al., 2006),
which have included planting of shoots sourced from elsewhere
(Cambridge et al., 2002) to broadcast of seeds (Orth et al., 2012),
and deployment of substrata to enhance settlement of propagules
(Tanner, 2015). Recent successes have demonstrated that active
restoration of seagrass beds can be an important tool to facilitate
recovery of seagrass meadows (Orth et al., 2012; Statton et al.,
2014; van Katwijk et al., 2016; Statton et al., 2018).

Often, seagrass restoration is focused on reducing physical
stressors (Bastyan and Cambridge, 2008) and or avoiding
negative intraspecific interactions to enhance outplant growth
(i.e., dispersed planting methods, Williams, 1987; Rose and
Dawes, 1999; Worm and Reusch, 2000). However, positive
interactions such as mutualism and facilitation are common in
seagrass ecosystems (Peterson and Heck, 2001; Bruno et al., 2003;
Van der Heide et al., 2007; Zhang et al., 2018). In tidal marshes,
inclusion of positive interactions in restoration has shown recent
success (Silliman et al., 2015). Whether such positive interactions
might help improve seagrass restoration has rarely been explored.
Given they are widespread, it is plausible that judicious inclusion
of positive intra- and inter-species interactions into the design of
restoration programs might also enhance seagrass restoration.

Amid growing international recognition of the importance
of ecological restoration to return ecosystem services (e.g., the
United Nations Decade of Ecological Restoration 2021–2030),
restoration practices need to innovate to achieve increasingly
ambitious goals. Positive interactions are worth examining to
see if they can contribute to this innovation. In this paper,
we review positive species interactions in seagrass ecosystems
(Figure 1), and provide suggestions for research and restoration
that, if implemented, has the potential to improve the outcomes
of seagrass restoration.

POSITIVE DENSITY DEPENDENCE

Positive density dependence occurs when an increase in the
density of conspecifics improves survival and reproductive
success of an individual or population (Allee, 1931). Classic
examples of positive density dependence include prey avoidance
behavior in areas of high predation (i.e., nesting seabirds
or schooling fish, Neill and Cullen, 1974; Oro et al., 2006).

Alternatively, positive density dependence might be prevalent
in areas where environmental stress is high and could be
a mechanism to support ecosystem resilience (Bertness and
Callaway, 1994; Callaway et al., 2002; Gross et al., 2010; Silliman
et al., 2011, 2015; He et al., 2013). Restoration is potentially a
high-stress scenario, as some sites are less than ideal for growth
and survival. Overcoming restrictions to growth and survival
(biotic or abiotic), can be challenging (Hobbs and Harris, 2001),
but the limited evidence available suggests that positive density
dependence might help.

For seagrasses, positive density dependence has been shown to
be important for successful reproduction. Several seagrass species
are pollen-limited (van Tussenbroek et al., 2016), leading to a
prediction that restoration success might be improved if we are
able to increase density of seeds or shoots, because this could
eventually led to increased density of flowering shoots, and thus
more seeds to facilitate natural recovery. Furthermore, positive
density dependence has been observed in seagrass colonization
and patch survival. In both Zostera marina and Posidonia
oceanica beds, higher number of shoots in a patch increased
survival and patch expansion (Olesen and Sand-Jensen, 1994;
Almela et al., 2008). Indeed, van Katwijk et al. (2016) found, from
a global meta-analysis, that seagrass restoration success increased
by 20% when large enough numbers (<100000) of shoots or seeds
are used. They hypothesized that this was because it spreads risk
over time and space as well as allows for net positive feedbacks
that promote growth and reproduction — mechanisms intrinsic
to positive density dependence. Furthermore, recent restoration
efforts support the idea of positive density dependence. Paulo
et al. (2019) found larger transplant areas with more shoots had
greater long-term survival and expansion than smaller plots. This
is likely due to a breached threshold that confers protection
from winter storms.

Although planting large numbers of seagrass shoots or seeds
might initially be beneficial, the spatial arrangement need to be
considered with caution as some work has shown negative effects
of self-shading in meadows that are too dense (Ralph et al., 2007).
Similar to salt marshes and mangroves, seagrass establishment
likely also benefits from aggregated rather than dispersed planting
arrangements under stressful conditions (Figure 2, Gedan and
Silliman, 2009; Silliman et al., 2015).

Indeed, a growing body of literature suggests that positive
density dependence is important to seagrass ecosystems as
seagrasses can facilitate their own growth via multiple feedbacks.
Moreover, theory suggests that such positive feedbacks can cause
alternative stable states (Van der Heide et al., 2007; Maxwell
et al., 2017). However, the ability to breach thresholds and
achieve beneficial stable states is complex. In seagrass, there
is the potential for several feedbacks that dictate ecosystem
states and limiting factors are potentially nested within such
feedbacks (Maxwell et al., 2017). Maxwell et al. (2017) suggests
that identifying feedbacks such as positive density dependence
in limited reproduction or stressful environmental conditions
may aid seagrass recovery. The little work that has been done
on positive density dependence in seagrass restoration illustrates
the need for further exploration into how intraspecific facilitation
may be harnessed to improve success and change stable states.
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FIGURE 1 | Conceptual drawing of many positive interactions impacting seagrass. This includes but is not limited to long distance facilitation with corals, oysters,
mangroves, seabirds, and salt marshes, mutualisms between seagrass and lucinid clams, and facilitation cascades of bivalves in seagrasses as examples.

SYMBIOTIC, INTERSPECIFIC
MUTUALISMS

Interspecific mutualism is an interaction between two species
that benefits both. Interspecific mutualisms have been well-
documented in marine systems. For example, cleaner shrimp
interactions with fish and the sea anemone interactions with
clownfish (Mariscal, 1970; Bshary and Grutter, 2006). Likewise, in
salt marshes, aggregates of mussels deposit nutrients into the soil,
enhancing growth of smooth cordgrass (Spartina alterniflora) —
in return the mussels receive a refuge from heat stress and
predation (Angelini et al., 2015; Bilkovic et al., 2017).

Similarly, mutualism has been shown between seagrass and
mussels. Peterson and Heck (2001) found that in the presence of
filter-feeding mussels (Modiolus americanus) that likely transfer
particulates and nutrients in the water column to the sediment,
seagrass (Thalassia testudinum) growth rates and blade width
increased, while epiphyte load decreased. Moreover, mussel
survival rates increased in the presence of seagrass. Another
mutualism occurs between seagrasses and the lucinid clams
which harbor sulfide-oxidizing bacteria in their gills that limit
toxic sulfide compounds (Van der Heide et al., 2012). While the
lucinid clam and its associated bacteria benefit from nutrients
sequestered by plant roots (Van der Heide et al., 2012). Seagrass
shoot biomass increased 1.4–1.9 fold and root biomass increased
1.3–1.5 fold in treatments where lucinid bivalves were present. In
treatments with sulfide addition and no lucinids, seagrass shoot
biomass was half that of controls.

While recent work has documented the recovery of
mutualisms in seagrass (e.g., recovery of seagrass and associated
epifauna) after large-scale restoration in mid-Atlantic coastal
bays (Lefcheck et al., 2017). There are no published examples of
mutualisms incorporated into seagrass restoration. Restoration
in salt marshes with mussel addition (Derksen-Hooijberg
et al., 2018) and coral reef with sponge addition (Biggs,
2013) illustrated the creative ways in which mutualisms can
be incorporated to enhance restoration. Given the common
occurrence of mutualisms in seagrass, we believe there is a
strong possibility that restoration outcomes would improve with
their inclusion.

SEAGRASS- MICROBE INTERACTIONS

Microorganisms, which live within (endophytic) and on
the surface of (epiphytic) plants, can profoundly influence
plant health and productivity by inducing physiological or
biochemical changes within their host (Bacon and White,
2016). They increase nutrient availability, by nitrogen
fixation and mineralization of organic compounds, producing
phytohormones that promote root and shoot development,
and alleviate plant stress (Baligar et al., 2001; Vessey, 2003;
Mantelin and Touraine, 2004). Some bacteria facilitate plants
by actively detoxifying heavy metals (Lloyd and Lovely, 2001;
De et al., 2008; Rajkumar et al., 2012) while others can assist
and promote plant growth under high metal stress by directly
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FIGURE 2 | Illustration of experimental design and hypothesis of planting
design for seagrass along stress gradients. Hypothesized beneficial planting
method is denoted by the red box. In a low stress environment, dispersed
planting method may work well but in the face of environmental stress,
clumped planting is likely to alleviate some stress via neighbor facilitation
(Silliman et al., 2015). Figure inspired by a figure in Renzi et al. (2019).

providing nutrients, phytohormones, and enzymes (Burd et al.,
2000; Sheng et al., 2008).

Yet, our knowledge of plant-microbial interactions in the
marine environment is limited. However, recent work in salt
marshes suggests they could be important. Daleo et al. (2007)
showed that mycorrhizal fungi facilitates nutrient uptake in
dense-flowered cordgrass (Spartina densiflora). Seagrasses also
form symbiotic relationships with a variety of microorganisms
(bacteria, archaea, and fungi) both above- and belowground
(Venkatachalam et al., 2015; Garcias-Bonet et al., 2016; Tarquinio
et al., 2019). For example, seagrass association with sulfide-
oxidizing bacteria alleviates toxic sulfate accumulation (Cúcio
et al., 2016; Martin et al., 2019). Sulfide-oxidizing bacteria
associated with the seagrass rhizosphere have not only been
linked with reduction of toxic soil conditions, but also
with higher biomass and more complex rhizome structures
(Welsh, 2000). Some bacteria (such as Actinobacteria and
Cyanobacteria) present on leaves and roots of seagrasses
synthesize a wide range of antimicrobial molecules. These
bacteria may protect plants by releasing bioactive compounds
that selectively target pathogens and biofouling organisms,
as has been found in kelp (Egan et al., 2013). On the
other hand, some species of sulfide-oxidizing bacteria could
indicate poor environmental conditions for seagrass. Mat

forming Beggiatoa have been associated with decline of seagrass
(Elliott et al., 2006).

Given the limited, but potentially beneficial microbial
interactions in seagrass, future research needs to be conducted
before use in restoration. Research should test the types of
interactions occurring between seagrass and microbes, the
benefits or consequences seagrass accrues, and the methods for
implementation into a restoration framework.

TROPHIC FACILITATION

Trophic interactions can facilitate survival and growth indirectly.
For instance, herbivores can promote specific plant species by
selectively feeding on their competitors. Plants can also be
facilitated indirectly by consumers in simple three-level food
chains via a trophic cascade. In these interactions, plants benefit
from higher trophic levels that suppress the abundance or
behavior of herbivores that would otherwise eat the plants
(Figures 1, 3). A classic example of a trophic cascade is sea otters’
maintenance of kelp forests through the removal of kelp-eating
sea urchins (Estes and Palmisano, 1974).

Prolific epiphytic macroalgae on seagrass blades can
sometimes form aggregations that drift over meadows, negatively
affecting seagrass (Silberstein et al., 1986; Drake et al., 2003;
Heck and Valentine, 2006). Associated invertebrates often keep
epiphyte abundance low (Heck and Valentine, 2006; Cook et al.,
2011), which has shown to improve seagrass growth, production,
and increase secondary production (Montfrans et al., 1984;
Neckles et al., 1993; Duffy et al., 2003). Vertebrates such as great
blue herons (Ardea herodias) and sea otters (Enhydra lutris)
have also been shown to regulate biomass of seagrass epiphytes
through trophic cascades, in which the consumption of fish and
crustaceans increases the abundance of grazing invertebrates
(Hughes et al., 2013; Huang et al., 2015). Alternatively, seagrass
can be directly grazed upon. Seagrass herbivory by macrograzers
(i.e., fish) and megagrazers (i.e., turtles and dugongs) are
important to maintaining ecosystem function and reproduction
in balanced ecosystems (i.e., systems with predators, grazers, and
seagrasses) (Tol et al., 2017; Scott et al., 2018). With the loss of
predators and conservation of large herbivores without habitat
consideration, it is suggested that seagrass ecosystem functions
could be lost from uncontrolled rates of grazing (Burkholder
et al., 2013; Christianen et al., 2014; Heithaus et al., 2014;
Scott et al., 2018).

Top predator introduction and herbivore management as
methods for conservation is not a new idea. However, the
generality of these chains of interactions, and how we might
use them to benefit seagrass restoration, is not well-known. It
is possible that predator introduction or recolonization might
help stabilize or reverse seagrass decline in some places (Silliman
et al., 2018). Predator addition is unlikely to be effective in areas
where the cause of predator loss is unknown or seagrass has
been completely lost, unless viable sources of propagules are
nearby. Joint reintroduction of predators and seagrass restoration
or consideration of sites with established predator populations
might mitigate stressors in some conditions, especially where
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FIGURE 3 | Illustration depicting trophic facilitations where: (A) indirect consumption by top predators (sea otters) creates a cascade effect reducing mesopredators
(crabs), increasing mesograzers (herbivorous invertebrates) that remove harmful epiphytes on seagrass that result in increased seagrass or (B) direct consumption or
removal of seagrass eating herbivores (turtles) by top predators (sharks) maintains seagrass.

epiphyte consumers are uncommon, seagrass consumers are
common, or nutrient concentrations are high.

LONG-DISTANCE FACILITATION

Interspecies, positive interactions are not limited to close
proximity. Long distance facilitation occurs when a species is
benefited by another that is not in direct physical contact (van de
Koppel et al., 2015). This interaction is unique from the symbiotic
mutualisms described above as physical contact between the
interacting species does not occur and the positive effect is one-
way, not requiring a feedback.

A recent review has shown long distance facilitations are
important for maintaining stability and resilience in many
marine ecosystems, including seagrasses. In this review, van de
Koppel et al. (2015) describes how long-distance facilitations
may mitigate light limitation, nutrient stress, and physical stress
on seagrasses — which are all challenges in restoration. Light
limitation can be reduced by non-sympatric bivalve reefs and
mangroves that remove particulates from the water (Newell and
Koch, 2004; Gillis et al., 2014; van de Koppel et al., 2015).
Nutrient limitation can be improved in several ways by long
distance facilitation as nutrient input from nearby but not
overlapping mussel reefs (Reusch et al., 1994; van de Koppel
et al., 2015), mangroves (Mohammed et al., 2001), bird colonies
(Powell et al., 1991), and kelp forests (Wernberg et al., 2006;
Hyndes et al., 2012) can improve plant growth. Alternatively,
the negative effects of eutrophication on seagrass are diminished
by the interception and burial of nutrients by salt marshes and
mangroves (Valiela and Cole, 2002). Finally, physical stress on
seagrass such as wave action can be reduced by coral and bivalve

reefs (Moberg and Folke, 1999; Ferrario et al., 2014; van de
Koppel et al., 2015). Incorporating long-distance facilitations into
site selection for seagrass restoration is likely to benefit planting
successes, but much more research is needed to understand
context dependency of this type of interaction and the physical
conditions under which it is likely to be most beneficial.

FACILITATION CASCADES

Facilitation cascades are indirect positive effects that emerge
from direct facilitations. A non-trophic example is when a
primary foundation species facilitates a secondary one which, in
turn, enhance biodiversity (Altieri et al., 2007). This particular
facilitation cascade is called a habitat cascade. A recent
review, Thomsen et al. (2018) shows that these facilitation
cascades occur across all ecosystems and their impacts on
biodiversity is measurable.

The role of seagrasses as primary foundation species that
facilitate other organisms suggests facilitation cascades might
be widespread. For example, seagrasses can be epiphytized
by a range of taxa including algae, bryozoans, and sponges
(Borowitzka and Lethbridge, 1989), which in turn have been
shown to provide food and shelter for a range of small
invertebrates (Jernakoff et al., 1996). Interactions in Zostera
muelleri meadows found that razor clams, Pinna sp. formed a
complex array of positive and negative interactions culminating
in a net increase in overall diversity when live clams were
present (Gribben et al., 2017). Another study found that
density of pen clams (Atrina rigida and Atrina serrata) were
positively associated with eelgrass (Z. marina) and that in the
presence of pen clams, diversity of animals in the meadow
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increased (Zhang and Silliman, 2019). Although these studies did
not observe a change in seagrass growth and production during
the study period, others have found that an increase in overall
biodiversity can lead to more stable and productive seagrass
habitat as well as buffer ecosystems from changing conditions
(Duffy, 2006).

As facilitation cascades are a research frontier, their
importance and occurrence in seagrasses is mostly unexplored.
However, given the effect size they have in other systems, their
importance could be high. Future research should test generality
and impacts of facilitation cascades in seagrass systems, and, if
found, systematically test how addition of secondary foundation
species impacts seagrass restoration success, both in terms of
plant growth and increased overall system functioning (e.g.,
provisioning of biodiversity).

BIODIVERSITY AND ECOSYSTEM
FUNCTION

Biodiversity can refer to genetic, species, and functional diversity
of an ecosystem. Increased biodiversity can facilitate healthier,
more productive ecosystems that are resilient to disturbance and
stable due to a repetition in functional groups (Chapin et al., 2000;
Reed and Frankham, 2003; Hooper et al., 2005; Hughes et al.,
2008; Hensel and Silliman, 2013). Given these findings, ecosystem

restoration is likely to benefit from inclusion of similar intra- and
interspecies diversity facilitations.

Globally, there are 72 seagrass species, ranging from temperate
to tropical climates with many of them co-occurring (Orth et al.,
2006). Traditional ecological theory suggests that the presence
of co-existing species would create competitive interactions
(McGilchrist, 1965; Hassell and Comins, 1976). However, some
studies suggest that the co-existence of seagrass species is
beneficial, especially in areas of frequent disturbance where
interspecies diversity increases ecosystem resilience (Williams,
1990). Williams et al. (2017) found that increased species
richness of seagrasses also increased transplant success. They
hypothesized that the mechanism underlaying this effect was
niche partitioning of resources and a diversity of growth
patterns. Restoring multiple species, if originally present,
could restore function and self-reliance in the system (Duffy,
2006). To make our knowledge about seagrass diversity
more impactful in restoration more research in multispecies
conditions is needed.

Species diversity is not the only means of diversity to consider
for seagrass restoration. Genetically diverse populations are
often more productive in stressful environments (Hughes and
Stachowicz, 2009). Unlike previous topics in this paper, genetic
diversity has been studied and even considered in seagrass
restoration. The studies that implemented genetic diversity
into their restoration scheme observed increased restoration

FIGURE 4 | Tree diagram of interactions discussed in this paper, organismal level at which we think they are prevalent, and examples of organisms that have been
observed having these interactions with seagrasses. Organisms are color coded by the alleviation they likely have on seagrasses. In some cases, organisms can
demonstrate many beneficial roles denoted by an asterisk color coded by another effect. The primary and secondary coloration of the word and asterisk are arbitrary
and do not denote strength of the effect.

Frontiers in Marine Science | www.frontiersin.org 6 February 2020 | Volume 7 | Article 91

https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-00091 February 18, 2020 Time: 17:51 # 7

Valdez et al. Positive Interactions in Seagrass Restoration

FIGURE 5 | Conceptual map of some common restoration goals (Yap, 2000) and the positive interactions that could be used to accomplish such goals, and brief
recommendations of how to explore the positive interactions as a starting point for researchers and practitioners.

success (Williams, 2001; van Katwijk et al., 2009; Reynolds
et al., 2012). It is thought that donor populations from already
stressful environments will be better adapted to restoration site
conditions (Franssen et al., 2014; Marín-Guirao et al., 2016; Tutar
et al., 2017). As well, diverse populations spread the risk of
complete collapse by a single stressor (van Katwijk et al., 2009).
Considering genetic variation in donor populations that have
similar habitats to restoration sites and account for a variety of
stressors could be valuable in restoration planning.

CONCLUSION AND
RECOMMENDATIONS

Restoration is increasingly becoming an important component
in conservation. Restoration of seagrass has mostly been limited
in extent with generally low success (Statton et al., 2018). As
seagrass restoration continues to mature, practices will improve.
We suggest that incorporation of knowledge gained through
ecology will help accelerate improvement. Incorporating positive
interactions into restoration methods appears to be a promising
avenue for restoration research and practice. However, positive
interactions are likely not a shortcut to restoration success but
rather a complimentary method to traditional methods.

Traditionally, marine restoration has focused on
systematically reducing stressors. Here, we propose to expand

the perspective on seagrass restoration to also include systematic
reduction of physical stressors, but to also methodically
incorporate positive species interactions (Figure 4). This
means that efforts to improve water and sediment conditions
should be continued and that positive interactions should be
additionally included in such efforts. Of course, the expression
of positive and negative interactions in a system vary depending
on the organisms available, environmental conditions, and
site characteristics (He et al., 2013), and this will be reflected
in restoration approaches that are sensitive to these contexts.
However, our review shows that seagrasses participate in many
potential positive interactions that could be usefully harnessed
to enhance restoration success. Many studies have considered
the balance between positive and negative interactions and the
layering of human and biological interventions, but none have
discussed the potential to harness these in seagrass restoration
(Bertness et al., 1999; Maestre et al., 2003; Cheong et al., 2013).
We suggest that researchers and restoration practitioners should
consider positive interactions as an untapped resource with
potential to enhance seagrass restoration goals (Figure 5).
Progress will be facilitated if researchers and practitioners work
in tandem to test the potential of a range of positive interactions
to improve restoration.

Many positive interactions are not fully understood — for
example the role of microbes and facilitation cascades — so
we encourage researchers to develop an understanding of such
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interactions so that they can be effectively applied in restoration.
This is not without challenges in these complex, sometimes
distant interactions, especially where ecosystems develop slowly.
The inclusion of positive interactions into restoration will not
occur simultaneously but should be considered as research
progresses. In this paper, we have outlined a broad suite of
positive interactions, shown how they are expressed in seagrass
ecosystems, and offered some ideas about how they might be
used to enhance restoration. Below, we outline a restoration
and research framework that deserve further consideration to
enhance future seagrass restoration:

(1) State clearly restoration goals — this will help
understand whether positive interactions are
applicable and which ones.

(2) Test whether planting arrangements (e.g., dispersed versus
clumped) and number of units (plants, shoots, seeds, or
other units) improve survival, growth and reproduction in
a variety of contexts.

(3) Include bivalves (such as lucinid clams or mussels)
when planting seagrass to help improve survival and
growth, and test different arrangements and methods
of including them.

(4) Determine sites near established mangroves, coral reefs, or
oyster that generate potential long-distance facilitations.

(5) Identify sites with intact assemblages of seagrass facilitating
herbivores and predators.

(6) Design restoration projects with initial cohorts that are
genetically diverse, selecting transplant units (such as
whole plants or seeds) from several distinct parent
populations to increase resiliency.

(7) Test whether restoration using multiple species of
seagrasses, in different arrangements, improves restoration
success in places where seagrass diversity is naturally high.

(8) Consider restoring ecosystems rather than single,
target species.
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