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The bottlenose dolphin is one of the most common cetaceans found in the coastal
waters, estuaries, and mangroves of Ecuador. However, its population size is gradually
declining in the Gulf of Guayaquil, and anthropogenic factors including habitat
degradation, uncontrolled dolphin watching, dredging activities, increasing maritime
traffic, underwater noise, bycatch, and marine pollution have been implicated in their
decline. Very little is known about contamination by persistent organic pollutants
(POPs) and mercury in bottlenose dolphins from the Pacific coast of South America.
To address this research gap, the first assessment of total mercury (THg) and
POPs, including polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs),
and polybrominated diphenyl ethers (PBDEs), in free-ranging bottlenose dolphins in
mangroves (El Morro Mangrove Wildlife Refuge) of the Gulf of Guayaquil, was conducted
in Ecuador in 2018. Dolphin samples (i.e., skin and blubber; n = 9), were obtained using
dart biopsy field methods for contaminant analysis. POP concentrations ranged from
0.56 to 13.0 mg/kg in lipid weight, while THg ranged from 1.92 to 3.63 mg/kg in dry
weight. The predominant POPs were OCPs (50% of 6POP), followed by PCBs (46%)
and PBDEs (6.0%); particularly, p,p′-DDE, the main DDT metabolite and a potent anti-
androgenic, accounting for 42% of 6POP, ranging from 0.12 to∼7.0 mg/kg lw, followed
by PCB 153 (8.0%) and PCB 180 (5.0%). PBDE 47 accounted for 2.0% of 6POP. While
the POP concentrations are lower than those found in dolphins from many other regions
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of the world, some of the THg concentrations are within the concentration range found
in dolphins from the southeastern coast of the United States. The ecotoxicological risk
assessment showed that some of the sampled dolphins are exposed to immunotoxic
and endocrine disruption effects by POPs and mercury. The low genetic diversity of this
distinctive dolphin population, likely exhibiting genetic isolation and a unique evolutionary
heritage, could be lost if the population continues to decline in the face of anthropogenic
threats, including chemical pollution. Our finding shows that bottlenose dolphins in
coastal Ecuador are exposed to environmental contaminants and can be used as
sentinel species for ecosystem health to monitor pollution in the region and to support
ecotoxicological risk assessment and regional pollutant management.

Keywords: contaminants, POPs, organic mercury, marine mammals, toxicological risk assessment, mangroves,
Gulf of Guayaquil, South America

INTRODUCTION

Global contamination of the oceans and coastal-marine regions
by legacy and emerging persistent organic pollutants (POPs)
and mercury continues to be one of the top critical threats,
as these contaminants are pervasive in the ocean environment,
detected at fairly high concentrations in many marine species,
capable of causing health effects, and driven by the long-
range atmospheric transport in an era of global change
(Alava et al., 2017a). Despite the international policy efforts
of the Stockholm Convention on POPs (UNEP, 2002) and
Minamata Convention on Mercury (UNEP, 2016) to control,
mitigate, and eliminate their sources and contamination, these
pollutants are still found in the global marine environment at
unprecedented levels.

Persistent organic pollutants bioaccumulate in aquatic
organisms and biomagnify in marine mammalian foodwebs
(Kelly et al., 2007, 2009; Gobas and Arnot, 2010; Alava
and Gobas, 2012; Cullon et al., 2012), reaching exposure
concentrations above threshold health effect levels in some
populations of apex predators, including marine mammals (e.g.,
Ross et al., 2000; Hall et al., 2005; Hickie et al., 2007, 2013; Jepson
et al., 2016; Desforges et al., 2018). Several toxicological effects,
for example, have been accredited to polychlorinated biphenyls
(PCBs) in marine mammals, including molecular and cellular
alterations leading to immunotoxicity, endocrine disruption,
and reproductive impairment (Addison, 1989; Brouwer et al.,
1989; Lahvis et al., 1995; Ross P. et al., 1996; Ross P. S. et al.,
1996; Guise, 1998; Ylitalo et al., 2005; Tabuchi et al., 2006;
Letcher et al., 2010; Mos et al., 2010; Bossart, 2011; Buckman
et al., 2011; Desforges et al., 2016; Peñín et al., 2018). Both
immunotoxicological and endocrine disruption effects by POPs
(i.e., PCBs) are likely to be the most detrimental modes of toxic
action in cetaceans, with possible indirect consequences at the
population level (Hall et al., 2005; Hickie et al., 2007; Jepson
et al., 2016; Desforges et al., 2018).

Similarly, mercury, in particular methylmercury (MeHg),
is highly neurotoxic and bioaccumulates and biomagnifies in
marine foodwebs almost entirely via dietary ingestion or uptake,
attaining the highest concentrations in fish and organisms
at the top of the foodweb (Scheuhammer et al., 2007, 2015;

Wiener et al., 2007; Sandheinrich and Wiener, 2011; Kehrig
et al., 2013, 2017; Lavoie et al., 2013; Fort et al., 2015;
Jonsson et al., 2017). Methylmercury can cause toxicity even
at low concentrations (Dietz et al., 2013). Immunotoxicity,
neurotoxicity, nephrotoxicity, and genotoxic effects of mercury
in cetacean species, have been documented (Desforges et al.,
2016; Kershaw and Hall, 2019). Specifically, mercury exposure
in marine mammals (e.g., cetaceans) has been reported to
affect the systemic suppression of immune function (i.e.,
suppression of lymphocyte proliferation and phagocytosis
activity) (Desforges et al., 2016).

Among the marine mammal species used as indicators
of contamination, the bottlenose dolphin (Tursiops truncatus)
serves as a sentinel species to monitor the health and pollution
of marine and coastal-estuarine environments due to its long life
span, high trophic level in the marine food web and capacity
to bioaccumulate environmental pollutants such as POPs and
mercury (Wells et al., 2004; Fair, 2006; Stavros et al., 2007; Reif
et al., 2008; Fair et al., 2010; Bossart, 2011). A myriad of studies
on both emerging and legacy chemicals pollutants have been
documented for this species in North America (Wells et al.,
2005; Fair et al., 2007, 2009, 2010, 2013; Stavros et al., 2007,
2008; Reif et al., 2008; Yordy et al., 2010). However, very little
is known concerning contamination by POPs and mercury in
bottlenose dolphins and other marine mammal species from
the Southeastern Tropical Pacific and the west coast of South
America, except for the pioneering research on POPs in endemic
pinnipeds from the Galapagos Islands, i.e., Galapagos sea lions
(Zalophus wollebaeki) and Galapagos fur seals (Arctocephalus
galapagoensis) (Alava et al., 2009, 2011, 2017b; Alava and Gobas,
2012; Alava and Ross, 2018), and the first assessment of POPs
in Chilean blue whales (Balaenoptera musculus) from Isla de
Chiloé, southern Chile (Muñoz-Arnanz et al., 2019). Generally,
most studies on chemical contaminants (e.g., POPs, mercury)
in Latin America have focused on small cetacean species from
the Atlantic coast of South America, mainly along coastal Brazil
(Yogui and Sericano, 2009; Alonso et al., 2010, 2012, 2015; Bisi
et al., 2012; Santos-Neto et al., 2014; Lavandier et al., 2015, 2016,
2019; Baptista et al., 2016; Kehrig et al., 2016, 2017), and the
southern marine-coastal regions of Chile and Argentina (Gerpe
et al., 2002; Cáceres-Saez et al., 2015, 2018; Durante et al., 2016).
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In Ecuador, the bottlenose dolphin is an emblematic species
for coastal-marine conservation. As an apex predator, its key
role for the functioning, maintenance, and resilience of coastal
mangrove ecosystems is of paramount importance (Jiménez
and Alava, 2014; Alava et al., 2019). Of particular interest is
the conservation status of the coastal ecotype and year-round
resident population from the El Morro Mangrove Wildlife
Refuge, located in the Guayaquil Gulf (Ecuador). Photo-
identification studies since 2005, and population size estimates
indicate a gradual decrease in the population of bottlenose
dolphin in this wildlife refuge (Jiménez and Alava, 2014; Félix
et al., 2017). While a population size (mean ± SD) of 44 ± 7.0
photo-identified dolphins, ranging from 37 to 55 individuals,
was estimated from 2001 to 2013 in El Morro Mangrove
Wildlife Refuge (Jiménez and Alava, 2014), a recent abundance
estimation of dolphins yielded 43 animals (95% CI 37–49) in
Posorja waters (Félix et al., 2017). The causes of this decline
are not sufficiently evaluated, but anthropogenic factors such
as degradation of the natural habitat, human activities linked
to the illegal observation of dolphins, maritime traffic, marine
sediments dredging, incidental catches, and direct hunting
associated with artisanal fishing and environmental pollution can
act as multi-anthropogenic and cumulative impacts to influence
this decline (Jiménez et al., 2011, 2018; Jiménez and Alava, 2014,
2015; Alava and Ross, 2018; Alava et al., 2019). This cetacean is
considered a “Vulnerable (VU)” species according to the official
Red Book of the Mammals of Ecuador (Jiménez et al., 2011).

The coastal bottlenose dolphin, as a residing species and apex
predator of the Gulf of Guayaquil Estuary, is considered a coastal
sentinel (i.e., “the canary in the coal mine”) to biomonitor and
assess marine pollution risks and contaminant bioaccumulation
in the region (Jiménez and Alava, 2014; Alava et al., 2019). In this
context, the El Morro Refuge and the surrounding region (e.g.,
Morro Channel and Posorja Harbor) in the Gulf of Guayaquil
(Ecuador) offer ideal conditions to measure POPs and mercury
to evaluate the anthropogenic impacts on the ecosystem and the
dolphins. This is important as the Gulf of Guayaquil is the one
of the most productive bioregions, harboring the largest estuary
and mangrove area (i.e., Gulf of Guayaquil Estuary) along the
Pacific coast of South America (Twilley et al., 2001; Carvajal and
Alava, 2007). However, the Gulf of Guayaquil Estuary is highly
impacted by anthropogenic activities and changes in land use,
with agriculture, aquaculture, industrial development, and urban
sprawl being the main stressors at the regional level (Twilley
et al., 2001; Borbor-Cordova et al., 2006; Carvajal and Alava, 2007;
Calle et al., 2018).

Chemical pollution is an environmental problem of
ongoing concern in the Gulf of Guayaquil due to POPs
(e.g., dichloro-diphenyl-trichloroethanes, DDT), current used
pesticides, hydrocarbons, pharmaceuticals and personal care
products (PPCPs), butyltin (BT) compounds, and heavy metal
contamination (Montaño and Resabala, 2005; Calle and Alava,
2009; Castro et al., 2012; Calle et al., 2013; Fernández-Cadena
et al., 2014; Jiménez and Alava, 2014). For instance, DDT
contamination was reported in sediment (1.36 µg/kg wet weight)
and aquatic organisms (2.87 µg/kg wet weight) from the Taura
River Basin, a tributary of the Guayas River in the Gulf of

Guayaquil (Montaño and Resabala, 2005). Elevated mercury
concentrations were also detected in estuarine sediments and
aquatic organisms (i.e., mangrove mussels) from mangrove
habitats, exceeding mercury sediment quality guidelines and
toxic health effect thresholds (Calle et al., 2018).

Developing an understanding of how environmental
chemicals may impact dolphins in coastal Ecuador is essential
to enhance the conservation of bottlenose dolphins. One of the
main research gaps identified for the conservation of bottlenose
dolphin populations in Ecuador is the ecotoxicology of this
region and monitoring of POPs and mercury in top predators
such as dolphins (Jiménez and Alava, 2014; Alava and Ross, 2018;
Alava et al., 2019). To address the lack of baseline contaminant
data and ecotoxicological research in cetacean species of coastal
Ecuador, this study uses the bottlenose dolphin as “canaries in the
coal mine” to characterize environmental contaminant exposure,
representing the first assessment of chemical contamination in
a small cetacean species in the Pacific coast of South America.
By assessing the environmental and anthropogenic factors
affecting dolphins, this research supports management efforts for
bottlenose dolphin conservation and its population recovery in
coastal Ecuador.

MATERIALS AND METHODS

Study Area
The El Morro Mangrove Wildlife Refuge (REVISEM hereafter) is
located (2◦S, 80◦W) within the remaining riverine and estuarine
mangroves close to the El Morro Channel, northwest of Puna
Island, in the Gulf of Guayaquil (3◦S 80◦W, Figure 1). REVISEM
is a mangrove reserve belonging to the National System of
Protected Areas and comprises 1,304 ha of mangrove forests,
700 ha of mudflats and 8,000 ha of surface water area; near
the El Morro Refuge, there is an important fishing landing
and trading port, Posorja harbor (2◦42′ S, 80◦14′W), where
sampling was also deployed in surrounding waters (Figure 1 and
Supplementary Figure S1).

Sample Collection: Field Methods and
Dart Biopsy Sampling
A small sample of skin and blubber tissue (<1.5 cm
approximately) was collected using a dart biopsy technique.
Dart biopsy sampling was conducted with a crossbow system
(Crossbow Barnett, BCR Recurve Crossbow) equipped with
a long 30 mm BSA Huntsman dot sight (BSA Huntsman
30 mm RGB dot sight) and equipped with special biopsy darts
(Ceta-Dart using an Easton aluminum/carbon composite spring
bolt shaft 3–71/300, equipped with removable and reusable
stainless-steel M-11 cutting tips (11 mm in diameter). A stopper
is used to prevent the dart from penetrating past the blubber.
The biopsy collecting head was disinfected between and prior
to each use; each tip was scrubbed, soaked in a chlorhexidine
solution, solvent-rinsed, and then rinsed with distilled water.
The equipment was used by a trained and experienced biologist.
Samples were collected with the Barnett crossbow approximately
0.75 m above the water surface of a 7 m-length fiberglass
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FIGURE 1 | Geographical location of El Morro Mangrove Wildlife Refuge (REVISEM) and surrounding areas (Posorja Harbor, El Morro Channel) in the Estuary of the
Gulf of Guayaquil, Ecuador. The map illustrates the study area for biopsy sampling sites (triangles) in REVISEM and Posorja Harbor waters. Mangrove forests and
urbanized and rural areas are also shown.

boat with outboard motor. Only individuals 2 years of age
or older were biopsied based on the size of the dolphin and
maternal dependence. Adult animals were sampled when they
were alone and/or separated from the group at 4–6 m (i.e.,
based on the size of the dolphin and maternal dependence,
which is evaluated in the field by the trained expert using
the crossbow). Mothers with calves under 2 years of age
and animals with apparently compromised health conditions
(e.g., deformities, open lesions, signs of disease) were not
sampled. The field methodology was adapted from the standard
methodology used in similar studies throughout the world
(see Barrett-Lennard et al., 1996; Krützen et al., 2002; Fair
et al., 2003; Parsons et al., 2003; Jefferson and Hung, 2008;
Kiszka et al., 2010; Tezanos-Pinto and Baker, 2012; Fruet
et al., 2017). Dart biopsy sampling is a well-established field
method routinely used with free-ranging cetaceans (Whitehead
et al., 1990; Barrett-Lennard et al., 1996; Weller et al., 1997;
Fair et al., 2003; Jefferson and Hung, 2008; Fruet et al., 2017).
Dart biopsy procedures employed in this study were designed
to minimize discomfort and risk to the animals of the small
population inhabiting the mangrove estuarine ecosystem of the
REVISEM. The safety protocol during biopsy sampling in the

field followed the criteria considered during the sampling based
on Wenzel et al. (2010).

Over the course of the field dart-biopsy sampling, 24 shots
were deployed in the study area, including REVISEMN and
Posorja harbor waters (Figure 1 and Supplementary Figure S1).
The dart shooting distance ranged from a minimum distance of
4 m and maximum of 7.5 m, averaging 5.1 m. After retrieving the
floating dart, the skin/blubber tissue (1 cm in diameter × 1.5–
2 cm in depth and between 0.5 and 1.0 g in weight) was removed
from the sampling head using solvent-cleaned forceps and a
scalpel, separated, and placed in a liquid nitrogen container for
genetic and contaminant analysis. A total of 12 clean hits with
nine full dolphin samples (i.e., blubber and skin), constituting
a 75% full sample rate (or 25% failure rate), and two skin only
samples were collected. There were two dolphins sampled twice
within the nine full samples, thus the sampling effort rendered
full samples from a total of seven different individuals and
full and partial samples from nine different individuals. Once
the biopsy was recovered with the sample of tissues (skin and
blubber), the skin was separated from the blubber with sterilized
and clean scissors for analysis of total mercury (i.e., 2/3 skin
sample) and genetics (1/3 of the skin sample) and all the blubber
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was used for POPs analysis. Table 1 shows the field data on
sampled dolphins.

Genetic Analysis for Haplotypes and Sex
Determination
To verify that the dolphins sampled were genetically consistent
with the inner Gulf of Guayaquil estuary resident dolphin
population (Bayas-Rea et al., 2018), DNA was extracted from
skin tissue samples and a fragment of the mitochondrial
control region was PCR amplified and sequenced. The control
region was selected because it is the fastest evolving region
of the mitochondrial genome and has been extensively used
in population genetic analyses (e.g., Palumbi, 1996; Aguirre
et al., 2013) including in cetaceans (e.g., Bayas-Rea et al., 2018).
Gulf of Guayaquil bottlenose dolphin populations differ from
populations in other geographic areas for this gene, as do
inner and outer estuary populations in the Gulf of Guayaquil
(Bayas-Rea et al., 2018). Skin tissue samples were stored in a
−80◦C freezer until DNA purification. DNA was extracted using
GeneJET genomic DNA purification kit from Thermo Scientific
following the manufacturer’s instructions. Purified DNA was
quantified using a Nanodrop spectrophotometer and stored at
−20◦C for use.

Two overlapping fragments of the mitochondrial
control region were PCR amplified on a miniPCRTM

mini16 thermal cycler using the primers dLp1.5t-pro
(5′-TCACCCAAAGCTGRARTTCTA-3′) and dlp5 (5′-
CCATCGWGATGTCTTATTTAAGRGGAA-3′), which yielded
a PCR product approximately 550bp in length, and dLp1.5t-
pro and dLp8G (5′-GGAGTACTATGTCCTGTAACCA-3′),
which yielded a PCR product approximately 800 bp in length
(Bayas-Rea et al., 2018). PCR reactions were carried out in
40 µL volumes consisting of 1X PCR buffer (Omega Bio-Tek),
2X BSA (bovine serum albumin), 3.5 mM MgCl2, 0.25 mM
dNTP (Omega Bio-Tek), 0.35 µM primers, 1.5 units of Taq

DNA polymerase (Omega Bio-Tek), and approximately 100 ng
of template DNA. Cycling conditions consisted of a 94◦C initial
denaturation for 120 s, 35 cycles of 94◦C for 30 s, 55◦C for 60 s,
and 72◦C for 60 s, followed by a final extension of 72◦C for
420 s. Successful amplification was verified by running a portion
of the PCR products on a 1.5% agarose gel. Amplification of
the 800bp fragment resulted in some unspecific amplification
so the PCR product was cut from the agarose gel and purified
using a QIAquick gel extraction kit (QIAGEN) following the
manufacturer’s instructions. PCR products for direct sequencing
were cleaned using ExoSAP-ITTM (Thermo Fisher Scientific) and
forward and reverse strands were sequenced for each fragment
on an Applied Biosystems 3730 DNA Analyzer. Chromatograms
were edited and aligned in Geneious Prime 2019 (Biomatters
Ltd.). The alignment was conducted using the ClustalW 2.1 and
manually inspected for errors. The two control region fragments
were compared to check for sequencing errors. The final mtDNA
control region sequence fragments were cut to 392 bp in length
to assign individuals to the haplotypes identified by Bayas-Rea
et al. (2018) and determine whether the individuals sampled in
this study are genetically consistent with inner estuary residents
(GenBank Accession # MT005757-MT005769). The number
and frequency of distinct haplotypes was counted and haplotype
diversity, Hd, was calculated as N(1-pi

2)∗(N-1)−1, where pi is the
frequency of the ith haplotype and N is the number of individuals
in the sample (Nei, 1987).

Because male and female bottlenose dolphins can differ
in their behavior, movement patterns, and susceptibility to
contaminants, genetic markers from the sex chromosomes
were used to identify the sex of the specimens sampled
following Rosel (2003). Briefly, the primers TtSRYR (5′-
ACCGGCTTTCCATTCGTGAACG-3′) and PMSRYF
(5′-CATTGTGTGGTCTCGTGATC-3′) were used to
amplify the SRY gene and the primers ZFX0582F (5′-
ATAGGTCTGCAGACTCTTCTA-3′) and ZFX0923R
(5′-AGAATATGGCGACTTAGAACG-3′) were used to amplify

TABLE 1 | Field data for dart biopsy sampling of bottlenose dolphin in the El Morro Mangrove Wildlife Refuge (REVISEM) and Posorja Harbor waters during May 2018.

Date Geographical coordinates Sample no. Blubber Skin Field evaluation size class Sex* Sample size

May 14, 2018 2◦ 38.762′ S 80◦ 15.247′ W EDM-1-18 N/A Yes Adult Male Partial

May 14, 2018 2◦ 34.344′ S 80◦ 15.125′ W EDM-2-18 N/A Yes Adult Male Partial

May 16, 2018 2◦ 38.384′ S 80◦ 15.473′ W EDM-3-18 N/A Yes Adult Female Partial

May 16, 2018 2◦ 38.384′ S 80◦ 15.473′ W EDM-4-18** Yes Yes Subadult Female Full

May 16, 2018 2◦ 38.820′ S 80◦ 15.000′ W EDM-5-18 Yes Yes Adult Male Full

May 16, 2018 2◦ 38.793′ S 80◦ 15.173′ W EDM-6-18 Yes Yes Adult Female Full

May 17, 2018 2◦ 38.240′ S 80◦ 15.800′ W EDM-7-18 Yes Yes Adult Male Small

May 18, 2018 2◦ 63.967′ S 80◦ 25.461′ W EDM-8-18** N/A Yes Subadult Female Partial

May 18, 2018 2◦ 63.064′ S 80◦ 25.251′ W EDM-9-18 Yes Yes Subadult Female Full

May 21, 2018 2◦ 41.187′ S 80◦ 14.867′ W EDM-10-18 Yes Yes Adult Female Full

May 21, 2018 2◦ 42.312′ S 80◦ 14.207′ W EDM-11-18** Yes Yes Adult Male Full

May 21, 2018 2◦ 67.113′ S 80◦ 25.219′ W EDM-12-18 Yes Yes Adult Male Full

May 21, 2018 2◦ 67.000′ S 80◦ 24.877′ W EDM-13-18** Yes Yes Adult Male Full

N/A = no sample available for blubber as only skin for genetic analysis was collected from the dart biopsy. *Sex identification based on sex genotyping (see section
on Genetic analysis for haplotypes and sex determination; Supplementary Figure S2). **Duplicate samples: sample EDM4 is the same as EDM8; and EDM11 is
the same as EDM13.
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the ZFX gene. Males produce two bands that are 382 and
339 bp in length while females produce a single 382 bp band
(Supplementary Figure S2). PCR amplification was conducted
on a miniPCRTM mini16 thermal cycler, with cycling conditions
consisting of a 95◦C initial denaturation for 120 s, 35 cycles
of 94◦C for 30 s, 51◦C for 45 s, and 72◦C for 45 s, followed
by a final extension of 72◦C for 420 s. PCR reactions were
carried out in 40 µL volumes with the reagent concentrations
following those used for the control region amplification. PCR
products were run on a 3% agarose gel until band separation
was clearly visible in male specimens. Unfortunately, it was
apparent that there was some unspecific amplification when the
PCR products were run on the agarose gel. To verify that sex
was scored correctly, the putative bands corresponding to the
ZFX and SRY genes in a specimen identified as male were cut
from the agarose gel, purified using a QIAquick gel extraction
kit (QIAGEN) following the manufacturer’s instructions, and
then sequenced on an Applied Biosystems 3730 DNA Analyzer
(GenBank Accession # MT005756).

POP Analysis
Blubber samples were analyzed with standard solutions
containing 19 organochlorine pesticides (OCPs), 43
polychlorinated biphenyl congeners (PCBs), and 13
brominated diphenyl ethers (BDEs) as target analytes
(see Supplementary Table S1); as well as recovery
surrogates 4,4′-dibromooctafluorobiphenyl (DBOFB),
2,2′,3,3′,4,5,5′-heptabromobiphenyl ether (BDE-172); and
2,2′,3,3′,4,5,5′,6,6′-non-achlorobiphenyl (PCB-208) were
purchased from AccuStandard (New Haven, CT, United States).
Frozen whale blubber homogenate (SRM 1945) was obtained
from the National Institute of Standards and Technology
(Gaithersburg, MD, United States). A muscle filet of Pacific
halibut (Hippoglossus stenolepis) purchased from a local
market was used to demonstrate quantitative recovery of
spiked target analytes. Optima grade dichloromethane (DCM),
hexane, and acetone were purchased from Fisher Scientific
(Fair Lawn, NJ, United States). Silica gel (60–200 mesh, J.T.
Baker, Phillipsburg, NJ, United States) and alumina (60–325
mesh, Fisher Scientific) were activated overnight at 160 and
250◦C, respectively, deactivated with deionized water (3% by
weight) and stored in hexane. Sodium sulfate (Mallinckrodt,
Phillipsburg, NJ, United States) and glassware were baked at
500◦C for 4 h before use.

Subsamples of 0.1–0.5 g were cut from full depth blubber
samples using a solvent rinsed stainless steel knife on a block of
dry ice to prevent liquefaction. After weighing, each subsample
was homogenized with kiln fired Na2SO4, spiked with an aliquot
of surrogate solution (in hexane), and extracted with four cycles
of DCM at 100◦C and 1500 psi using a Dionex Accelerated
Solvent Extraction (ASE) Model 300 system (Sunnyvale,
CA, United States). The resulting extract was exchanged to
hexane and concentrated for gravimetric lipid determination
using a TurboVap 500 evaporator (Zymark, Hopkinton, MA,
United States). After redissolution in 1:1 DCM/hexane (v:v), the
sample extract was applied to a 50 cm × 2.5 cm i.d. glass column
packed with 40 g of SX-3 Bio Beads (Bio-Rad Laboratories,

Hercules, CA, United States) to remove lipid. Target analytes were
eluted with 1:1 DCM/hexane (v:v) in the 75–220 ml fraction, and
the collected extract was exchanged to hexane. This extract was
further purified using alumina (6 cm) and silica gel (12 cm) in
a 1.1 × 30 cm glass column, eluting target analytes with 15 ml
hexane followed by 60 ml 30/70 DCM/hexane (v:v). The final
extract was exchanged to hexane, reduced to 1.0 mL, fortified with
PCB 30 and PCB 205 (as internal quantitation standards), and
stored at−20◦C prior to analysis.

Sample extracts were analyzed using an Agilent 7890 gas
chromatograph (GC) coupled to a 5975C quadrupole mass-
selective detector (MSD) operating in both electron ionization
(EI) and negative chemical ionization (NCI) modes (Wilmington,
DE, United States). Lower chlorinated PCB homologs (i.e., those
with 4 chlorines or less) were analyzed in EI mode. The remaining
PCB congeners, OCPs, and BDEs were analyzed in NCI mode
using methane (99.97% purity) as the reagent gas at 40% flow
rate. Ultrahigh purity (>99.999%) helium with a constant flow
rate of 1 ml/min (EI mode) or 1.9 ml/min (NCI mode) was used
as the carrier gas. One microliter of sample was injected through
a split/splitless inlet operated isothermally at 300◦C in splitless
mode onto a DB-XLB column (30m × 0.25mm × 0.25µm,
Agilent J&W Scientific, Santa Clara, CA, United States). For
NCI analysis, the oven temperature was programmed from 90◦C
(1 min hold) to 150◦C at 5◦C/min, to 260◦C at 3◦C/min, and to
320◦C at 20◦C/min (5 min hold). The transfer line, ion source and
quadrupole were maintained at 280, 150, and 150◦C, respectively.
For EI mode, the oven temperature was programmed from 80◦C
(1 min hold) to 190◦C at 5◦C/min, to 260◦C at 4◦C/min, to
290◦C at 20◦C/min, and to 300◦C at 50◦C/min (20 min hold).
The transfer line, ion source and quadrupole were maintained
at 280, 230, and 150◦C, respectively. Mass spectral data were
collected in selected ion monitoring (SIM) mode, and five-point
internal standard calibration curves were used to quantify the
target compounds.

Quality control and quality assurance for POPs included
nominal analyte-specific reporting limits that ranged between
0.11 and 25 ng/g wet weight based on an extracted sample mass
of 0.5 g and a S/N of 5. No target analytes were detected in
procedural blanks. The mean (± standard deviation) recoveries
of DBOFB and BDE-172 were 58 ± 6.0 and 92 ± 13%
(Supplementary Table S3), respectively. The recovery of PCB-
208 was biased high and highly variable due to contribution of
this congener already in the samples. For the subset of 10 samples
with the lowest summed PCB concentrations (i.e., < 1000 ng/g),
the recovery of PCB-208 was 69 ± 16%. The recovery of 68
target analytes spiked into Pacific halibut muscle was 80 ± 5.9
and 93 ± 7.6% for matrix spike and duplicate samples, with
a mean relative percent difference (RPD) of 15 ± 4.6%. In
addition, the mean RPD for estimated concentrations determined
in a blubber sample analyzed in duplicate was 21 ± 9.0%. The
mean recovery of 52 target analytes for which concentrations
are certified in SRM1945 was 74 ± 16%. Target analyte
concentrations reported on a wet weight basis were not corrected
for surrogate recovery. The summary of performance-based
Quality Assurance and Quality Control (QA/QC) is reported in
Supplementary Table S2.

Frontiers in Marine Science | www.frontiersin.org 6 March 2020 | Volume 7 | Article 122

https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-00122 March 18, 2020 Time: 16:51 # 7

Alava et al. POPs and Mercury in Bottlenose Dolphins

Mercury Analysis
For total mercury (THg) analysis, nine skin samples (∼0.1250 g
wet weight) were added into the quartz sample boats (preheated
to 650◦C for three intervals of 3 min each to remove any impurity
of mercury). Total Hg was determined via atomic absorption
spectrophotometry, using a direct mercury analyzer DMA 80
(Milestones Srl, Italy), US EPA standard method 7473. The
advantage of using this equipment is that the instrument does not
require acid digestion of the sample or other pretreatment (Calle
et al., 2018). Results were converted from wet weight (ww) to dry
weight (dw) using a factor of 3.3 as determined in dolphin skin
by Stavros et al. (2007). Therefore, all mercury concentrations are
expressed as dry weight (mg/kg dw).

Quality assurance methods included using procedural blanks
by measuring empty boats (blanks), duplicates for two samples
and certified reference material (DORM4: 0.412 ± 0.036 mg
kg−1). Procedural lab blanks (n = 4) were run with the
samples for THg analysis and no Hg contamination was found
(<detection limit: 0.0001 ± 0.00 µg/kg). Analytical quality
control was checked against the certified reference material (CRM
DORM4 Fish Protein, certified reference material for trace metals
provided by National Research Council Canada). Percentages
of recovery of the reference material and blanks are shown in
Supplementary Table S3.

Data Treatment and Statistical Analysis
Concentrations of POPs were blank-corrected using the method
detection limit (i.e., MDL), defined here as the mean response
of the levels measured in procedural blanks used plus
threefold the standard deviation (SD) of the blanks (i.e.,
MDL = Meanblanks + 3 × SDblanks) (see Alava et al., 2009, 2011).
Concentrations of analytes below the MDL were adjusted using
1/2 half of the MDL. However, as no concentrations for targeted
analytes were detected in the procedural blanks, this precluded in
using the MDL for non-detects; thus, as a substitution method for
non-detects, the reporting limits (RL), which was estimated from
the Instrument Detection Limit with S/N = 5 (signal-to-noise
ratio), divided to the square root of 2 (i.e., RL/

√
2) was used as the

limit of detection (LOD) instead for each analyte or contaminant
that was not detected (<RL). Then, POP concentrations were
lipid normalized by dividing the wet weight concentrations to
the lipid fraction measured in the blubber samples to account
for differences in the lipid content of the dolphin samples;
and, thus expressed on a lipid weight basis (mg/kg lipid). For
THg data, no blank correction was needed since no mercury
concentration was detected in procedural blanks (below the limit
of detection, <LOD).

The contaminant data for POP and THg was tested for
normal distribution and the Kolmogorov-Smirnov and Shapiro–
Wilk W tests were used for normality. For homogeneity of
variance, homoscedasticity (i.e., equal variance) was tested using
the Brown-Forsythe test. As THg data were normally distributed
(p > 0.05) with equal variances, a one-way ANOVA was used
to compare concentration data between adult males and females
and subadult females. When comparing the THg data between
males and females, the statistical power of performed ANOVA

test for THg data (with α = 0.050) was 0.098 and below the
desired power of 0.800 due to small sample size. In general,
contaminant data for POPs were normally distributed (p > 0.05)
with homoscedasticity and met criteria for the homogeneity,
except for the dieldrin data, which showed heteroscedasticity (i.e.,
unequal variances); thus, the non-parametric Kruskal–Wallis
One Way Analysis of Variance on Ranks tests was run for sex
comparisons of this particular POP substance. If a significant
difference was found amongst the tested dolphin groups (adult
males, adult females and subadult females), a Pairwise Multiple
Comparison Procedure (Dunn’s Method) to isolate the group or
groups that differed from the other was also applied. Similar to
the THg mercury data, the ANOVA statistical power (α = 0.050)
for the POP data was below the desired power of 0.800.

Health Risk Assessment
A health risk assessment based on the toxic equivalent quotient
(TEQ, ng/kg lipid) relative to 2,3,7,8-tetrachlorodibenzo-p-
dioxin (2,3,7,8-TCDD) was calculated for PCBs detected in
bottlenose dolphins by applying the most recent data for
toxic equivalency factors (TEFs) established for dioxin-like
PCBs (i.e., compounds that have chemical structures, physical-
chemical properties, persistence, bioaccumulative capacity, lack
of biotransformation and toxic responses similar to 2,3,7,8-
TCDD), including the planar (non-ortho) PCBs (6PCBs 77,
81, 126, and 169) and mono-ortho PCBs (6PCBs 105, 114,
118, 123, 156, 157, 167 and 189), as reported by Van den
Berg et al. (2006). PCB 77, PCBs 81 and PCB 126 (75% of
non-ortho PCB congeners) were not included in the final TEQ
calculations to prevent overestimation in the total sum of
TEQs as these congeners were not originally detected in the
set of dolphin samples. Likewise, PCB 169 was not included,
except for an adult female and subadult female, in which this
non-ortho PCB congener was readily detected. The resulting
data for TEQs were then compared to the TEQ threshold
levels, including the no observable adverse effect level (NOAEL)
and the lowest observable adverse effect level (LOAEL) for
dioxin-like PCBs, derived from immunotoxic action and
endocrine disruption endpoints assessed in aquatic mammals,
i.e., harbor seals (Phoca vitulina) and killer whales (Orcinus orca)
(Ross et al., 1995, 2000; Ross P. et al., 1996; Ross P. S. et al., 1996).

In an effort to further understand the health risk
characterization, we attempted to interpret observed
concentrations of POPs, including PCBs, PBDEs and DDTs
(i.e., p,p′-DDE), as well as mercury, in terms of potential related
health effects by these pollutants such as immunotoxicity,
endocrine disruption and neurotoxicity in marine mammals.
In doing so, the relative frequency of the population sampled
(i.e., dolphins) expressed as the normal probability density
distribution function of the log of total PCBs (6PCB), log of total
PBDEs (6PBDE), and log p,p′-DDE concentrations measured
in a lipid weight basis in dolphins (Gaussian distribution) was
compared to the log values of lipid normalized toxic effect
concentrations documented for PCBs (i.e., immunotoxicity
and endocrine disruption, based on Ross P. S. et al., 1996;
Kannan et al., 2000; Mos et al., 2010; Desforges et al., 2016);
and the PCB-threshold affecting the population growth rate
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in bottlenose dolphins (Hall et al., 2005), for PBDEs (thyroid
hormone endocrine disruption; Hall et al., 2003) and for
DDTs [i.e., endocrine disruption by p,p′-DDE as a potent anti-
androgenic contaminant, following the approach formulated
by Alava et al. (2011) based on Kelce et al. (1995)] to assess
what proportion of the dolphins (i.e., frequency) exceed target
threshold concentrations for a given contaminant. For mercury
(THg), the log of THg (most of which was assumed to be
MeHg for the eco-toxicological probabilistic risk assessment)
was compared to mercury effect concentrations causing
immunotoxicity, neurotoxicity and nephrotoxicity in marine
mammals (Desforges et al., 2016).

RESULTS AND DISCUSSION

Haplotypes and Sex Genotyping
The mitochondrial DNA sequencing of skin samples from 11
different dolphins revealed that these individuals belonged to
only two haplotypes. Nine (81.8%; specimens EDM-1-18, EDM-
2-18, EDM-4/8-18, EDM-5-18, EDM-6-18, EDM-7-18, EDM-9-
18, EDM-11/13-18, and EDM-12-18) were Haplotype 7, which
is the most common haplotype for the inner estuary of the
Guayaquil Gulf and the one that has also been documented at
low frequencies in the outer estuary (∼9%) (Bayas-Rea et al.,
2018), while 18.2% (2/11; specimens EDM-3-18, EDM-10-18)
were haplotype 9, a haplotype that has been found only in
the inner estuary population and is the second most common
haplotype there. These haplotypes are also very closely related,
differing by only one nucleotide, a transition from a T in Hap 7 to
a C in Hap 9, corresponding to a sequence divergence of 0.26%
(1/392). Haplotype diversity was only 0.327, which is similar
to the lowest estimate obtained by Bayas-Rea et al. (2018) for
their inner estuary samples (El Morro site: Hd = 0.286). The
analysis of the mitochondrial DNA sequences thus confirms that
the specimens sampled were genetically consistent with the inner
estuary population (i.e., coastal ecotype). Of the 11 specimens
scored for sex, six (EDM-1-18, EDM-2-18, EDM-5-18, EDM-7-
18, EDM-11/13-18, and EDM-12-18) were genetically identified
as males and five (EDM-3-18, EDM-4/8-18, EDM-6-18, EDM-9-
18, and EDM-10-18) were identified as females (Table 1).

The resident bottlenose dolphin population in the inner
estuary of the Gulf of Guayaquil is genetically distinctive from
bottlenose dolphin populations in other geographic regions and
exhibits low genetic diversity (Bayas-Rea et al., 2018). Although
sampling of bottlenose dolphins from the outer estuary of
the Gulf of Guayaquil for genetic analysis has been sparse,
genetic diversity appears much lower in the in the inner estuary
population than in the outer estuary. In the largest population
genetics study of dolphins in the area conducted to date, Bayas-
Rea et al. (2018) found nine different haplotypes for the 11
individuals sampled from the outer estuary (Hd = 0.964), many
of which clustered with haplotypes from the Gulf of California
and the Galapagos Islands, indicating broad genetic admixture
of the dolphins in this area. In contrast, they only found five
haplotypes among the 37 individuals they sampled from the
inner estuary (average Hd = 0.557). These formed a distinct

genetic cluster relative to bottlenose dolphin populations from
other geographic areas, with four of the five haplotypes only
occurring in the inner estuary population. We only found two
haplotypes, the two most common haplotypes in Bayas-Rea
et al. (2018), among the nine specimens sampled in the current
study. The genetic distinctiveness of the bottlenose dolphin
population in the Gulf of Guayaquil inner estuary indicates
the potential for local adaptation. Combined with the low
genetic diversity, which suggests a small effective population
size and genetic isolation, this population likely has a unique
evolutionary heritage that could be lost if the population
continues to decline.

POP Concentrations
No statistical differences in mean blubber concentrations
between adult males and females and subadult female dolphins
were found for POPs, except for dieldrin, which was significantly
higher in subadult females when compared to adult females
and males (Kruskal-Wallis One Way Analysis of Variance
on Ranks, H = 5.357, df = 2, p = 0.029; Figure 2). Total
POP concentrations (6POP) measured in all dolphin samples
was 44 mg/kg lw, ranging from 0.56 mg/kg lw in an adult
female to 13 mg/kg lw in an adult male (Supplementary
Table S4). The mean concentration ± SD of 6PCB in adult
females and males was 0.64 ± 0.50 mg/kg lw (range: 0.30–
1.0 mg/kg lw) and 3.65 ± 1.50 mg/kg lw (range: 2.65–
5.40 mg/kg lw), respectively (Figure 2 and Supplementary
Table S4). 6PCB mean concentration in subadult females was
3.96 ± 2.40 mg/kg lw and comparable to that in adult males.
Similar to PCBs, the mean concentration of organochlorines
pesticides (OCPs) were relatively higher with adult males
exhibiting 4.18 ± 2.80 mg/kg lw (ranging 2.55 to 7.40 mg/kg lw)
compared to adult females 0.66 ± 0.605 mg/kg lw (range: 0.24–
1.10 mg/kg lw). However, the subadult females contained OCP
concentrations of 4.10 ± 1.30 mg/kg lw, similar to adult males.
DDTs were the dominant OCP measured in the dolphins’ blubber
samples, with a mean concentration of 0.57 ± 0.550 mg/kg
lw in adult females, and 4.0 ± 2.72 mg/kg lw in adult males
(Figure 2 and Supplementary Table S4). Particularly, the
mean concentration of p,p′-DDE, the main DDT metabolite
and a potent anti-androgenic chemical, was 0.46 ± 0.50 for
adult females and 3.66 ± 2.70 in adult males, ranging from
0.12 mg/kg lw in an adult female dolphin to ∼7.0 mg/kg lw
in an adult male. The p,p′-DDE concentration in the subadult
females was 3.30 ± 1.15 mg/kg lw. PBDE concentrations were
lower (i.e., adult males: 0.43 ± 0.12 mg/kg lw; adult females:
0.17 ± 0.095 mg/kg lw; and, subadult female: 0.48 ± 0.15 mg/kg
lw). The concentrations for other OCPs, including dieldrin
(range: 0.004 to 0.15 mg/kg lw) and chlordanes (range: 0.01
to 0.10 mg/kg lw), were the lowest detected in these dolphins,
i.e., < 0.10 mg/kg lw (Figure 2 and Supplementary Table S4).

POP Composition Patterns
As shown in Figure 2, the predominant POPs were OCPs
accounting for 50% of 6POP, followed by PCBs (46%) and
PBDEs (6.0%), although the concentration values of OCPs and
PCBs were equally comparable. DDTs dominated the suit of
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FIGURE 2 | Mean ± SD of concentrations (mg/kg lipid weight) of dieldrin, 6Chlordanes, 6PBDE 6PCB, p,p′-DDE, 6DDT, and total organochlorine pesticides
(6OCP) in blubber of adult (males and females) and subadult (females) bottlenose dolphins sampled in May 2018 in the El Morro Mangrove Wildlife Refuge
(REVISEM), and Posorja Port, Gulf of Guayaquil, Ecuador. No significant differences were found between adult age categories of males and females and subadult
females, except for Dieldrin, being significantly higher in subadult females, as indicated by the asterisk (*).

POPs, making up 47% of 6POP found in the El Morro bottlenose
dolphins. For example, p,p′-DDE contributed to 42% of 6POP,
followed by PCB 153 (8%) and PCB 180 (5%). BDE 47, the
dominant PBDE congener found in the dolphins, contributed
2% of 6POP. Other OCPs such as dieldrin and chlordanes
(6Chlordanes) accounted for a total of 2% of 6POP (i.e., 1%
each one). The congener composition profiles for PCBs and
PBDEs are presented in Figures 3, 4, illustrating that PCB
153, which is frequently the dominant recalcitrant congener,
made up 16% 6PCB (Figure 3) followed by PCB 180 (11%),
PCB 138 (8%) and PCB 187 (7%), while BDE 47, usually the
dominant PBDE congener, accounted on average for up to 44%
of 6PBDE, followed by BDE-100 (13%), BDE-99 (10%) and
BDE-154 (8.0%) (Figure 4).

PCB and PBDE patterns are in general agreement with the
composition profiles for PCBs (Tanabe et al., 1988, 1997; Boon
et al., 1997; Ross et al., 2000; Fair et al., 2010) and PBDEs
(Rayne et al., 2004; Fair et al., 2007, 2010; Bachman et al., 2014)
observed in cetaceans. In particular, hexa-chlorobiphenyls were
the main PCB homolog class and dominated the composition
profiles found in these dolphins. This finding is an indication that
the dolphins from the Gulf of Guayaquil seem to be impacted by
the common PCB contaminant signatures such as those resulting
from residues of Aroclors 1242, 1254, and 1260 (Kucklick et al.,
2011). In fact, hexa-chlorobiphenyls classically dominate PCB
levels in cetaceans due to their wide use in the past and persistent
nature in the marine environment (Boon et al., 1997; Tanabe
et al., 1997; Aguilar et al., 2002; Fair et al., 2010). Conversely,
there are documented special cases where uncommon Aroclors

resulted in a clearly shifted homolog pattern dominated by a high
proportion of octa- through deca-chlorobiphenyls in bottlenose
dolphins exhibiting extremely high concentrations, i.e., Aroclor
1268 in coastal Georgia (GA, United States), including the
Brunswick River Estuary and Sapelo Island (Pulster and Maruya,
2008; Kucklick et al., 2011). However, the PCB homolog pattern
found in our dolphins are consistent with a non-Aroclor 1268
PCB formulations.

As for PBDEs, the predominant pattern of lower brominated
congeners such as BDE-47, BDE-100, BDE-99, and BDE-154
(Figure 4) is also fairly consistent with the PBDE profile
reported in bottlenose dolphins from the southeastern coast
of the United States (Fair et al., 2007, 2010), small cetacean
species (e.g., dolphins) from the Hawaiian Islands (Bachman
et al., 2014) and blue whales from southern Chile (Muñoz-
Arnanz et al., 2019). The significance of BDE-47 at upper trophic
levels in marine foodwebs reveals a combination of the tendency
of this congener to biomagnify and its production through
debromination pathways of other PBDE congeners in marine
organisms (Boon et al., 2002; Rayne et al., 2004; Wolkers et al.,
2004; Kelly et al., 2008).

Mercury (THg)
No statistical differences occurred in THg skin concentrations
between male and female dolphins (one-way ANOVA, p = 0.310;
Figure 5). Concentrations of THg ranged from 1.92 in a subadult
female dolphin to 3.63 mg/kg dw in an adult male dolphin
(Table 2). The mean concentration± SD of THg in adult females
and males was 3.09± 0.70 mg/kg dw (range: 2.60–3.58 mg/kg dw)

Frontiers in Marine Science | www.frontiersin.org 9 March 2020 | Volume 7 | Article 122

https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-00122 March 18, 2020 Time: 16:51 # 10

Alava et al. POPs and Mercury in Bottlenose Dolphins

FIGURE 3 | Composition patterns of PCB congeners relative to total PCBs in blubber samples of bottlenose dolphins of the El Morro Mangrove Wildlife Refuge, and
Posorja Port, Gulf of Guayaquil, Ecuador. The hexa-chlorobiphenyls, PCB 153, accounted for most of the proportion of PCBs.

FIGURE 4 | Composition patterns of PBDE congeners relative to total PBDEs in blubber samples form bottlenose dolphins of the El Morro Mangrove Wildlife
Refuge, and Posorja Port, Gulf of Guayaquil, Ecuador. BDE 47 contributed (black bars) to most of the PBDE composition.

and 3.16 ± 0.64 mg/kg dw (range: 2.43–3.63 mg/kg dw),
respectively (Table 2 and Figure 5), while the THg mean
concentration in the subadult females was 2.20± 0.40 mg/kg dw.

Here, it is estimated that at least 70% of THg detected in our
dolphin skin samples is organic mercury (i.e., methyl mercury,
MeHg) as about 72–73% of mercury found in skin of bottlenose
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FIGURE 5 | Total mercury (THg) concentrations (mg/kg dry weight) detected in skin of free ranging bottlenose dolphins. The mean ± SD of THg concentrations
(mg/kg dw) is shown for adult males and females and subadult females. No significant differences were found between adult age categories of males and females.

dolphins has been found to be MeHg (Stavros et al., 2007).
We assumed that this MeHg percentage is a conservative value
as most of the mercury existing in the skin of cetaceans and
other marine mammal species is MeHg, i.e., epidermal MeHg
proportion ranging 90–100% (Wagemann et al., 1998; Stavros
et al., 2007; Woshner et al., 2008).

Sex Differences: POPs and THg
While no significant differences for the majority of the POP
concentrations were found between adult individuals (males
and females) and subadult females, likely due to the small
sample size and thus lack of statistical power to perform a more
robust comparison, the concentration of the organochlorine
pesticide dieldrin was significantly higher in subadult females
(Figure 2). Adult males showed fairly higher concentrations
of dieldrin, 6Chlordanes, 6PBDE, 6PCB, and 6DDT relative
to the concentration for each contaminant class measured in
adult females (Figure 2). Contaminant loads of POP levels
measured in blubber samples of sub-adult and adult males are

TABLE 2 | Total mercury (THg) concentrations in skin samples of bottlenose
dolphins collected in May 2018 in the REVISEM, Gulf of Guayaquil, Ecuador.

Sample ID Sex Field Evaluation THg THg
Size Class (mg/kg ww) (mg/kg dw)

EDM-4/8-18* Female Subadult 0.58 1.92

EDM-6-18 Female Adult 0.79 2.60

EDM-9-18 Female Subadult 0.765 2.53

EDM-10-18 Female Adult 1.085 3.58

EDM-5-18 Male Adult 0.74 2.43

EDM-11/13-18* Male Adult 1.04 3.42

EDM-12-18 Male Adult 1.10 3.63

*The THg concentration represent the mean of two samples (replicates) collected
from the same individual.

typically higher than those found in adult, reproductive females
(Aguilar et al., 1999; Ross et al., 2000; Ylitalo et al., 2001; Wells
et al., 2005; Dorneles et al., 2010). In this study, the subadult
females also exhibited POP concentrations comparably higher to
those observed in adult female dolphins (Figure 2). Contrasting
to subadult females that have not yet reached the onset of sexual
maturity and reproductive age, breeding adult females offload
significant portions of their POPs burden through maternal
transfer during gestation and lactation to calves, while males
have no such mechanisms to offload contaminants (Borrell et al.,
1995; Aguilar et al., 1999; Ross et al., 2000; Wells et al., 2005;
Kajiwara et al., 2008).

Similar to POPs, the sex comparisons showed lack of
significant differences in THg concentrations (Figure 5), which
may also be due to small sample size. Adult females showed
fairly higher skin THg concentration relative to the concentration
in subadult females. In this study, the two subadult females
exhibited THg skin concentration (i.e., 2.20 ± 0.40 mg/kg
dw) comparably similar to those reported by Stavros et al.
(2007). Skin concentrations of THg are typically higher in
adult dolphin females than those found in adult male dolphins
(Bryan et al., 2007; Stavros et al., 2007; Damseaux et al., 2017;
Zanuttini et al., 2019).

Geographical Comparisons: POPs and
THg in Dolphins
As no previous studies on POPs in bottlenose dolphins
(T. truncatus) have been conducted in the El Morro Mangrove
Wildlife Refuge or throughout the Gulf of Guayaquil, a
geographical comparison of POP concentrations found in
the blubber of The El Morro dolphins relative to levels
observed in bottlenose dolphins and delphinid species from
other geographical regions, including Gulf of Mexico, western
North Atlantic Ocean and the Indo-Pacific Ocean, is presented
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TABLE 3 | Geographical comparisons between persistent organic pollutant data reported in the existing literature and the data of this study in the blubber of delphinid species from different locations (Pacific Ocean,
Gulf of Mexico, Indian Ocean and North Atlantic Ocean).

Species n Age
category
and sex

Sampling
location

(sampling period)

POP data
reported

Dieldrin
(mg/kg lw)

6Chlordanes
(mg/kg lw)

6PBDE
(mg/kg lw)

6PCB
(mg/kg lw)

6DDT
(mg/kg lw)

References

Tursiops
truncatus

2 AF El Morro Mangrove
Wildlife Refuge,

Gulf of Guayaquil,
Ecuador (2018)

Mean ± SD 0.02 ± 0.02 0.02 ± 0.01 0.17 ± 0.09 0.64 ± 0.49 0.57 ± 0.55 This study

3 AM 0.05 ± 0.03 0.07 ± 0.03 0.43 ± 0.12 3.65 ± 1.52 3.98 ± 2.72

T. truncatus 3 Unknown Hawaiian Islands,
United States
(1997–2011)

Mean ± SD - 1810 ± 873 1070 ± 172 11800 ± 7340 15000 ± 7700 Bachman et al.
(2014)

Seven delphinid
species

8 AM Median (range) – 2335
(1420–9520)

395
(94.8–1560)

17050
(7690–50200)

23400
(9730–99100)

Bachman et al.
(2014)

Sousa
chinensis

12 AF Pearl River Estuary,
China (2004–2013)

Mean ± SD 49.1 ± 46.5 61.2 ± 60.2 – 77700 ± 59800 1220 ± 1850 Gui et al. (2014)

7 AM 46.6 ± 30.1 48.2 ± 29.7 – 87200 ± 66600 1030 ± 1450

Stenella
longirostris

21 Unknown La Réunion
(south-western
Indian Ocean)
(2010–2011)

Median (range) – 20 (0.5–65) 60 (10–120) 955 (30–2170) 432 (49–1550) Dirtu et al.
(2016)

Tursiops
aduncus

32 Unknown – 10 (0.3–45) 95 (5–1200) 5200
(100–67500)

837 (26–19345)

T. truncatus 30 AM Sapelo Island,
Georgia

United States
(2000–2007)

Geometric
mean (95% CI)

0.16
(0.13–0.21)

6.16
(4.50–8.40)

3.98
(3.10–5.12)

170 (126–229) 26.3
(19.6–35.4)

Kucklick et al.
(2011)

19 AM Brunswick River
Estuary, Georgia,

United States
(2000–2007)

Geometric
mean (95% CI)

0.41
(0.30–0.57)

4.97
(3.90–6.32)

3.61
(2.85–4.57)

450 (307–658) 26.1
(19.0–36.0)

Kucklick et al.
(2011)

T. truncatus 6 AF Biscayne Bay,
Florida,

United States
(2002–2004)

Median (range) 10.94
(8.71–13.74)

39 (31–51) 21 (14–31) 891 (574–1380) 97 (66–143) Litz et al. (2007)

31 AM,
juvenile

76.60
(53.38–109.91)

1070
(777–1470)

394 (300–520) 19900
(13400–29400)

2980
(2370–3750)

T. truncatus 11 AF Charleston, South
Carolina,

United States
(2003–2005)

Median (range) 160
(20.6-1080)

777 (199-8570) 977
(295-11300)

14300
(4540-131000)

2900
(1060-27300)

Fair et al.
(2010); Reif
et al. (2017)

36 AM 1420
(414-2670)

10900
(3660-42800)

5917
(1711-13200)

94000 (28600-
255000)

29000
(14900-86,800)

(Continued)
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TABLE 3 | Continued

Species n Age
category
and sex

Sampling
location

(sampling period)

POP data
reported

Dieldrin
(mg/kg lw)

6Chlordanes
(mg/kg lw)

6PBDE
(mg/kg lw)

6PCB
(mg/kg lw)

6DDT
(mg/kg lw)

References

T. truncatus 15 AF Indian River
Lagoon, Florida,

United States
(2003–2005)

Median (range) 66.5 (2.20–845) 1490
(147–11200)

581 (196–1420) 25500
(1510–105000)

4600
(544–15200)

33 AM 356
(1.70–1230)

7600
(2020–28800)

1490
(463-3790)

79800 (35000-
227000)

18600
(6380–58400)

T. truncatus 29 AF St. Andrew Bay,
Florida,

United States
(2015–2016)

Median (range) 25 (< 1.2–170) 200 (< 2–1400) 130
(< 2.1–710)

3600
(57–26000)

3000
(8.5–62000)

Galligan et al.
(2019)

33 AM 34 (8.7–130) 590 (170–2200) 360 (62–800) 15000
(1800–46000)

14000
(520–34000)

T. truncatus 11 AF Normanno-Breton
Gulf (English

Channel),
United Kingdom

(2010–2012)

Mean
(median) ± SD

(min–max
values)

180
(137) ± 147

(59–344) n = 3

0.97
(1.04) ± 0.2

(0.74–1.1) n = 3

639
(214) ± 686

(51–
2.14 × 103)

6.45 × 104

(5.14 × 104)
± 7.41 × 104

(4.5 × 103–
2.7 × 105)

104 (7) ± 144
(6–434)

Zanuttini et al.
(2019)

47 AM 1.86 × 103

(1.62 × 103)
± 1.23 × 103

(615–
5.38 × 103)

n = 18

25 (15) ± 28
(3.9–99) n = 18

1.95 × 103

(1.78 × 103)
± 1.07 × 103

(195–
3.87 × 103)

1.33 × 105

(1.14 × 105)
± 7.89 × 104

(1.75 × 104–
3.93 × 105)

149 (71) ± 201
(6–940)

POP concentrations are reported in mg/kg lipid weight (lw) for adult males (AM) and females (AF).
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in Table 3. In general, the concentrations of El Morro
bottlenose dolphins are lower when compared to concentration
in bottlenose dolphins from more contaminated regions located
in the Gulf of Mexico and along the United States east coast, as
shown in Table 3 (Fair et al., 2010; Kucklick et al., 2011). For
instance, adult male dolphins from our study exhibit 6PCBs and
6DDT concentrations well below the concentrations reported in
male bottlenose dolphins sampled near Gulf of Mexico-Biscayne
Bay (Litz et al., 2007), along the southeastern coast of US (Atlantic
Ocean), including Charleston (South Carolina), and Indian River
Lagoon, Florida (Reif et al., 2008; Fair et al., 2010), as well
as St. Andrew Bay, Florida (Galligan et al., 2019). Likewise,
the concentration in the El Morro dolphins are also much
lower than those measured in highly contaminated bottlenose
dolphins from the English Channel, i.e., Normanno-Breton Gulf
(Zanuttini et al., 2019).

Interestingly, the concentrations of POPs detected in the
dolphins assessed in this study exhibited similar concentrations
to those measured in dolphin species (Stenella longirostris;
T. aduncus) from La Reunion Island (Dirtu et al., 2016);
however, the concentration in our dolphins were still lower when
compared to the concentrations found in Indo-Pacific humpback
dolphin (Sousa chinensis) from the Pearl River Estuary, China
(Gui et al., 2014) and small cetacean species from Hawaii
(Bachman et al., 2014) (Table 3).

The geographical comparison of THg concentrations
measured in our dolphins to other studies is reported in Table 4.
The concentrations of THg reported in this study were higher
than those found in the skin of male and female bottlenose
dolphins from waters of Charleston, South Carolina (i.e.,
averaging ∼ 1.7 mg/kg dw), but lower than the concentrations
measured in male and female dolphins from the Indian River
Lagoon, Florida (i.e., averaging ∼7.0 mg/kg dw) along the
southeastern coast of United States (Stavros et al., 2007) and
from Sarasota Bay in the west coast of Florida, Gulf of Mexico.
Concentrations of THg in our male dolphins were similar to
mercury concentrations measured in skin of male dolphin from
the Lower Florida Keys (averaging 2.93 mg/kg dw); however,
THg concentrations in our male and female dolphins were
lower than the ones reported for the Florida Coastal Everglades
(Damseaux et al., 2017) and for the Normano-Breton Gulf
(English Channel) (Zanuttini et al., 2019). In comparison to
the recent mercury concentrations reported for Commerson’s
dolphins (Cephalorhynchus commersonii) from Subantarctic
marine waters (i.e., Southwestern South Atlantic Ocean) of
Tierra del Fuego, Argentina (Cáceres-Saez et al., 2015), the THg
concentrations in male bottlenose dolphins from REVISEM
were higher than the concentrations reported in skin of male
Commerson’s dolphins, ranging 0.68–1.41 mg/kg dw, while
for female dolphins the concentrations were similar, i.e., the
THg concentration range in female Commerson’s dolphins was
0.54–3.11 mg/kg dw (Cáceres-Saez et al., 2015).

The lower concentrations observed in the dolphins may be
a plausible signal of the recent declines of POPs such as PCBs
and DDTs in the global marine environment and some marine
mammal populations although the exposure levels to POPs (e.g.,
PCBs) are still high in some cetacean species such as killer whale

(O. orca) and bottlenose dolphins in Europe (Jepson et al., 2016;
Zanuttini et al., 2019), as well as in Arctic marine mammals,
i.e., DDTs, PCBs, Chlordanes (Brown et al., 2018). The lack of
POP baseline data at the regional level in the Gulf of Guayaquil
precluded this study to make comparisons and to infer that
the low concentrations found in the dolphins are affected by
potential recent declines in emissions of these contaminants in
the local environment. Conversely, it is reasonable to consider
that a reduction in the application of DDT to control malaria
in Ecuador during the last decades can be reflected in the low
concentrations measured in the dolphins.

Toxicological Health Effect Assessments
The TEQ assessment is one of the approaches available to assess
significantly toxic contribution of dioxin-like PCB congeners
to wildlife and humans (Van den Berg et al., 2006; Fair et al.,
2010). The total toxic equivalents (6TEQ) for non-ortho and
mono-ortho (planar) PCBs in adult males (10 ng TEQ/kg lipid),
and adult females (68 ng TEQ/kg lipid) are below the no
observable adverse effects level (NOAEL-TEQ) thresholds of
90 ng TEQ/kg lipid and the lowest observable adverse effects
level (LOAEL-TEQ) of 209 ng TEQ/kg lipid or 286 ng TEQ/kg
lipid for immunotoxic effects estimated in aquatic mammals,
mainly in harbor seals (Ross et al., 1995; Ross P. S. et al.,
1996; Kannan et al., 2000). The 6TEQ in these dolphins are
also lower than toxic threshold level of 225 ng TEQ/g lipid
reported for killer whales from the northeastern Pacific (Ross
et al., 2000). Exceptionally, the 6TEQ in the subadult females
(363 ng TEQ/g lipid), significantly driven by the detection of the
planar (non-ortho) PCB 169 (351 ng TEQ/g lipid) in one of the
subadult females, exceeded these TEQ thresholds, highlighting
the exposure to immunotoxic health effects by PCBs in this
particular age class category.

Along with the TEQ risk assessment, the probabilistic
cumulative (frequency) distribution shows that about 47 and 98%
of female and male dolphins exceeded the PCB-toxicity reference
value (TRV) for immunotoxic and endocrine disruption (i.e.,
1300 µg/kg lw or 1.3 mg/kg lw) estimated in harbor seals (PCB
TRV reported by Mos et al. (2010), respectively (Figure 6A). In
addition to exceeding this PCB TRV, 1 and 3% of females were
above the PCB toxic effect concentration (PCB TEC) causing
reproductive and immunotoxic impairments in marine mammals
(17000 µg/kg lw; Ross P. S. et al., 1996; Kannan et al., 2000), and
the PCB threshold associated with a decrease in the population
growth rate in bottlenose dolphins (i.e., 10000 µg/kg lw; Hall
et al., 2005). PBDEs are also of concern due to their potential to
disrupt the endocrine and immune systems (Meerts et al., 2001;
Hallgren and Darnerud, 2002; Hall and Thomas, 2007; Frouin
et al., 2010). Thus, the PBDE concentrations observed in dolphins
were compared against the upper limit of PBDEs’ threshold
level (1.5 mg/kg lw) associated with endocrine disruption of
thyroid hormone in gray seals, Halichoerus grypus (Hall et al.,
2003), showing that the PBDE concentrations in 0.3% of adult
females were above the PBDE-endocrine disruption threshold,
while 100% of adult males were below this threshold (Figure 6B).

Similarly, the risk characterization showed that the p,p′-
DDE concentrations in 4% of adult males and 8% of
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adult females exceeded the p,p′-DDE anti-androgenic effect
concentration reference value of 6890 µg/kg lw (∼6.89 mg/kg
lw), i.e., applying the derivation from Alava et al. (2011)
based on the p,p′-DDE anti-androgenic effect concentration
of 64 µg/kg wet weight reported by Kelce et al. (1995), as
shown in Figure 6C. This indicates that DDT concentrations
in an important proportion of this small populations of
dolphins are near levels expected to be associated with
endocrine disruption.

As for mercury, Figure 6D shows that while 5 and 16% of
female and male dolphins exceeded the effective concentration,
causing 50% reduction in lymphocyte function (THg EC50), of
810 µg/kg ww (0.81 mg/kg ww; Desforges et al., 2016), 100%
of female and male dolphins were above the THg threshold
effect concentration (i.e., reducing lymphocyte proliferation)
of 210 µg/kg ww (0.21 mg/kg ww; Desforges et al., 2016),
highlighting the risk of exposure to immunotoxic health effects
by mercury in the population sampled.

The combined health effects of chemical mixtures, mainly the
additive mode of immunotoxic action by these contaminants
(i.e., immunotoxicity), can further compromise and modulate
(i.e., downregulate or/and upregulate) both the immune and
endocrine responses. Immune and endocrine systems that are

compromised can affect the competence of the dolphins to fight
disease and to effectively reproduce.

Sources and Transport of POPs and
Mercury in Dolphins’ Habitat
While local anthropogenic sources likely play an important role
to contribute to chemical assaults, including POPs and mercury
contamination, in the mangroves and wildlife reserves of the Gulf
of Guayaquil (Calle and Alava, 2009; Fernández-Cadena et al.,
2014; Calle et al., 2018), the long-range atmospheric transport
of POPs and mercury to the Gulf of Guayaquil cannot be ruled
out as a pathway to transferring pollutants to the habitat and
marine predators in this tropical, equatorial region (Alava et al.,
2009, 2011; Alava and Gobas, 2012; Alava and Ross, 2018). In fact,
trans-Pacific air pollution of contaminants from tropical Asia to
the eastern Pacific is a well-established mechanism (Iwata et al.,
1993, 1994; Wilkening et al., 2000).

However, when examining the role of atmospheric transport
as a pollution source of PCBs, which is a representative class
of POPs subject to this mechanism (i.e., light PCB mixtures are
more consistent with atmospheric signals), the contribution of
the lower chlorinated PCB homolog groups such as di-, tri-,

TABLE 4 | Geographical comparisons between of total mercury (THg) concentrations reported in this study and the data reported in the skin of bottlenose dolphins from
the southeast coast of United States and dolphins from the English Channel.

Species Sample
size (n)

Age category
and sex

Sampling location THg data
reported

THg (mg/kg dw) References

Tursiops
truncatus

2 AF El Morro Mangrove Wildlife
Refugee, Gulf of Guayaquil, 2018

Mean ± SD
(min–max)

3.09 ± 0.69
2.60–3.58

This study

3 AM 3.16 ± 0.64
2.43–3.63

11 AF Sarasota Bay Mean ± SD
(min–max)

12.73 ± 4.80
6.86–21.09

Bryan et al. (2007)

7 AM 5.24 ± 1.12
3.83–6.63

9 AM Lower Florida Keys Mean ± SD
(min–max)

2.936 ± 2.08
0.294–5.71

Damseaux et al. (2017)

9 AF Florida Coastal Everglades 12.31 ± 8.73
4.51–29.12

13 AM 10.05 ± 6.64
2.22–28.76

11 AF Charleston South Carolina Mean ± SD
(min–max)

2.1 ± 0.65
1.4–3.3

Stavros et al. (2007)

36 AM 1.7 ± 1.0
0.77–4.9

12 AF Indian River Lagoon, Florida Mean ± SD
(min–max)

7.9 ± 6.4
0.37–17

34 AM 6.4 ± 4.0
0.33–15

20 AF Normanno-Breton Gulf (English
Channel)

Mean
(median) ± the

standard deviation
(min–max values)

11.2 (9.24) ± 5.69
(3.03–21.3)

Zanuttini et al. (2019)

49 AM 9.42 (9.32) ± 3.53
(2.45–17.4)

THg concentrations are reported in mg/kg dry weight (dw) for adult males and females. When necessary data was transformed to dry weight using 3.3 factor (Stavros
et al., 2007). AF = adult female; AM = adult male.
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FIGURE 6 | Cumulative probability (frequency) distribution of log-transformed concentrations of PCBs, PBDEs and p,p′-DDE (in µg/kg lipid weight) measured in
biopsy blubber samples, and THg (in µg/kg wet weight) measured in biopsy skin samples of female and male bottlenose dolphins to characterize the risk of
exposure to reported toxic health effect concentrations in marine mammals. (A) Probability distribution of log-transformed PCB concentrations in adult female (gray
curve) and male (blue curve) dolphins in relation to the PCB toxic reference value (TRV) for immunotoxic and endocrine disruption in harbor seals (PCB
TRV = 1300 µg/kg lw in red dashed line; Mos et al., 2010), the PCB threshold (PCB TEC = 10000 ug/kg lw in yellow dotted-dashed line) affecting the population
growth rate in bottlenose dolphins (Hall et al., 2005); and, the PCB toxic effect concentration (PCB TEC = 17000 µg/kg lipid in dotted red line) causing reproductive
and immunotoxic impairments in marine mammals (Ross P. S. et al., 1996; Kannan et al., 2000). (B) Probability distribution of log-transformed PBDE concentrations
in adult female (gray curve) and male (blue curve) dolphins compared with the PBDE toxic effect concentration associated (PBDE TEC = 1.5 mg/kg lw in red dashed
line) to thyroid hormone endocrine disruption in gray seals (Hall et al., 2003). (C) Probability distribution of log-transformed p,p-DDE concentrations in female (gray
curve) and male (blue curve) bottlenose dolphins in relation to the p,p-DDE anti-androgenic effect concentration (64 µg/kg wet weight; Kelce et al., 1995) equivalent
to 6890 µg/kg lipid (red dashed line), using the derivation from Alava et al. (2011) based on Kelce et al. (1995). (D) Probability distribution of log-transformed THg
concentrations (in µg/kg wet weight) in female (gray curve) and male (blue curve) bottlenose dolphins assessed against the THg threshold effect concentration of
210 µg/kg ww (red dashed line), reducing lymphocyte proliferation in marine mammals (Desforges et al., 2016), and the THg effective concentration causing 50%
reduction (THg EC50 = 810 µg/kg ww in yellow dotted-dashed line) in lymphocyte function of marine mammals (Desforges et al., 2016).

tetra- and penta-chlorobiphenyls (i.e., PCBs 8, 18, 28, 37, 44, 49,
52, 66, 70, 74, 77, 81, 87, 99, 101, 105, 110, 114, 118, 119, 123,
and 126) is relatively lower (32.6%) compared to the proportion
of highly chlorinated PCB homolog groups (∼62%), including
hexa- and hepta-chlorobiphenyls (i.e., PCBs 128, 138, 149, 151,
153, 156, 157, 158, 167, 169, 170, 177, 180, 183, 187, 189, and 194)
as shown in Figure 7A. This finding suggests that most of the PCB
contamination found in the exposed dolphins and habitat is likely
to be originated from potential local sources, and less subjective
to long-range atmospheric transport due to the low contribution
of lighter PCB congeners predisposed to be transported and

deposited from atmospheric pathways and sources. Contrasting
to this PCB signature, a light PCB fingerprint by less chlorinated
PCB congeners, indicating a common atmospheric source, was
observed in Galapagos sea lions (Z. wollebaeki) from the remote
Galapagos Archipelago (Alava et al., 2009; Alava and Gobas,
2012), located at 1000 km from the Gulf of Guayaquil.

Locally, oil or dielectric fluid contaminated with PCBs in
transformers and containers of the grid electric system and
facilities of urban and maritime areas (e.g., Guayaquil City,
Posorja, Santa Elena) of the Gulf of Guayaquil are potential
regional sources of these contaminants, requiring an urgent
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FIGURE 7 | Contribution of PCB (A) and PBDE (B) homolog groups showing the dominant patterns and distribution of lighter versus heavier homolog group
signatures for both chemical classes observed in bottlenose dolphins sampled during May 2017 in El Morro Mangrove Wildlife Refuge, and Posorja Port, Gulf of
Guayaquil, Ecuador.

hazardous waste management plan for treatment and elimination
from these locations (MAE, 2006). To the best of our knowledge,
Aroclor mixtures (e.g., Aroclor 1242, Aroclor 1254 and Aroclor

1260) have yet to be identified despite the absence of PCB
production or industrial manufacturing in any chemical industry
in Ecuador. Recently, certain assessments of these industrial
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POPs in transformers and capacitors from some electric power
stations of the Guayaquil’s Electric Corporation revealed that
PCB levels found were in the order of 10 mg/L (CEMA,
2005). As it stands, the former national inventory of PCBs in
Ecuador reported about 5,473,000 L of PCB-contaminated oil-
fluid used in abandoned, unused, and used electric transformers
by the electric corporations (MAE, 2006). The dominance of
PCB 153 in the PCB composition profile of these dolphins
highlights the importance of this highly bioaccumulative and
recalcitrant congener in non-Aroclor 1268 PCB formulations
associated to urbanized areas and with human populations
(Kucklick et al., 2011).

The prevalence of specific PBDE congeners detected in our
dolphins (i.e., BDE-47, BDE-100, BDE-154, and BDE-99) is
a finding coherent with studies suggesting common sources
originating from use of penta-BDE ether flame retardant mixture
(Hites, 2004; Kannan et al., 2005; Yogui and Sericano, 2009;
Fair et al., 2010). Similarly, the disposal and incineration of
solid waste products (i.e., computer, electronic devices and
furniture), containing flame-retardant formulation mixtures, in
landfills and open dumps can be potential sources of PBDE flame
retardants (Alava et al., 2009). Comparable to PCBs, the long-
range atmospheric transport cannot be ruled out as a potential
pathway to deliver low brominated PBDEs to the dolphins’
habitat as lighter PBDE homolog groups, including tetra- and
penta-brominated diphenyl ethers (e.g., PBDEs 44, 47, 49, 66, 75,
99 and 100), dominated the overall pattern (75%) found in the
dolphins (Figure 7B). The PBDE congeners 47, 99 and 100 have
been found to dominate air samples in the Northeastern Pacific
(Noël et al., 2009). As air or rain samples have not been collected
and analyzed for PBDEs in the Gulf of Guayaquil or coastal
Ecuador, confirmation of the long-range atmospheric transport
as a mechanism delivering PBDEs to this tropical region warrants
further investigation.

In the recent past, the intra-domestic use of DDT inside
homes and application in the agricultural sector between 1957
and 1999 in Ecuador to control the malaria mosquito vector
(Anopheles sp.) and crop pests (MAE, 2004) echo the legacy
of DDT contamination in the coastal and marine environment
(Montaño and Resabala, 2005; Calle and Alava, 2009; Alava et al.,
2011). In Ecuador, an application rate of about 134,000 kg of DDT
per year was used by 1993, according to the national inventory of
organochlorine pesticide use (MAE, 2004). While the use of DDT
plummeted to around 1400 kg/year by 1998 and Ecuador halted
DDT imports in 1994, a stock of 1636 kg of DDT was accessible
for emergency response to combat malaria (MAE, 2004, 2006;
Alava et al., 2011).

With the aim to further understand the pollution fingerprint
by POPs, mainly the dominant OCPs (i.e., DDTs), the p,p′-
DDE/DDT ratio was calculated to assess the chronology of DDT
historical inputs (Aguilar, 1984; Addison et al., 1986; Tanabe
et al., 1997; Alonso et al., 2010; Kucklick et al., 2011) and infer
the exposure time, based on the notion that native DDT is
being biotransformed to its primary metabolite DDE over time
(Addison et al., 1986; Alava et al., 2011). As it stands, a p,p′-
DDE/DDT ratio > 0.6 is an indication of a stable system with
a long period of reaction (i.e., more DDE relative to the amount

of DDT) with no new DDT inputs (Aguilar, 1984; Tanabe et al.,
1997; Alonso et al., 2010; Alava et al., 2011). Thus, the high ratio
p,p′-DDE/DDT found here (i.e., 0.81–0.92) indicates a plausible
scenario of past DDT contamination and minor contributions
from new or current DDT sources. This ratio is consistent with
and similar to the ratio (0.91–0.94) observed in Galapagos sea
lions from the remote Galapagos Islands (Alava et al., 2011) and
the ratio (i.e., 0.80) found in Guiana dolphin (Sotalia guianensis)
from São Paulo, Brazil (Alonso et al., 2010).

The presence of dieldrin and chlordanes in these dolphins is
fairly consistent with detection of these legacy OCPs in Galapagos
sea lions and highlights the past use in the region coupled
with the atmospheric transport and deposition of more volatile
halogenated contaminants, i.e., organochlorine pesticides (Alava
and Gobas, 2012; Alava and Ross, 2018).

The mercury exposure in our dolphins indicates mercury
contamination in their habitat. While mercury isotopes’ analyses
were not conducted in this study to discriminate natural
from human-made sources, possible anthropogenic sources of
mercury in the Gulf of Guayaquil can include small scale and
artisanal gold mining in southern Ecuador (Tarras-Wahlberg
et al., 2000; Betancourt et al., 2012; Carling et al., 2013), and
emissions from urbanization and industrialization in the Gulf
of Guayaquil (Calle et al., 2018). Evidence of chronological
emissions of anthropogenic mercury (i.e., amalgamation and
cinnabar mining) during Inca, colonial and pre-industrial times
(i.e., augmented preindustrial pollution by mercury from 1400
to 1600 AD) in the Andean region of South American can
also corroborate the regional atmospheric transport of mercury
emissions to this region since preindustrial times (Cooke et al.,
2013; Alava and Ross, 2018). In fact, the mangroves of the
Guayaquil Gulf are considered as one of the most contaminated
tropical ecosystems by heavy metal pollution in the world
(Fernández-Cadena et al., 2014; Calle et al., 2018).

Dolphin Conservation and Pollutant
Management Implications
Anthropogenic stressors such as habitat perturbation, fisheries
interactions, and biological and chemical pollution threatens the
survival of the inner estuary population of bottlenose dolphins
in REVISEM in the long term (Jiménez et al., 2011; Jiménez
and Alava, 2014; Alava et al., 2019). Jiménez and Alava (2014)
provided recommendations to undertake new lines of research,
including assessment of pollutants, and improve the conservation
of coastal bottlenose dolphins in Ecuador. As found in this
study, bottlenose dolphins from the REVISEM are contaminated
by POPs and mercury, demonstrating that these contaminants
have reached high trophic level organisms in the Gulf of
Guayaquil. Being the first assessment of POPs and mercury in
a resident cetacean species in Ecuador’s mainland coast, our
findings and conclusions must be interpreted with caution given
the limited sample size of dolphin blubber biopsies collected
for contaminant analysis. However, following the precautionary
approach, management actions are required to address and
mitigate pollution in the region to enhance the conservation
efforts for the recovery of the dolphin’s population.
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Both international and national instruments and policies
should be taken into consideration for an effective management
and control of POPs and mercury within the context of hazardous
substances for marine fauna and public health. As a signatory
nation of the Stockholm Convention on POPs since May 2001,
which was ratified on 7 June 2004, Ecuador fostered the National
Plan for the Implementation of POP Management and executed
the POP national inventory, including PCBs, dioxins/furans, and
OC pesticides (MAE, 2006). Thus, continuation of the mandate
of the Stockholm Convention on POPs requires additional
efforts and local regulation to protect the most productive
estuary in the Pacific coast of South America and its species,
including cetaceans.

Along these lines, Ecuador also signed (2013) and ratified
(2016) the Minamata Convention on Mercury to control, reduce,
and eliminate mercury emissions, and regulate gold mines
(UNEP, 2016). Notwithstanding, gold mining, both artisanal and
small-scale mining, is still a grave source of mercury pollution in
Ecuador’s continental coast, particularly in the Gulf of Guayaquil.

Recent dredging operations and disposal at sea have emerged
as a looming threat for the population health and survival of
these dolphins in the studied area (Jiménez and Alava, 2014;
Alava et al., 2019). While environmental impact assessments of
the El Morro Channel and Posorja deepwater port have evaluated
the health effects on marine biota, mainly macroinvertebrates
and other marine fauna, including local dolphins (Inocar, 2008;
Ramón-Jibaja, 2018), a more rigorous approach was lacking to
assess the negative impacts on the dolphin resident population of
REVISEM and waters off Posorja (Alava et al., 2019). In the face of
coastal project developments and dredging activities in the Gulf
of Guayaquil, a proactive approach following the precautionary
principle to prevent pollution is also recommended.

The adoption of a prevention pathway for policy an decision
makers should be part of a framework to internalize and enforce a
more transparent and comprehensive decision-making processes
taking into account the conservation of marine wildlife and the
trade-offs between anthropogenic development and protection
of the marine environment and public health. In addition to
the precautionary approach, an adaptive monitoring strategy to
promote a management action plan to control and minimize
pollution impacts by emerging contaminants of concern (Maruya
et al., 2014; Alava, 2019) can be an important tool to be fostered
in protected areas and sensitive marine ecosystems such as El
Morro Refuge, to conserve this unique genetically identified inner
estuary population of bottlenose dolphins.
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