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Different phytoplankton groups dominate ocean biomes and they drive differently the
marine food web and the biogeochemical cycles. However, their distribution over most
parts of the global ocean remains uncertain due to limitations in the sampling resolution
of currently available in situ and satellite data. Information below surface waters are
especially limited because satellite sensors only provide information on the first optical
depth. We present measurements obtained during Polarstern cruise PS113 (May–
June 2018) across the Atlantic Ocean from South America to Europe along numerous
transects. We measured the hyperspectral underwater radiation field continuously over
several hours from a vertical undulating platform towed behind the ship. Equivalent
measurements were also taken at specific stations. The concentrations of phytoplankton
pigments were determined on discrete water samples. Via diagnostic pigment analysis
we derived the phytoplankton group chlorophyll a concentration (Chla) from this pigment
data set. We obtained high resolution phytoplankton group Chla data from depth
resolved apparent optical properties derived from the underwater radiation data by
applying an empirical orthogonal function (EOF) analysis to the spectral data set and
subsequently developing regression models using the pigment based phytoplankton
group Chla and selected EOF modes. To our knowledge, this is the first data set with
high horizontal coverage (50–150 km) and resolution (∼1 km) that is also resolved
vertically for the Chla of major taxonomic phytoplankton groups. Subsampling with
500 permutations for cross validation verified the high robustness of our estimates
to enable predictions of seven different phytoplankton groups’ Chla and of total Chla
(R2 and median percent differences of the cross validation are within 0.45–0.68 and
29–53%, respectively). Our depth resolved phytoplankton groups’ Chla data reflect well
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the different biogeochemical provinces within the Atlantic Ocean transect and follow the
distributions encountered by previous point observations. This verifies the high quality of
our retrievals and provides the prospect to put similar radiometers on profiling floats or
gliders which would enable the large-scale collection of vertically resolved phytoplankton
data at much improved horizontal coverage relative to discrete sampling.

Keywords: phytoplankton functional types, apparent optical properties, ship-towed undulator, principal
component analysis, Atlantic Ocean, Longhurst Provinces, high resolution

INTRODUCTION

Phytoplankton are essential in marine biogeochemical cycles and
ecosystems since they contribute to about half of the global
primary production (Field et al., 1998). The assessment of
phytoplankton spatio-temporal distribution across the world’s
ocean (e.g., Gregg et al., 2017) is thus very important for
evaluating the effect of climate change on ocean biogeochemistry,
the marine food web and feedbacks to ocean physics and
atmospheric processes (Fennel et al., 2019). Methods have been
developed for monitoring phytoplankton distribution at high
resolution with increasing skills in coverage. Most of these
rely on the estimation of chlorophyll a concentration (Chla)
which is a universal proxy for phytoplankton biomass. It can
be detected and quantified by various optical methods which
permit continuous acquisition of data, thereby enabling much
higher coverage than possible from chemical measurements in
the laboratory, e.g., by high pressure liquid chromatography
(HPLC) analysis of discrete water samples. Remote sensing
of ocean color radiometry offers a unique way of obtaining
high spatial and temporal coverage Chla in the global ocean
surface water (e.g., McClain, 2009). With these data a wide
range of applications have been developed leading to a better
understanding of phytoplankton dynamics in the upper ocean
(e.g., Siegel et al., 2013). Further knowledge on the distribution
and variation not only of the total biomass but also on its
composition and its size structure is needed. These are major
determinants of biogeochemical fluxes, especially by regulating
the photosynthetic efficiency of carbon fixation or of carbon
export, and the transfer of marine primary production to higher
trophic levels (e.g., Le Quéré et al., 2005). The ability to observe
the spatial-temporal distribution and variability of different
phytoplankton groups is a scientific priority for understanding
the marine food web, and ultimately predicting the ocean’s role in
regulating climate and responding to climate change on various
time scales (Bracher et al., 2017). Phytoplankton functional
types (PFTs) are mostly, but not necessarily, taxonomically
affiliated and there is an alignment of functional roles of
phytoplankton with size categories and the ecological niches
(biogeochemical provinces) they occupy (IOCCG, 2014). In
summary, observations of PFTs are urgently needed, since
Chla alone does not provide a full description of the complex
nature of phytoplankton community structure and functioning
on either regional or global scale. Optical (size, morphology,
pigmentation, and fluorescence) and non-optical (e.g., nutrient
requirements and stoichiometry) properties of phytoplankton
allow for distinctive groupings detected by certain types of

measurements which, however, mostly do not exactly match the
definitions of PFTs (Bracher et al., 2017). For brevity in this
study, we further define phytoplankton groups (PGs) based on
taxonomic criteria while for a distinction by size, we refer to
phytoplankton size classes (PSCs).

Efforts in the last two decades have focused on deriving
from optical measurements information on phytoplankton
composition (e.g., IOCCG, 2014). Abundance-based approaches
(e.g., Uitz et al., 2006; Hirata et al., 2011) use Chla as input
to derive PSCs or PGs based on empirical relationships linking
in situ marker pigments to Chla which are determined using
HPLC. This simple calculation can be applied to any Chla data
set, not only to satellite data but also to e.g., data derived
from fluorescence sensors operated continuously on platforms
in the water (Sauzede et al., 2015). However, abundance-based
algorithms cannot predict atypical associations and may not hold
in a future ocean. Spectral-based approaches are based on bio-
optical properties (reflectance, absorption, and backscattering
spectra) which are specific to phytoplankton size and/or pigment
composition which enables detection of PSC and PG. These
algorithms include spectral decomposition, derivative analysis
and inversion modeling (e.g., Bracher et al., 2009; Mouw and
Yoder, 2010; Bricaud et al., 2012; Moisan et al., 2013; Xi
et al., 2015). Because they are based on physical principles
(radiative transfer, see comprehensive overview Mouw et al.,
2017), these algorithms rely to a much smaller degree on
empirical relationships than the abundance based approaches.

Ocean color remote sensing is limited to obtain information
only under sun-lit, cloud and ice free conditions and of surface
waters only. The latter means that satellite information only
covers approximately the upper 20% of the layer in which
phytoplankton is present (the so-called first optical depth;
Gordon and McCluney, 1975; Morel and Berthon, 1989). For
a complete assessment of the distribution and abundance of
PGs in situ measurements with sufficient spatial and temporal
resolution are also urgently required to complement ocean color
remote sensing (Brotas et al., 2013).

The continuous operation of optical instruments could
tremendously enhance the resolution of available PG data sets,
both vertically and horizontally. A few examples have shown
this potential which should be further explored. Chase et al.
(2013) and Liu et al. (2019) have derived high spatial resolution
data on various pigments’ surface concentrations from underway
flow-through hyperspectral spectrophotometric measurements
combined with HPLC based phytoplankton pigment point
measurements. In both studies Gaussian decomposition was used
to retrieve different types of chlorophylls besides the pigment
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groups of photosynthetic and photoprotective carotenoids. From
their data sets only one specific PG Chla, chlorophytes, could be
retrieved. Liu et al. (2019) have additionally applied the matrix
inversion method by Moisan et al. (2011) and successfully derived
different types of carotenoids, among them marker pigments for
diatoms and haptophytes. However, the pigment data sets of
the two studies are too limited to further allow the retrieval of
all PG being relevant to explain the total Chla (TChla) in the
investigated areas, thereby restricting their further application.
The continuous underwater operation of instruments which
directly enable the derivation of hyperspectral inherent optical
properties (IOPs) requires that independent data are easily
attainable to ensure frequent calibration (IOCCG Protocol Series,
2019).

To date the development and validation of PG and PSC
algorithms developed for optical data rely mostly on HPLC
pigment-based proxies of taxonomic composition or size
structure which require verification by additional analyses
including flow cytometry, imaging, microscopy and others
(Bracher et al., 2017). Some of these later methods, inline
flow cytometer or imaging systems, have shown promising
capabilities to retrieve horizontally highly resolved surface PG
data. However, although they are much better descriptors
of taxonomic phytoplankton groups, these methods cannot
measure the entire size range of phytoplankton or some
phytoplankton groups are only resolved coarsely (e.g., pico- and
nano-eukaryotic phytoplankton in flow-cytometry techniques).
Moreover, it is currently not possible to run these systems within
undulating sensor platforms, such as provided by profiling floats
or gliders (for a detailed review see Lombard et al., 2019).

Other types of sensors need to be explored for their potential
to obtain a high horizontally and vertically resolved complete
description, including quantitative measures, of relevant PGs.
Sauzede et al. (2015) calibrated worldwide underwater profile
chlorophyll fluorescence data with a large set of coincident
HPLC data and developed a neural network based technique
using the abundance based approach by Uitz et al. (2006) to
predict the water column integrated TChla and its distribution
among PSC. The method was developed generically, so other
data of chlorophyll fluorimeter sensors linked to depth profiling
platforms can be analyzed and TChla and PSC data sets can be
produced. However, the abundance based retrieval only allows
to retrieve the expected PSC based on global patterns. PG data
derived by making the most out of their spectral signatures (see
above) are preferred as observations to be linked to PFTs (Bracher
et al., 2017). To employ spectral algorithms for quantitative PG
retrieval, we require high spectrally resolved data sets. Measuring
apparent optical properties (AOPs) with radiometers has the
advantage over IOP measurements, that these measurements
are less sensitive to absolute calibration. By calculating AOPs,
which are gradients of measured irradiance between different
depths when deriving the diffuse attenuation, or ratios for the
reflectance and the transmission, most instrumental effects cancel
out (Miller et al., 2005).

In this study we have exploited the potential of deriving a
geospatial highly resolved (horizontally and vertically) data set on
major PGs Chla and TChla from hyperspectral radiometric data.

We obtained these data continuously along specific transects
within the Atlantic Ocean measured by a radiometer mounted
on a large undulating system towed behind the ship. Previous
studies by Taylor et al. (2013) and Bracher et al. (2015) have
retrieved from underwater radiometric measurements, either
upwelling radiance or remote sensing reflectance, concentrations
of various phytoplankton pigments using empirical orthogonal
function (EOF) analysis on the spectral data. Xi et al. (2020) have
further utilized the method to directly retrieve the Chla of six
PGs which explain most of the TChla. In the present study we
further adapted this EOF based retrievals by using AOPs derived
from downwelling underwater irradiance profile measurements.
We tested whether robust PG Chla retrievals are possible even
under high profiling velocities (∼1 m/s). We investigated the
quality of the PG Chla data by evaluating their potential to assess
the phytoplankton composition dynamics within the different
biogeochemical provinces crossed by our research cruise.

MATERIALS AND METHODS

Data were collected during expedition PS113 (10 May to
9 June 2018) on R/V Polarstern within the Atlantic Ocean
on a transect from the Patagonian Shelf to the English
Channel (Strass, 2018). We collected two types of data sets,
phytoplankton pigments (see section “Phytoplankton Group
Biomass From Phytoplankton Marker Pigment Measurements”)
and hyperspectral underwater profile transmission (see section
“Hyperspectral AOP and Euphotic Depth Data”) data which
were further processed to obtain Chla of major PG (detailed in
sections “Phytoplankton Group Biomass From Phytoplankton
Marker Pigment Measurements” and “EOF Based Prediction of
Phytoplankton Groups From Hyperspectral Underwater Data”).
In Section “Statistical Assessment of Model Performance” we
describe the statistical assessment of PG Chla predictions.
In Section “Temperature, Salinity, and Upper Mixed Layer”
additional data sets used for comparisons to our PG Chla
data sets and in Section “Classification of the Biogeochemical
Provinces” the clustering of data into different biogeochemical
provinces are presented.

Phytoplankton Group Biomass From
Phytoplankton Marker Pigment
Measurements
We sampled throughout the cruise discrete water samples
for determining phytoplankton pigments via HPLC technique
(Figure 1A). Every 3 h samples were collected at roughly 11 m
below the sea surface from the ship’s keel using a membrane
pump transporting the water to the laboratory via Teflon
tubing while the ship was moving 8 to 10 knots (4.1–5.1 m/s).
Additionally, samples were collected at 24 discrete stations where
the ship stopped and a CTD together with a rosette water sampler
was profiling the water column until 400 m depth. At these CTD
stations, besides the surface sample at 10 m, we sampled five
more depths. The latter were selected based on the CTD downcast
profiles of temperature, salinity and chlorophyll fluorescence
and four sampling depths were placed within the layer of the
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FIGURE 1 | (A) Surface TChla determined from HPLC samples during PS113 and from satellite (Sentinel-3A OLCI GlobColour GSM-Chla level-3 daily 4 km products
based on reduced resolution data version ESA PB2.3 products from the CMEMS GlobColour data archive, http://www.globcolour.info/). (B) Location of the
radiometric profiles obtained at CTD stations (black dots) and at Triaxus casts (red dots) during PS113. The biogeochemical provinces according to Longhurst (2007)
are marked and the provinces crossed by our cruise are named. SWAS for Southwest Atlantic Shelves, BRAZ for Brazilian Current Coast, SATL for South Atlantic
Tropical Gyre, WTRA for Western Tropical Atlantic, NATR for North Atlantic Tropical Gyre, CNRY for Canary Current Coast, NASE North Atlantic Subtropical Gyre
East, NASE-N for Northern NASE, NADR for North Atlantic Drift and NECS for Northeast Atlantic Shelves. (C) Distribution of HPLC surface stations into different
clusters after applying hierarchical cluster analysis following Taylor et al. (2011). Clusters I, III, V, and VI are associated with Longhurst provinces, as defined in (B).
Clusters II and IV were further differentiated after considering the significant differences for surface TChla, temperature and salinity within the two clusters which also
reflect certain Longhurst Provinces. One outlier within CNRY province was identified which had been organized to cluster V (BRAZ).

productive euphotic zone, presumably resolving roughly the
main features in terms of changes in phytoplankton biomass, and
then one sampling depth was placed just below this layer.

The water samples were filtered on board through Whatman
GF/F filters and the filters were thermally shocked in liquid
nitrogen and stored in the −80◦C freezer. The filters were
brought to the Alfred-Wegener-Institute after arrival in
Bremerhaven within a dry-ice filled box. The soluble organic
phytoplankton pigment concentrations were determined using
HPLC according to the method of Barlow et al. (1997) adjusted
to our temperature-controlled instruments as detailed in Taylor
et al. (2011). We determined the list of pigments shown in
Table 2 of Taylor et al. (2011) and applied the method by Aiken
et al. (2009) for quality control. Uncertainties of our HPLC
measurements were assessed from triplicate samples taken at
several prior cruises (data sets related to Taylor et al., 2011;
Zindler et al., 2013; Bracher et al., 2015). For the different cruises
the average deviation for HPLC analyses ranged from 5 to 8%
with a standard deviation for triplicates between 1 and 11%.

The Chla of the main PGs [diatoms, dinoflagellates,
haptophytes, prokaryotic phytoplankton excluding
Prochlorococcus (for brevity now called cyanobacteria),
chlorophytes, cryptophytes, and chrysophytes] were calculated
based on diagnostic pigment analysis (DPA) developed by
Vidussi et al. (2001) for PSCs Chla, further refined to calculate
PGs Chla in Hirata et al. (2011). We followed Losa et al. (2017,

Supplementary Material) for the pigment specific coefficients
as applied in Booge et al. (2018): The fractions of seven main
phytoplankton groups (as listed above) were calculated based
on the weighted sum of specific diagnostic pigments. These
weights were based on coefficients derived from a large in situ
pigment database excluding the Southern Ocean to convert
each diagnostic pigment concentration into a group specific
Chla. The Chla of Prochlorococcus was directly given by the
divinyl-Chla. The total Chla (TChla) was determined from
the sum of monovinyl- and divinyl-Chla and chlorophyllide
a concentration.

Hyperspectral AOP and Euphotic Depth
Data
Three types of AOPs and the euphotic depth, Zeu, were calculated
from measurements of depth (z) resolved hyperspectral
downwelling irradiance spectra, Ed(z, λ). Two identical
irradiance radiometers (RAMSES ACC-2-VIS, TriOS GmbH,
Germany) covering a wavelength range of 320–950 nm with an
optical resolution of 3.3 nm and a spectral accuracy of 0.3 nm
were installed on two different platforms:

The first radiometer was mounted to a steel frame system and
then was lowered by a winch in about 5 m horizontal distance to
the ship to measure the underwater Ed(z, λ) at 19 discrete stations
at around 2 h before or after local noon and just before the CTD
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stations (Figure 1B). We followed the procedure described in
Taylor et al. (2011). This radiometer was also equipped with an
inclination and a pressure sensor. To avoid ship shadow, the ship
was oriented such that the sun was illuminating the side where
the measurements were taking place. Radiometric profiles were
collected down to the maximum where light could be recorded,
except for one station with light below 135 m, at which point we
had to stop the measurement at this depth due to the length of
our cables. During each cast, the instrument was adapted to sea
temperature for about 3 min at the subsurface and then lowered
with 0.1 m/s to the maximum depth with waiting for about 1 min
at each 5 m step until 40 m and then with 10 m steps until
the maximum depth.

The second radiometer was mounted to a large undulating
platform (Triaxus, extended version, MacArtney, Denmark)
towed behind the ship at an average velocity of about 8 knots
(4.1 m/s) for several transects within the cruise track. In the
beginning of every transect the platform was hold for several
minutes in the subsurface, then the platform was undulating
between surface (varying with a minimum depth between 1
and 20 m) and about 250–300 m. The depth was recorded
continuously by the pressure sensor of a Seabird CTD (Sea-
Bird Electronics, United States) attached to the Triaxus and the
inclination in either dimension was measured by the Triaxus
hardware. Ed(z, λ) was measured by the RAMSES sensor and the
average speed to lower or lift the platform was about 1 m/s. For
more details on the operation of the Triaxus we refer to Strass
(2018) and von Appen et al. (2020). The sensor meta data is
available at https://hdl.handle.net/10013/sensor.5c126f5b-86de-
469c-adf7-251789e54362 and the repository of the raw data is
von Appen et al. (2019). Only profile data reaching Zeu and with
values of Ed(z = 15 m, λ = 490) > 150 mW m−2 nm−1 were
further used in the processing. In total, we used the RAMSES
profile data from 11 Triaxus transects, each of them lasting
between 2 and 48 h (Figure 1B).

Ed(z, λ) measurements were collected with sensor-specific
automatically adjusted integration times (between 4 ms and 8 s).
For the station sensor data we used only the downcast data (since
up and downcast were at the same geolocation), while for the
Triaxus sensor data we used all available and suitable up- and
downcast data since they were never at the same geolocation.
For valid Ed(z, λ) data, the inclination in either dimension
was smaller than 14◦ (Matsuoka et al., 2007). Following the
NASA protocols (Mueller et al., 2003), Ed(z, λ) data were
corrected for incident sunlight variations using simultaneously
obtained downwelling irradiance at the respective wavelength
measured above the surface water [Ed(0+, λ)] with another
hyperspectral RAMSES ACC-2-VIS sensor. Finally, these data
were interpolated on discrete intervals of 1 m. As surface waves
strongly affect measurements in the upper few meters, deeper
measurements that are more reliable can be further extrapolated
to the sea surface (Mueller et al., 2003). Following Stramski
et al. (2008), each profile was checked and an appropriate depth
interval z′ was defined (for station data mostly 7–22 m and for
the Triaxus casts mostly 7–30 m, sometimes even 7–60 m). This
was used to calculate the mean diffuse attenuation coefficients for
downwelling irradiance over this depth interval [Ǩd(λ)]. By using

Ǩd(λ), the subsurface irradiance Ed(0−, λ) for each profile was
extrapolated from the profiles of Ed(z, λ) within the respective
depth interval. Then two other types of AOP were calculated:

• The hyperspectral transmission at each depth was
calculated as in Eq. (1):

T(z, λ) = Ed(z, λ)/Ed(0+, λ) (1)

• The vertical attenuation coefficients for downwelling
irradiance, [i.e., Kd(λ, z1 → z2)] from the surface to the
maximum light depth were calculated following Lee et al.
(2005) for a 5 m interval between depths z1 and z2.

In order to derive Zeu, the photosynthetic active radiation
EdPAR(z) was calculated as the integral over Ed(λ, z) for λ = 400
to 700 nm, respectively. For the depths above the upper limit
of the respective depth interval the EdPAR(z) fitted results and
for the depths below the originally measured EdPAR(z) values
were taken. Finally Zeu at each station was calculated from the
EdPAR profiles as the 1% light depth where EdPAR(z) equals 0.01
of EdPAR(z = 0 m).

EOF Based Prediction of Phytoplankton
Groups From Hyperspectral Underwater
Data
We modified the method developed by Bracher et al. (2015)
which is similar to Xi et al. (2020) to derive continuous profile
data of PG Chla and TChla. However, instead of using remote
sensing reflectance we tested our three hyperspectral AOP data
sets, T(z,λ), Kd(z1 → z2,λ), and Ǩd(λ), as spectral input to the
models. We briefly summarize here this procedure and just detail
our applied changes to the method by Bracher et al. (2015).

Step 1: We limited the spectral range of our AOP input
data to 400–580 nm since the values at wavelengths above
were often very noisy. We applied an EOF analysis to our
standardized (subtracting the mean and then divided by the
standard deviation) spectral AOPs. Standardized AOP spectra
were matched for each PG separately with the HPLC based PG
Chla data. Then the singular value decomposition was performed
to the spectral AOP matrix X (with M observations × N
wavelengths; M may vary among different PGs due to the number
of matchups) to obtain the EOF modes by extracting the vectors
of the scores associated with the EOF modes (U), the EOF
loadings (V, i.e., spectral patterns) and the singular values of X
on the diagonal in decreasing order (3):

X = U6VT , xij =
∑

k=l,N

uikσkvkj (2)

Step 2: For each PG, we subsequently developed the
corresponding multiple linear regression model using the
collocated PG Chla data and the EOF modes extracted from the
AOP data, in which the log-transformed PG Chla data derived
from the HPLC measured pigment concentrations, ln(Ctrain

o ),
are expressed as a function of a subset of the EOF scores (U).
As in Xi et al. (2020), the EOF modes with standard deviations
(singular values from 3) that are less than 0.0001 times the
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standard deviation of the first EOF mode were considered
insignificant and thus omitted. Following Bracher et al. (2015)
a stepwise routine was applied to search for smaller regression
models (for each PG model) based on fewer prediction terms
through minimization of the Akaike information criterion.
The regression model for PG Chla [ln(Cp)] predictions was
expressed as:

ln (Cp) =a+b1u1+b2u2+...+bnun (3)

Step 3: The robustness of the fitted model was estimated following
Bracher et al. (2015) by a cross-validation of the model fitting
using 500 permutations for splitting the collocated data into two
subsets, in which 80% of the data was used for model fitting
(training), while the rest of the data was used for prediction
validation (details in Step 4). The pairs of observed and predicted
PG Chla (Cval

o and Cval
p , respectively) of the 500 permutations

were recorded for later prediction error statistics.
Step 4: To predict PG Chla from the T(z, λ), Kd(z1 → z2,λ),

and Ǩd(λ) spectral data for which we do not have corresponding
pigment based PG information, we projected these standardized
spectral data onto the EOF loadings (V) to derive the new sets of
EOF scores (U). The derived U were subsequently used for the
prediction with the fitted linear model [Eq. (3) in Step 2], where
the regression coefficients were taken from the model developed
with the full matchup data set of pigment and AOP [either T(z,
λ), Kd(z1 → z2, λ), or Ǩd(λ)] data.

Step 5: We finally applied a strict data quality control since
we encountered large deviations between the TChla directly
predicted from its specific EOF model and the sum of the
seven PG Chla predictions (SPG-Chla) for some data points.
Cryptophyte Chla was not included because of the failure
of reliable predictions and their marginal contributions as
derived from the HPLC PG data (details see section “Prediction
of Phytoplankton Groups From Hyperspectral Underwater
Measurements”). We removed all data points where the deviation
between SPG-Chla to TChla was larger than 20%. For Ǩd(λ)
related predictions 42 out of 425 data points had to be removed,
for the T(z, λ) and Kd(z1 → z2, λ) related predictions only
one entire profile and only very deep measurements of profiles
had to be removed. For Kd(z1 → z2, λ) related predictions
deepest quality controlled data were 20–30 m above the deepest
quality controlled T(z, λ) related predictions. Visual inspection
showed that flagged Ǩd(λ) data had resulted from profiles where
only very few data points were available within the upper layer
and therefore the fitting of Kd in the upper depth failed. The
remaining data sets showed a correlation coefficient of 0.93,
0.92, and 0.95 for T(z, λ), Kd(z1 → z2, λ), and Ǩd(λ) related
predictions of TChla versus SPG-Chla, respectively. Finally the
PG Chla (PGi-Chla) was recalculated to agree consistently with
TChla predictions, as follows. First, the fraction of each PG
(f-PGi) was determined by Eq. (4):

f -PGi = PGi-Chla/SPG-Chla (4)

Then the final PGi-Chla was determined by Eq. (5):

PGi-Chla = TChla.f -PGi (5)

Statistical Assessment of Model
Performance
Since the Chla range varied greatly among the different PG,
we calculated mainly relative error statistics. Considering the
comparison between HPLC observations and AOP data based
model predictions, error statistics were calculated for the full
collocated data set incorporated into the training (full-fit results).
Here, the determination coefficient, R2, the root mean square
difference (RMSD), the slope and the intercept of the linear
regression were based on the log-scaled predicted as compared
to the log-scaled observed PG Chla and TChla data, while
the median percent difference (MPD), the median percent bias
(MPB) were based on the non-log-transformed concentrations.
For the cross validation, the R2 based on ln(Cval

p ) versus ln(Cval
o )

was derived for each permutation, and the mean value of the
cross-validated R2 (R2cv) for all permutations is calculated.
Similarly, and in accordance with the error statistics above,
the average of RMSD and MPD for cross validation, named
RMSDcv and MPDcv, were determined. For exact definitions and
equations see Bracher et al. (2015).

Temperature, Salinity, and Upper Mixed
Layer
For further interpretation of our surface phytoplankton
data set and clustering into biogeochemical provinces (see
section “Classification of the Biogeochemical Provinces”), we
compared these to matchup data of surface temperature and
salinity obtained continuously during PS113 by the ship’s
thermosalinograph Seabird SBE 21 equipped with an external
thermometer SBE 38 (both Sea-Bird Electronics, United States)
installed at the keel of the ship. These data are published in Strass
and Rohardt (2018). Temperature and salinity profiles were
obtained using a Seabird SBE 911 CTD (Sea-Bird Electronics,
United States) at the discrete CTD stations and another one
on the Triaxus platform. The measurements from the two
CTD systems agree very well (von Appen et al., 2020). The
corresponding data are published in Strass (2019) and von
Appen et al. (2019). Density was calculated from temperature
and salinity profiles and the upper mixed layer depth (Zm)
was derived from those density profiles as the depth at which
the density first exceeds the shallowest measured density by
0.125 kg/m3.

Classification of the Biogeochemical
Provinces
Water samples were grouped in clusters according to the
results of an unsupervised hierarchical cluster analysis (HCA)
using the Euclidian distance as the distance measure and
linking clusters following Taylor et al. (2011). The unsupervised
HCA has been proven useful in Taylor et al. (2011) based
on phytoplankton pigment composition for reflecting the
measurements groupings into biogeochemical provinces
according to Longhurst (Longhurst, 2007). As input data, we
used the HPLC based fractions of PG Chla to TChla. As in
Taylor et al. (2011), within clusters, differences in surface TChla,
surface temperature and surface salinity were tested following an
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initial Shapiro–Wilk’s W test of normality. Normally distributed
data were tested with the independent t-test and non-normally
distributed data were tested with a Mann–Whitney-U-test. All
tests were considered significant when p< 0.05.

RESULTS AND DISCUSSION

Prediction of Phytoplankton Groups
From Hyperspectral Underwater
Measurements
We obtained 227 valid surface data points for PG Chla and
TChla derived from HPLC measurements. Twenty-four of these
data were sampled at the CTD stations where we also obtained
information at five more depths. Details on the range and
distribution of TChla and PG fraction are discussed in Section
“Phytoplankton Composition Along the Atlantic Transect.”
Spectral input data sets were based on 424 valid irradiance
profiles for T(z, λ) and Kd(z1 → z2, λ) and 383 valid Ǩd(λ)
data points. The composition and range of the three AOP type
input data, namely the depth resolved T(z, λ) and Kd(z1 → z2,
λ), and the upper surface layer mean Ǩd(λ) data, are shown
as original and standardized spectra (Figure 2). Standardized
spectra, that were used for the EOF analysis, look very much
alike for the latter two AOP data sets, and show inverted spectral
features between T(z, λ) and Kd(z1 → z2, λ) data. The EOF
analyses identified the dominant modes of variance which can
be interpreted as signatures in the optical properties of water
constituents in the light lit water column. The first four modes
of EOF already explain 99.29, 99.45, and 99.77% of the total
variance for the T(z, λ), Kd(z1 → z2, λ), and Ǩd(λ) based PG
prediction models (Table 1), with the first mode explaining 68.83,
71.77, and 84.39%, respectively. Other studies (e.g., Craig et al.,
2012; Taylor et al., 2013; Bracher et al., 2015; Xi et al., 2020)
have detailed the EOF modes selected for predictions of water
constituents. They have investigated the underlying bio-optical
signature that several EOF modes may carry. The distinct linkage
between the EOF modes and the specific pigments or PGs was
not identified, as the PG information cannot, to first-order, be
reflected by these EOF modes (Craig et al., 2012). We followed
Bracher et al. (2015) and Xi et al. (2020) where not only TChla
but also pigment concentrations and PG Chla were predicted,
respectively, by including in the prediction models higher EOF
modes. Though these contributed only a minute portion to the
total AOP variance, they still might inherit the optical signatures
of phytoplankton (partly group specific) pigments. Applying the
Akaike information criterion (i.e., the significance of an EOF
mode in terms of each term’s removal for each specific PG or
TChla model, see Table 2), proved that for our models also
higher EOFs still were significant for the predictions. All our
models follow the EOF mode selections found for case-1 waters
in Bracher et al. (2015) and Xi et al. (2020) where most of the
variation in the spectral shape was caused by phytoplankton
pigments (groups) absorption in addition to water absorption
itself: E.g., the EOF-2 mode is the most important term for TChla
and nearly all PG Chla models, except for Prochlorococcus and

cyanobacteria where the other EOF modes take over and more
EOF modes are included in these PG Chla models. This is because
for these two groups their Chla does not co-vary with TChla.

The results of the statistical assessment of the model
performance considering the full fit and cross-validation
comparisons are presented in Table 3. Matchups to HPLC PG
data sets of the three AOP-derived PG Chla and TChla varied
(Table 3), because for Ǩd(λ) only surface values, while for the T(z,
λ) and Kd(z1 → z2, λ) data sets also matchups from CTD stations
at five more depths could be considered. Different numbers
of matchups for these two depth-resolved data sets resulted
from the differences in valid PG data points due to the data
quality procedure applied (see section “EOF Based Prediction of
Phytoplankton Groups From Hyperspectral Underwater Data,”
Step 5). Numbers of matchup data for distinct PGs were also
different because certain PGs may not always be present at all
matchup points. This is especially seen for cryptophytes which
only gave ∼15% of matchups other groups gave. For the Ǩd(λ)
data set, no predictions of cryptophytes were possible and for the
T(z, λ) based data set the RMSDcv value became nearly five times
higher than the RMSD value, both due to too limited number of
cryptophyte matchups. Although the Kd(z1 → z2, λ) predictions
of cryptophytes showed reasonable results for RMSDcv, R2cv,
and MPDcv, we exclude this group from the further discussion
and from predictions for the cruise transect, since the analysis
by Bracher et al. (2015) clearly showed that a minimum of 25
matchup points are necessary for reliable pigment predictions.

All other PG Chla and TChla were well predicted from our
regression models based on the EOF scores derived from the
three hyperspectral AOP data sets combined with the matchup
HPLC PG Chla (Table 3). Full fit results are best (indicated
as bold in Table 3) for Ǩd(λ), closely followed by T(z, λ) and
then Kd(z1 → z2, λ) based models (e.g., R2

≥ 0.71, ≥0.65 and
≥0.39, and MPD ≤ 46%, ≤47% and ≤56%, respectively). In
addition, the results for the cross validation statistics based on
500 permutations using different sub-samples are similar for
the three AOP data set based models. Full fit R2, RMSD, and
MPD values show better results for all three AOP based PG
data sets as compared to R2cv, RMSDcv, and MPDcv values,
respectively. However, for the T(z, λ) based PG data sets, the
difference between the statistics of the full fit and that of the
mean of the cross validation is lowest (here R2cv ≥0.54 and
MPDcv≤ 53%). Only its TChla prediction is a bit worse than for
the two other AOP based models. For the Kd(z1 → z2, λ) based
models, results for all three cross validation parameters are only
slightly worse than T(z, λ) based models for most PGs, except
for Prochlorococcus and cyanobacteria where they show very low
prediction capabilities (e.g., R2cv of 0.13 and 0.23, respectively).
For Ǩd(λ) based PG Chla data, the R2cv and MPDcv results are
very similar to the T(z, λ) based model results, however, the
RMSDcv values highlight large deviations for TChla and most
PGs (except Prochlorococcus and cyanobacteria). As compared to
RMSD, these values are increased mostly by a factor between 1.7
and 3, while the factor was only 1.2–1.4 and 1.1–1.7 for the T(z,
λ) and Kd(z1 → z2, λ) based models, respectively. This indicates
a lower stability for Kd(λ) based PG Chla and TChla data. It also
emphasizes the need to consider a fleet of statistical parameters
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FIGURE 2 | All spectra of the three types of AOP input data [upper panel: Kd (z1 → z2, λ), middle panel: T (z, λ), and lower panel: Ǩd (λ)] to EOF based PG and TChla
prediction models. Spectra are provided as originals (left) and standardized by mean and standard deviation (right).
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TABLE 1 | Percentage of total variance explained by the decomposed EOF modes derived from the three PS113 AOP data sets T (z,λ), Kd (z1 → z2, λ) and Ǩd (λ), as
specified in Sections “Hyperspectral AOP and Euphotic Depth Data” and “EOF Based Prediction of Phytoplankton Groups From Hyperspectral Underwater Data.”

EOF1 EOF2 EOF3 EOF4 EOF5 EOF6 EOF7 EOF8 EOF9 EOF10 EOF11 EOF12 EOF13 EOF14

T (z, λ) 68.73 27.86 2.09 0.61 0.28 0.12 0.09 0.07 0.06 0.02 0.02 0.02 0.01 0.01

Kd (z1 → z2, λ) 71.77 25.39 2.00 0.39 0.15 0.11 0.04 0.04 0.03 0.03 0.02 0.02 0.01

Ǩd (z, λ) 84.39 13.94 1.03 0.41 0.12 0.04 0.03 0.02 0.02 0.01

As example we provide the results from the TChla matchup data.

TABLE 2 | Change in the Akaike information criterion for the robust PG Chla and TChla predictions by the EOF models based on three different types of AOP data sets
[upper panel: T (z, λ), middle panel: Kd (z1 → z2, λ) and lower panel: Kd (λ)], as specified in Sections “Hyperspectral AOP and Euphotic Depth Data” and “EOF Based
Prediction of Phytoplankton Groups From Hyperspectral Underwater Data.”

T(z, λ) EOF1 EOF2 EOF3 EF4 EOF5 EOF6 EOF7 EOF8 EOF9 EOF10 EOF11 EOF12 EOF13 EOF14

TChla 1 33 NA 1 2 1 NA 13 14 6 2 NA NA 2

Diatoms NA 96 NA NA 11 4 NA 1 NA NA NA 1 NA

Haptophytes NA 64 6 13 13 NA NA 16 3 10 NA NA NA NA

Cyanobacteria 5 NA 45 5 5 11 0.3 26 53 2 5 6 NA

Chlorophytes 11 65 1 7 NA NA NA 13 0.4 6 6 NA NA 5

Dinoflagellates NA 83 2 NA NA NA 3 6 NA NA NA

Chrysophytes NA 55 31 20 27 0.1 NA 20 3 4 NA NA NA NA

Prochlorococcus 40 2 2 11 24 20 4 16 NA 0.4 7

Cryptophytes NA 28 4 7 30 NA 1 21

Kd (z1 → z2, λ) EOF1 EOF2 EOF3 EOF4 EOF5 EOF6 EOF7 EOF8 EOF9 EOF10 EOF11 EOF12 EOF13

TChla 7 53 28 10 NA NA NA NA NA NA NA NA NA

Diatoms 0.3 37 16 1 4 NA NA NA 0.2 5 1 NA

Haptophytes 9 50 2 2 1 NA 0 NA NA NA NA NA NA

Cyanobacteria 14 NA 24 1 13 1 1 3 1 1 9 12 NA

Chlorophytes 16 62 3 2 NA NA NA NA NA NA NA NA NA

Dinoflagellates 13 65 6 2 NA NA NA NA NA NA NA NA

Chrysophytes 7 46 NA 2 5 NA NA NA 0.3 NA NA NA NA

Prochlorococcus NA NA 5 6 3 NA 10 NA NA NA NA NA 0.54

Cryptophytes 17 4 26 21 22 NA 23 5 10 0.4 2

Ǩd (z, λ) EOF1 EOF2 EOF3 EOF4 EOF5 EOF6 EOF7 EOF8 EOF9 EOF10

TChla 12 33 3 15 1 11 NA 4 NA 1

Diatoms NA 55 3 4 0.3 9 NA NA NA NA

Haptophytes 7 44 2 NA 0.1 NA 4 NA NA NA

Cyanobacteria 26 32 8 20 0.1 0.2 NA 22 NA 5

Chlorophytes 2 31 NA NA NA NA 1 NA NA NA

Dinoflagellates 7 40 1 NA 0.1 NA NA NA NA NA

Chrysophytes 10 39 0.2 NA 1 NA 4 NA NA 0.3

Prochlorococcus 18 6 43 1 18 NA 6 19

Cryptophytes NA NA NA NA NA NA NA NA NA NA

The higher the Akaike information criterion, the more important the corresponding EOF mode for the prediction model. NA indicates that the corresponding EOF mode is
not used in the prediction model. Bold highlights the EOF mode with the highest change in the Akaike information.

when assessing algorithm performance. Although the T(z, λ)
data always bear spectral signatures caused by the scattering
of light responding to the composition of water constituents
from above layers to the respective depth (Lee et al., 2005),
the retrieved PG Chla distributions from our model predictions
based on this AOP data set also reveal realistic expectations of
phytoplankton composition at deeper depths based on our cross
validation results (The PG Chla and TChla predictions are further
assessed and compared in sections “Phytoplankton Composition

Along the Atlantic Transect”3.2 and “Comparison to Other
Atlantic Ocean Observations of Phytoplankton Composition”).
The shapes of standardized spectra of our T(z, λ) and Kd(z1→ z2,
λ) data are just inverted and give the impression to contain
very similar information (Figure 2). This leads to the conclusion
that the introduced uncertainty from layers above to the defined
layer depths of T(z, λ) is very low. The T(z, λ) data appear
to be less affected by noise at low light levels since valid PG
Chla predictions could be obtained at larger depths than the
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TABLE 3 | Full fit statistics of PS113 optical based TChla and PG Chla predictions against HPLC TChla and PG Chla data: number of the matchup points (N),
determination coefficient (R2), intercept (INT), median percent bias (MPB), median percent difference (MPD), and root mean square difference (RMSD).

T(z,λ) N R2 RMSD MPD MPB INT R2cv MPDcv RMSDcv

TChla 83 0.65 0.47 29 0.6 −0.46 0.45 33 0.62

Diatoms 63 0.8 0.78 47 −16.3 −0.83 0.68 53 1.02

Haptophytes 83 0.69 0.56 37 4.2 −0.9 0.57 44 0.68

Cyanobacteria 79 0.78 0.41 22 −0.5 −0.74 0.54 29 0.58

Chlorophytes 81 0.69 0.65 39 −1 −1.15 0.55 48 0.82

Dinoflagellates 65 0.75 0.56 38 −1 −0.99 0.59 43 0.77

Chrysophytes 83 0.73 0.62 42 12.5 −1.28 0.62 48 0.75

Prochlorococcus 67 0.75 0.49 31 −5.4 −0.72 0.55 35 0.68

Kd (z1 → z2, λ) N R2 RMSD MPD MPB INT R2cv MPDcv RMSDcv

TChla 80 0.63 0.51 29 1.4 −0.51 0.6 33 0.55

Diatoms 68 0.71 0.91 56 4.8 −1.24 0.56 68 1.15

Haptophytes 80 0.59 0.69 40 3.9 −1.24 0.52 44 0.77

Cyanobacteria 77 0.64 0.51 27 −10.3 −1.12 0.23 38 0.83

Chlorophytes 77 0.59 0.79 46 0.5 −1.57 0.51 53 0.89

Dinoflagellates 66 0.69 0.62 42 2.5 −1.21 0.64 45 0.69

Chrysophytes 80 0.6 0.83 43 −5.4 −2 0.53 52 0.94

Prochlorococcus 65 0.36 0.75 37 −13 −1.87 0.13 45 1.01

Ǩd (λ) N R2 RMSD MPD MPB INT R2cv MPDcv RMSDcv

TChla 35 0.86 0.31 13 0.9 −0.23 0.53 27 0.84

Diatoms 35 0.83 0.65 46 −6.6 −0.85 0.49 62 1.76

Haptophytes 35 0.79 0.54 24 −1.6 −0.75 0.58 38 0.99

Cyanobacteria 35 0.89 0.21 13 0.6 −0.34 0.52 23 0.56

Chlorophytes 32 0.71 0.66 31 6.5 −1.25 0.55 50 1.09

Dinoflagellates 31 0.8 0.52 32 4 −0.85 0.57 44 0.89

Chrysophytes 34 0.76 0.67 32 −3.9 −1.35 0.52 53 1.3

Prochlorococcus 30 0.88 0.29 16 −2.9 −0.37 0.48 35 0.83

Cross validation statistics (R2cv, MPDcv, and RMSDcv) are also presented. Models are differentiated among AOP input data set, T(z, λ), Kd (z1 → z2,λ), and Kd (λ), as
specified in Section “Hyperspectral AOP and Euphotic Depth Data” and “EOF Based Prediction of Phytoplankton Groups From Hyperspectral Underwater Data.” The
correlations between predicted and HPLC PG Chla and TChla concentrations for these pigments were highly significant (p < 0.0001). Bold highlights the best results
among the three data sets.

Kd(z1 → z2, λ) based model predictions. This is also supported
by the recommendation of Lee et al. (2005) to rather choose
a large depth interval for the calculation of Kd(z1 → z2, λ)
in order to overcome the noise generated by wave introduced
light fluctuations or high noise at low light levels. Therefore,
given the fact that T(z, λ) data set provides overall the best
cross validation statistics and that T(z, λ) based PG Chla and
TChla data contain vertically resolved information reaching the
deepest layers compared to those derived from the two other
AOP variables, we selected this data set as being the most reliable
data set. In the following we only use the predicted PG Chla
and TChla data sets by T(z, λ) based models for comparison to
similar data sets in other studies. Furtherone, we use this (now
called ‘optical based prediction’) data set for demonstrating its
applicability for obtaining highly resolved information on the
phytoplankton abundance and composition in the water column
of the Atlantic Ocean.

Our cross validation parameters obtained from the optical
based PG and TChla predictions show comparable values (e.g.,
R2cv of 0.45–0.68, MPDcv of 29–53% and RMSDcv of 0.58–1.02)

to other studies that retrieve TChla and phytoplankton pigment
concentrations from optical data sets. E.g., Bracher et al. (2015),
using in a similar region the same type of prediction models but
based on field remote sensing reflectance data, obtained for R2cv,
MPDcv and RMSDcv values ranging from 0.35 to 0.80, 28 to
43%, and 0.48 to 0.82. Chase et al. (2013) and Liu et al. (2019)
derived phytoplankton pigments (different types of chlorophylls
and the two major carotenoid groups) in the global and Arctic
Ocean, respectively, by applying the Gaussian band method to
hyperspectral IOP data from underway spectrophotometry; their
validation results gave MPD values between 36–53% and 21–34%,
respectively. Applying the matrix inversion technique in Liu et al.
(2019) to the same Arctic data set allowed for the quantification
of more specific carotenoid pigments, however, with larger MDP
values (37–65%). Sauzede et al. (2015) predicted fractions of PSC
on TChla from fluorometric data using a neutral network based
technique combined with the abundance based approach by Uitz
et al. (2006). Their validation results for the three PSC predictions
against independent HPLC data gave R2 values between 0.58–
0.72 and MPD values of 35–46%. Compared to Xi et al.
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(2020) who employed the EOF based PG prediction models to
satellite (multispectral) remote sensing reflectance data, our cross
validation results based on T(z, λ) EOF models are for all PG
groups and TChla better, except that their R2cv value are slightly
better for TChla and haptophytes (0.75 and 0.61, respectively).
In summary, our validation results indicate similar data quality
as for the aforementioned methods predicting information on
various phytoplankton pigment concentrations and fractions of
PSC. We obtain even better quality for our models as compared
to the PG Chla predictions by Xi et al. (2020), which is especially
the case for cyanobacteria and Prochlorococcus Chla. This may
be caused by the higher regional consistency of our data sets,
the hyperspectral data set giving more opportunities to find the
best linear models for the predictions and that the HPLC data
have been measured by only one laboratory which further reduces
measurement uncertainty.

Phytoplankton Composition Along the
Atlantic Transect
During our cruise in May–June 2018 transecting the Atlantic
Ocean from the Patagonian Shelf to the English Channel, the
surface water TChla from our HPLC data set ranged between
0.03 and 5.42 mg/m3. The HPLC TChla corresponded well to
the satellite Chla derived from the Sentinel-3A OLCI within
the same time frame (Figure 1A). To further characterize the
phytoplankton composition and distribution along the cruise
track, we discuss the results from our HPLC and optical based
predictions PG data sets based on their clustering into the
Longhurst provinces (Longhurst, 2007). In our study lowest
(HPLC) TChla were 0.037 at the surface and 0.015 mg/m3 at
depth which is above the values encountered in the clearest
ocean waters (South Pacific Gyre) by Morel et al. (2007). The
corresponding PG Chla can be smaller and since the detection
limit of our HPLC system is 1 µg/m3, we still kept all PG Chla
above this value in the data set. However, following Xi et al.
(2020) we consider PG Chla below 0.005 mg/m3 to bear much
larger uncertainty.

The hierarchical cluster analysis based on the HPLC PG
data resulted in six clusters. The assignment of the HPLC
surface stations into the clusters is depicted in Figure 1C. The
location of the samples belonging to four of the six clusters
reflected very well the geographic locations of specific Longhurst
provinces from the Atlantic Ocean: Clusters I corresponded
to the Southwest Atlantic Shelves (SWAS), Cluster III to the
Canary Current Coast (CNRY), Cluster V to the Brazilian
Current Coast (BRAZ), and Cluster VI to the Northeast
Atlantic Shelves (NECS). Cluster IV stations fall into the North
Atlantic Drift (NADR) and the Northern part of the North
Atlantic Subtropical Gyre East (NASE-N). The remaining cluster
contained all Atlantic Longhurst gyre regions crossed by our
cruise, namely the South Atlantic Tropical Gyre (SATL), North
Atlantic Tropical Gyre (NATR), the southern part of North
Atlantic Subtropical Gyre East (here abbreviated as NASE),
and the Western Tropical Atlantic (WTRA). By further testing
within clusters II and IV the significance of the absolute
values of the surface TChla, temperature and salinity, a clear

north-to-south structure could be distinguished and we finally
could separate Cluster II into SATL, WTRA, NATR, and
NASE, and Cluster IV into NASE-N and NADR stations.
As an outlier, one station within CNRY appeared within
Cluster V (BRAZ).

Following the province assignment based on the HPLC
derived surface PG data, our optical based predictions of PG Chla
and TChla were classified into the aforementioned Longhurst
provinces. PG data from HPLC and the optical based predictions
show consistent patterns. This is also found for PG distributions
at depths where they were observed (below this is detailed for
the provinces SATL, WTRA, NATR, and CNRY). However, for
a few of them (n = 7, all sampled on May 31, 2018) the upper part
of each profile was following NATR PG composition, while the
lower part was following CNRY PG composition, or vice versa.
This is consistent with the fact that in this region water from
the open ocean North Atlantic intermixed on small horizontal
and vertical scales with water from the Canary upwelling system
(von Appen et al., 2020). Most optical stations (Table 4) were
sampled in WTRA (>40%), closely followed by SATL (∼35%),
and 10% were sampled each for the CNRY and NATR provinces.
Only very few optical profiles were available from NASE (n = 8)
and only one each for SWAS and BRAZ. This diminishes the
generality of the observed features in the vertical structure in
these latter provinces. We obtained only surface HPLC based
PG data and no optical measurements North of 36◦N (Table 4).
Therefore, NASE-N, NADR, and NECS can only be described
briefly, while for the SATL, WTRA, CNRY, and NATR we can
provide in-depth analysis.

Mean and standard deviations (indicated as ±) for the
fractions of PG Chla on TChla from the surface HPLC data
are given in Table 5, and the surface HPLC-TChla, temperature
and salinity measured from the thermosalinograph at all HPLC
stations for each province are presented in Table 1. Figure 3
shows the depth resolved TChla along the whole cruise track
from HPLC and optical based predictions. The latter match very
well the values obtained from HPLC which is also supported
by comparing the mean and standard deviation results in
different Longhurst provinces for both data sets (Table 5).
The optical based TChla predictions always reach at least the
Zeu (or even below), the depth where often the maximum
biomass was obtained. Along our transect Zeu ranged from
∼25–120 m and Zm from 10 to 90 m. The surface PG
Chla fraction predictions derived from the optical data set
fall well within the standard deviation of fractions obtained
from the HPLC data in all provinces (Figure 4). This is
especially interesting as: (1) the optical data sampled two to
three times more stations in the SATL, WTRA, CNRY, and
NATR provinces (n = 149, n = 179, n = 43, and n = 36,
respectively) than those by the HPLC data set (n = 77, n = 42,
n = 13, and n = 13, respectively), and (2) the distribution
of the sampled data was quite different for both data sets
in these provinces. Mind that no robust predictions could
be obtained for cryptophytes from the optical based data
sets (see section “Prediction of Phytoplankton Groups From
Hyperspectral Underwater Measurements”) while those were
included in the calculation of the HPLC PG fractions. We
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TABLE 4 | Summary of PS113 measured parameters averaged within the Longhurst provinces, as clustered according to Figure 1B.

Province TChla-HPLC mg/m3 TChla-T(z, λ) mg/m3 Temp. ◦C Salinity PSU Zeu m Zm m DCM n-HPLC HPLC n-T(z, λ) Cluster #

SWAS 1.03 ± 0.52 0.66 ± 0.05 11.4 ± 3.3 34.1 ± 0.4 38 65 None 7 1 I

BRAZ 1.71 ± 0.86 1.21 ± 0.04 13.8 ± 2.4 34.4 ± 0.5 37 35 None 7 1 V

SATL 0.15 ± 0.12 0.16 ± 0.10 24.0 ± 2.9 36.6 ± 0.6 114 ± 14 77 ± 8 ∼Zeu 77 149 II

WTRA 0.21 ± 0.09 0.21 ± 0.12 27.5 ± 1.2 35.8 ± 0.6 74 ± 7 28 ± 7 ∼Zeu 42 179 II

NATR 0.18 ± 0.07 0.23 ± 0.11 21.1 ± 1.0 36.8 ± 0.3 75 ± 10 50 ± 10 ∼Zeu 11 43 II

CNRY 0.55 ± 0.21 0.54 ± 0.14 21.5 ± 0.9 36.2 ± 0.3 53 ± 5 43 ± 6 None 27 36 III

NASE 0.15 ± 0.05 0.15 ± 0.04 18.9 ± 1.2 36.5 ± 0.3 80 ± 6 19 ± 11 ∼Zeu 24 8 II

NASE-N 0.30 ± 0.14 n.m. 16.3 ± 0.8 35.8 ± 0.2 n.m. n.m. n.m. 11 n.m. IV

NADR 0.55 ± 0.20 n.m. 15.6 ± 0.5 35.6 ± 0.0 n.m. n.m. n.m. 11 n.m. IV

NECS 2.6 ± 1.8 n.m. 13.4 ± 1.2 35.1 ± 0.2 n.m. n.m. n.m. 8 n.m. VI

Mean and standard deviation (provided behind ±) for surface TChla from HPLC (TChla-HPLC) and optical based predictions using T(z, λ) data set [TChla- T(z, λ)],
temperature (Temp), salinity (Salinity) data, euphotic depth (Zeu), and upper mixed layer depth (Zm) values. In addition, the depth of the deep TChla maximum (DCM), the
number of surface HPLC samples (n-HPLC) and of quality controlled radiometric profiles used in the T(z, λ) [n- T(z,λ)] data set are listed. “n.m.” means that the parameter
was not measured in this province and “none” means no DCM was detected.

TABLE 5 | Summary of PG Composition during PS113 within Longhurst provinces, as clustered according to Figure 1.

Province Diatoms Haptoph Cyanobac Prochlor Chloroph Dinoflag Chrysoph Cryptoph Cluster

Percentage on TChla from HPLC

SWAS 17 ± 11 40 ± 18 4 ± 2 1 ± 2 17 ± 5 7 ± 5 2 ± 2 10 ± 5 I

BRAZ 83 ± 14 8 ± 5 1 ± 1 0 6 ± 4 1 ± 3 1 ± 1 1 ± 2 V

SATL 3 ± 2 14 ± 5 32 ± 10 38 ± 7 7 ± 7 4 ± 2 2 ± 1 0 II

WTRA 4 ± 3 11 ± 6 32 ± 8 41 ± 7 4 ± 3 6 ± 3 1 ± 1 0 II

NATR 7 ± 4 15 ± 5 28 ± 6 30 ± 11 7 ± 3 9 ± 3 2 ± 1 0 II

CNRY 12 ± 14 35 ± 10 21 ± 10 2 ± 3 13 ± 3 11 ± 6 5 ± 2 2 ± 3 III

NASE 12 ± 5 19 ± 6 31 ± 7 22 ± 11 4 ± 4 9 ± 3 3 ± 1 0 II

NASE-N 16 ± 4 37 ± 4 21 ± 7 0 10 ± 5 8 ± 6 3 ± 3 3 ± 3 IV

NADR 8 ± 6 42 ± 8 11 ± 5 0 14 ± 3 12 ± 4 5 ± 3 6 ± 4 IV

NECS 63 ± 20 10 ± 12 2 ± 3 0 8 ± 9 8 ± 7 1 ± 1 9 ± 8 VI

Mean and standard deviation (provided behind ±) of HPLC surface data on PG Chla fractions to TChla:Haptoph for haptophytes, Cyanobac for cyanobacteria, Prochlor
for Prochlorococcus, Dinoflag for dinoflagellates, Chrysoph for chrysophytes, Cryptoph for cryptophytes.

FIGURE 3 | TChla from HPLC (triangle) and optical based [T (z, λ)] predictions (dots) within the water column along the whole PS113 transect. The euphotic depth,
Zeu, is also depicted (black line).

do not expect this to introduce much uncertainty into the
optical based PG fractions since the HPLC cryptophyte Chla
data show that this group only contributed ∼10, ∼2, and ∼1%
in SWAS, CNRY, and BRAZ, respectively, while they were

absent in all the other provinces where we obtained optical
data (Table 5).

Moreover, at depth the optical based predictions of PG Chla
agree well with the HPLC results within the four provinces
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FIGURE 4 | Mean (bar) and standard deviation (line) of fraction of seven PG Chla on TChla as obtained from HPLC data (blue) and optical based [T (z,λ)] predictions
(red) during PS113 for the five Longhurst provinces SATL, WTRA, NATR, CNRY, and NASE, as defined in Figure 1. Cyanobacteria includes all prokaryotic
phytoplankton without Prochlorococcus.

(SATL, WTRA, CNRY, and NATR) where we collected four long
continuous daylight optical profile samplings by our undulating
platform Triaxus. They were carried out on 22, 24, 25, and
31 of May 2018 (Figures 5–7), respectively. Although we
only obtained occasionally depth resolved HPLC PG Chla and
TChla data (24 profiles in total with only six depths sampled
each), we were able to derive 424 profiles of valid optical
based prediction data at only a marginal ship time expense
(the transit velocity of the ship had to be reduced from 10
knots to 8 knots). This high frequency vertical optical sampling
provided the novel opportunity to resolve very well for these
four Longhurst provinces the PG composition underneath the
surface along the cruise track. Detailed discussion is presented
below. If not referred to a specific figure, results can be found
in Figure 4 and Tables 4, 5.

Within SATL, roughly from 42 to 27.5◦S, surface TChla
(0.15± 0.12 mg/m3 for HPLC based data, 0.16± 0.10 mg/m3 for
optical based predictions) was the lowest (as in NATR), Zeu and
Zm were the deepest (114 ± 14m and 77 ± 10 m, respectively)
among all sampled Longhurst provinces. Salinity at surface was
very high (∼36.6 PSU) as in the other gyre regions NATR and
NASE, and surface temperature was around 24.0 ± 2.9◦C. At
surface, Prochlorococcus and cyanobacteria contributed about
40 and 35% to TChla, while haptophytes followed with ∼10%,
and chlorophytes dinoflagellates and diatoms only contributed
marginally. For the vertically highly resolved Triaxus cast in
SATL (Figure 5), the biomass doubled in 20–40 m below the
surface which was still about 20–40 m above the Zm (∼60–
80 m). It doubled again at about 10 m below the Zm and
reached the maximum within 20 m of the Zeu (TChla maximum

∼0.2–0.35 mg/m3). Prochlorococcus Chla followed the overall
biomass increase with depth and were always dominating.
Cyanobacteria and chlorophytes only doubled below the Zm.
Haptophytes, chrysophytes, and dinoflagellates only doubled at
the maximum chlorophyll layer around the Zeu.

In WTRA, from about 8.5◦S to about 10◦N, surface TChla
was slightly enhanced (0.21 ± 0.09 mg/m3 for HPLC based
data, 0.21 ± 0.12 mg/m3 for optical based predictions) as
compared to SATL, and the Zeu and Zm were about 40 and
50 m, respectively. As expected, surface salinity was lower than
in the gyres (∼35.6 PSU) and surface temperature was the
highest among all investigated provinces (27.5 ± 1.2◦C). At
the surface phytoplankton composition was about the same as
in SATL. However, for the vertical profile the composition of
phytoplankton changed (Figure 6). Here biomass doubled below
the upper mixed layer and reached the TChla maximum (∼0.3 to
<0.5 mg/m3) around 10–20 m within Zeu. While cyanobacteria
had maximum concentrations at the surface (mostly within the
upper 10–20 m), Prochlorococcus followed TChla and dominated
similarly TChla in the entire upper layer (∼40%). Below Zm,
haptophytes became the second dominant group. The other
groups contributing only a minority at the surface, followed the
TChla biomass distributions.

North of 10◦N we crossed the more productive CNRY,
which was twice intermitted by the NATR, which then finally
at 24.5◦N took over and ended around 25.5◦N bordering
to the NASE region. For a description of the dynamics of
the intermixing of the different water masses in this section,
see von Appen et al. (2020). Within NATR, surface TChla
was nearly as low as in SATL (0.18 ± 0.07 mg/m3 for
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FIGURE 5 | PG Chla and TChla from HPLC and optical based [T (z,λ)] predictions within the water column along a transect sampled with the Triaxus during PS113
on May 22, 2018 within the Longhurst province SATL. Mind that the color scale for TChla data is different from the one used for PG Chla. As in Figure 3, HPLC data
are marked as triangles, optical based predictions as dots, euphotic depth Zeu as black and the upper mixed layer depth Zm as magenta line. Cyano-noProchl
means cyanobacteria as defined in Figure 4. No TChla was detected below 0.05 mg/m3. Following Xi et al. (2020), PG Chla below 0.005 mg/m3 is flagged by gray
color.

HPLC based data, 0.23 ± 0.11 mg/m3 for optical based
predictions), Zeu was about the same as for WTRA, but Zm
was significantly deeper (50 ± 10 m). While surface salinity

was about the same as in SATL, the surface temperature
was significantly lower than in WTRA (and SATL) with
21.1 ± 1.0◦C. Prochlorococcus and cyanobacteria contributed
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FIGURE 6 | Same as Figure 5, but for a transect sampled on 24 and 25 May 2018 within the Longhurst province WTRA.

less than in SATL and WTRA (about 25% each) and
haptophytes nearly as much (∼20% of TChla), while diatoms,
dinoflagellates and chlorophytes each reached ∼10%. The
vertically highly resolved PG and TChla data (Figure 7) show

that the TChla maximum was still found around the Zeu,
but only about double than the surface TChla. With depth
the contribution of haptophytes increased and became the
dominant group at the TChla maximum, while cyanobacteria
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FIGURE 7 | Same as Figure 5, but for a transect on May 31, 2018 within the Longhurst provinces NATR and CNRY. No TChla was detected below the threshold
value of 0.05 mg/m3.

clearly decreased with depth and Prochlorococcus showed more
or less the same concentrations throughout the profile. The
other PGs’ Chla (only minorly contributing) followed the
distribution of haptophytes.

In CNRY, TChla was enhanced (0.55 ± 0.22 mg/m3 for
HPLC, 0.54 ± 0.14 mg/m3 for optical predictions), but not
reaching bloom conditions. Zeu and Zm were about 20 and 10 m,
respectively, lower than in NATR. Surface temperature was about

Frontiers in Marine Science | www.frontiersin.org 16 April 2020 | Volume 7 | Article 235

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-00235 April 17, 2020 Time: 19:22 # 17

Bracher et al. High Resolution Phytoplankton Composition

the same as in NATR, but surface salinity was a bit lower than
in NATR and the other gyre regions (36.3 ± 0.3 PSU). At the
surface haptophytes dominated by contributing about a third,
followed by cyanobacteria contributing ∼20%, then followed
by diatoms, chlorophytes and dinoflagellates with 10–15% and
marginal contributions by chrysophytes, Prochlorococcus, and
cryptophytes (≤5%). TChla was already high at the surface
but often increased between Zm and Zeu. Contributions of
the different PGs did not change at depth and followed the
distributions of TChla (Figure 7).

In NASE, roughly from 25 to 36◦N along the cruise transect,
surface salinity was about as high (∼36.5 PSU) and TChla was as
low (0.15± 0.05 mg/m3 for HPLC based data, 0.15± 0.04 mg/m3

for optical based predictions) as those observed in SATL.
However, temperature was much lower (18.9◦ ± 1.2◦C), and Zeu
was about 25 m shallower (∼80 m, but deeper than in NATR)
than in SATL. Zm were the shallowest (∼20 m) among the
vertical profiles studied along our profiling transects. However,
we have to keep in mind that the depth resolved sampling
was limited in this province (only within 35.67–35.92 ◦N). The
composition of the phytoplankton at surface was nearly the same
as for the NATR, but the depth of the TChla maximum (here
TChla was about twice the surface TChla) located at about 0–
20 m above the Zeu. Below the TChla maximum depth TChla
decreased to surface levels and again increased at around 100 m
to values equivalent to the TChla maximum (Figure 3). The
composition of the phytoplankton at different depths (data not
shown) corresponded to its composition at surface, except that
cyanobacteria decreased below the upper mixed layer to <10%,
and haptophytes and Prochlorococcus took up these contributions
and dominated below.

Based on our surface HPLC station measurements only, the
SWAS, BRAZ, NASE-N, NADR, and NECS were characterized as
follows: Surface temperature and salinity in NASE-N and NADR
(reaching from about 36 to 41◦N and 42 to 48◦N, respectively)
further decreased compared to the tropical and subtropical
regions (∼16.8 and 15.6◦C, respectively, and ∼35.7 PSU). In
NASE-N TChla was much enhanced with 0.30 ± 0.14 mg/m3

compared to NASE, but only about 50% of that in NADR
(0.58 ± 0.2 mg/m3). Opposed to NASE, in both regions
haptophytes dominated by∼40% TChla and Prochlorococcus was
absent. In NASE-N cyanobacteria contributed with ∼20% as the
second dominant group before diatoms, in NADR chlorophytes
and dinoflagellates contributed similarly as cyanobacteria, then
followed by diatoms. Highest TChla along the Atlantic transect
was found in the most southerly and the most northerly
provinces, SWAS, BRAZ, and NECS, which are probably
influenced by nutrient supply mainly from the continents
(Marañón et al., 2001; Longhurst, 2007). In these regions
surface temperature and salinity were the lowest among all
provinces. TChla at the surface reflected bloom conditions
(TChla > 1 mg/m3), but also the highest variation for
surface TChla was obtained. Composition of phytoplankton was
significantly different to the other regions. Diatoms were clearly
dominating TChla at NECS and BRAZ stations. However, for
SWAS stations, TChla was lower (∼1.0 mg/m3) and haptophytes
became the dominating group (∼40%), while they were the

second largest group with only around 10% contribution at NECS
and BRAZ stations. The third largest group in SWAS and BRAZ
were chlorophytes, while in NECS they shared this position
with dinoflagellates and cryptophytes. For SWAS and BRAZ we
can add our findings from one vertically highly resolved optical
profile each (Figure 3). Here Zeu at both stations was rather
shallow (<40 m). Zm was very shallow for the high biomass
BRAZ station (35 m) and much deeper for the moderate biomass
SWAS station (65 m). The maximum of TChla was at the surface
reaching down to the Zeu for both stations.

Comparison to Other Atlantic Ocean
Observations of Phytoplankton
Composition
The composition of phytoplankton obtained from our HPLC
data and optical based predictions along the sampled Atlantic
transect can be compared to previous point based PG surface
Chla observations from HPLC verified with microscopic and flow
cytometry data from Veldhuis and Kraay (2004), Taylor et al.
(2011), and Nunes et al. (2019), and to pigment observations
from Barlow et al. (2002). The Longhurst provinces sampled by
the studies corresponded well to parts of our transect: Taylor
et al. (2011) to the Northern part with NECS, NADR, NASE-
N, NASE, and CNRY, Veldhuis and Kraay (2004) to NASE and
NATR, Nunes et al. (2019) to the Southern part with NASE,
CNRY, NATR, WTRA, SATL, and SWAS, and Barlow et al. (2002)
to all provinces.

For the gyre regions SATL, NATR, NASE, and WTRA TChla,
PG Chla and PG Chla contributions to TChla from our data
agree well to the other studies, except that in WTRA, SATL,
and NASE the contribution by cyanobacteria in our study
is higher (∼30%) than in Taylor et al. (2011) and Nunes
et al. (2019), ∼15 and ∼10%, respectively). Within NASE in
Taylor et al. (2011) and Nunes et al. (2019) Prochlorococcus
contribute more (∼40%), while in our study the contribution of
Prochlorococcus is significantly less (∼25%). It may be due to that
relating the zeaxanthin concentration just to monovinyl-Chla
and chlorophyllide a concentrations to obtain cyanobacteria Chla
in our method is not sufficiently accounting for the contribution
of Prochlorococcus to zeaxanthin. This has been done in the
two other studies by applying the CHEMTAX method (Mackey
et al., 1996) adjusted for the tropical and subtropical Atlantic.
However, when looking at Veldhuis and Kraay (2004) patterns
for PG Chla (which were also retrieved from HPLC pigments
using the adjusted CHEMTAX method), their data agree well
both at surface and depth to our contributions of PG to TChla:
Cyanobacteria have slightly higher contributions (≥30%) at the
surface than Prochlorococcus and haptophytes (both ∼25%),
while at the deep chlorophyll maximum cyanobacteria decrease
to ≤10% and the other two groups dominate. At NATR, our
results also agree with their contributions of PG Chla to TChla
within the depth profile. In SATL and WTRA the contribution
of haptophytes is higher in Nunes et al. (2019) (∼22% versus
∼15% from our study) and compensating the lower contribution
of cyanobacteria; however, depth resolved results from Barlow
et al. (2002) on zeaxanthin and divinyl-Chla (which are marker
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pigments for both, cyanobacteria and Prochlorococcus, and
Prochlorococcus alone, respectively) indicate, that at the surface
the contribution of cyanobacteria can be expected to be similar
in SATL and WTRA and larger than in NASE. Their data set
also supports the dominance of Prochlorococcus and haptophytes
observed in all four provinces at the deep chlorophyll maximum
as we have observed in our data set.

Results for the CNRY region differ the most among the studies:
While Nunes et al. (2019) observe oligotrophic conditions with
very low surface TChla (only ∼25% of our values), values
in Barlow et al. (2002) and Taylor et al. (2011) are much
higher (3.2 ± 1.7 mg/m3 and 1.5–2 mg/m3, respectively).
In Nunes et al. (2019) the phytoplankton composition in
CNRY is similar to NASE, except that Prochlorococcus decrease
to ∼18% and diatoms increase to ∼15%. For Taylor et al.
(2011), the composition is similar to what we obtained
for NECS, with diatoms dominating by ∼60% the biomass,
followed by haptophytes and cyanobacteria (here grouped as
Synechococcus) with about 10–15%. In Barlow et al. (2002),
diatoms and haptophytes are probably similarly contributing
and cyanobacteria are contributing the least. Our surface TChla
and PG composition seem to fall between the two extreme
cases (Nunes et al., 2019, versus Taylor et al., 2011). Since
CNRY is described as the province being affected by sporadic
offshore filaments of nutrient-rich waters originating in the
seasonal Northwest African coastal upwelling (Longhurst, 2007),
the TChla can fluctuate a lot and phytoplankton composition
can also change. Within our high resolution casts in this region
and the associated NATR province (Figure 7), we also sampled
other oceanographic physical and chemical parameters which
are analyzed in von Appen et al. (2020), which clearly shows
that our day time optical profiles are partly sampled in the
CNRY province. While nutrients are depleted for most of the
transect covered by the day time optical profiles, there are also
a few locations where nutrients, though far below supporting
phytoplankton bloom levels, could have supported the growth
of phytoplankton. PG Chla and TChla in Nunes et al. (2019)
also correspond well to our results from Cluster V (BRAZ)
stations with similar TChla range and diatoms, followed by
haptophytes and chlorophytes as main contributors at surface
waters. Taylor et al. (2011) data from NECS, NADR, and NASE-
N confirmed our surface TChla and PG Chla results based on
HPLC data only. Some of the differences between our results and
the other studies can probably be explained by the variations in
different sampling seasons, years and specific areas within each
province. Veldhuis and Kraay (2004) sampled in boreal summer,
the other three studies sampled in boreal fall and austral spring,
while we sampled austral fall and boreal spring. As expected, in
Taylor et al. (2011) and Nunes et al. (2019) surface temperatures
in NATR, CNRY, and NASE are much warmer – with mean
values ∼3–6 and ∼2–3◦C higher, respectively, while in the other
provinces they are similar to ours. Salinity is much lower for
NATR (35.8 ± 0.2 PSU) in Nunes et al. (2019), but similar for
all other provinces and for all provinces sampled by Taylor et al.
(2011). Within NASE, Taylor et al. (2011) have measured similar
Zeu but much deeper Zm (∼80 m) than our study. Opposed to
that, Veldhuis and Kraay (2004) data on TChla at maximum

depth and Zm are similar, but Zeu is much deeper (NATR: 100–
140 m, NASE: ∼130 m) compared to our data. Based on these
comparisons of our phytoplankton high resolution data to the
point data results obtained in the other studies, we conclude that
our HPLC and especially our horizontally and vertically highly
resolved optical based predictions show realistic distributions
of phytoplankton abundance and composition in the sampled
biogeochemical provinces.

Sources of Uncertainties in Our Optical
Retrievals of Phytoplankton Composition
Several sources of uncertainties are related to our optical data
based retrievals. We have quantified the retrieval errors by our
cross validation results (see section “Prediction of Phytoplankton
Groups From Hyperspectral Underwater Measurements”). With
our quality control applied to the final optical based PG
data (see section “EOF Based Prediction of Phytoplankton
Groups From Hyperspectral Underwater Data” Step 5), we
have reduced uncertainties introduced by inappropriate light
radiation measurements. However, as recommended in Bracher
et al. (2017) and IOCCG (2019) for retrieving PGs from optical
measurements and empirical algorithms, respectively, we are
missing the quantification of uncertainties introduced by the
HPLC pigment measurement itself (including all associated steps,
e.g., filtration, extraction and HPLC analysis accuracy), and
by the representation error assigned to the DPA for grouping
phytoplankton and quantifying PGs.

In the current study we could not include the source of
error resulting from the input HPLC data set since we only
were able to quantify uncertainty, based on our triplicate HPLC
measurements (see details in section “Phytoplankton Group
Biomass From Phytoplankton Marker Pigment Measurements”),
arising from water sampling, filtration and extraction. We are
currently assessing the uncertainty related to our HPLC analysis
system within an international laboratory intercomparison
activity on HPLC phytoplankton pigments (this round-robin is
called HIP-5) which follows similar previous intercomparisons
(Canutti et al., 2016).

Using HPLC phytoplankton pigments together with DPA for
grouping of phytoplankton has the advantage that it covers
the whole phytoplankton assemblage in a single analysis and
provides a quantitative assessment of phytoplankton community
composition at group level (Bax et al., 2001). In addition, the
pigments directly determine phytoplankton absorption (e.g.,
Bidigare et al., 1989). However, defining PG Chla based on
DPA (which is similarly true when using CHEMTAX to
determine PG Chla, as used in some studies mentioned in
section “Comparison to Other Atlantic Ocean Observations
of Phytoplankton Composition”) bears the limitation that
phytoplankton pigment composition is only to a certain degree
congruent with taxonomy (Bracher et al., 2017). There is
substantial variability in pigment concentration as a function
of physiological response to environmental conditions. Besides,
certain diagnostic pigments are present in several PGs (e.g.,
fucoxanthin in diatoms and haptophytes). The uncertainty
introduced by using fucoxanthin as diagnostic pigment for
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diatoms was reduced for our data set by following the Hirata
et al. (2011) fucoxanthin correction within our DPA. Still an
error of not correctly quantifying PGs remains for our HPLC
PG Chla data set, which we could not quantify, since we had
no opportunity to sample for other, more precise, descriptors
of phytoplankton taxonomic composition. All studies on the
distribution of PGs and its composition in the Longhurst
provinces (see section “Comparison to Other Atlantic Ocean
Observations of Phytoplankton Composition”) that we compared
our results to were validated with such data. Regarding the
consistency of our results with these studies, we consider the
uncertainty from both sources (HPLC measurement error and
diagnostic pigment analysis representation error) to be low.

CONCLUSION AND PERSPECTIVE

We present robust predictions with high horizontal (∼1 km)
and vertical (∼10 m) resolution to the Zeu and deeper of
seven PG (diatoms, dinoflagellates, haptophytes, cyanobacteria,
Prochlorococcus, chlorophytes, and chrysophytes) Chla and
TChla for several transects of 50–150 km length in the
tropical and subtropical Atlantic Ocean. Additionally, for optical
profiles measured at discrete stations, we obtained the same
information on phytoplankton abundance and composition
with very high vertical resolution (<1 m). These data are
derived from first fitting EOFs to hyperspectral AOP data
obtained from measurements in the water profile of spectral
irradiance, either obtained as single profiles at discrete stations
or continuously by a sensor mounted to an undulating
platform towed behind the ship. Subsequently, multiple linear
regression models were developed with HPLC pigment based
phytoplankton group Chla as the response variable and scores
from the selected EOF modes as predictor variables. These
linear models were then applied to all hyperspectral AOP data
measured continuously at the different transects in the Atlantic
Ocean enabling us to observe (to our knowledge) for the first
time, high horizontally and vertically resolved PG information
from observations within four major biogeochemical provinces
of the Atlantic Ocean. We obtain robust predictions for seven
PG, that explain more than 95% of the total phytoplankton
biomass in these provinces, which is shown by the results
of cross-validation (R2cv of 0.54–0.68 and MPDcv of 29–
53%) using statistical resampling (500 permutations). Our
high horizontally and vertically resolved PG contributions
to TChla within the Atlantic biogeochemical provinces as
classified by Longhurst (2007) correspond well to previous
results on phytoplankton composition from discrete water
sample analysis via microscopy, flow cytometry, and HPLC
marker pigments.

Although our data set bears several limitations (e.g., the
non-proper propagation of measurement errors through
the retrieval and the representation error, details in section
“Sources of Uncertainties in Our Optical Retrievals of
Phytoplankton Composition”), this high resolution information
on phytoplankton diversity is one step toward closing the gap
of knowledge in the distribution of phytoplankton groups,

especially below the surface where sampling of phytoplankton
diversity measures have been very scarce.

Our study shows the potential of employing radiometers on
undulating platforms towed behind the ships at 8 knots which
is only slightly below typical cruising speed. These undulating
platforms can include a large range of big and power-hungry
oceanographic sensors. E.g., in our case, information at the
same horizontal and vertical resolution was also collected of
temperature, salinity, velocity, oxygen, nitrate, and attenuation
(more details in von Appen et al., 2020). Thereby, we can
obtain novel and needed descriptors of upper ocean processes
which goes beyond bulk parameters (Chlorophyll a and colored
dissolved organic matter fluorescence, particle back scattering,
photosynthetic active radiation or irradiance) as resolved by
traditional IOP and AOP sensors. These sensors are already
operated also on autonomous systems such as gliders or
profiling floats.

The necessity for retrieving phytoplankton groups with high
spectrally resolved data leads to a demand of high energy
supply and high data recording rates. This can currently only
be met by operation on a ship-towed undulating platform.
The Triaxus system used in our study provides the possibility
to operate many sensors at the same time (von Appen
et al., 2020). Since the platform is rather big, also larger
instrumentation [e.g., in addition to the radiometer, an AC-
S (Sea-Bird Electronics, United States) during our campaign]
and systems which require high energy supply and high data
rate transfer (as it is the case for hyperspectral radiometers)
can be installed. It enables the operation of both, IOP and
AOP, hyperspectral instruments at the same time in addition
to all the other traditional sensors. Although the vertical speed
of the system was around 1 m/s (in addition to the 4 m/s
horizontal speed) reliable spectral transmission data mostly
until below the Zeu could be obtained. The depth limit until
where information can be obtained is clearly dependent on
incident light which was very high during our undulating
platform operations in the tropics and subtropics. In the future
obtaining PG Chla and TChla data from hyperspectral IOP
sensors would be favorable and should be explored because
radiometers only provide valid data under daylight (leading
to the absence of AOP information in our transects during
night-time), while IOP instruments use their own light source.
However, hyperspectral IOP sensors need even higher energy
supply than the radiometers. The later have the advantage to be
rather self-calibrating since AOPs are derived. Cross-calibration
of IOP and AOP sensor data and of their associated data sets on
phytoplankton composition can facilitate reliable calibration of
hyperspectral IOP sensors which up to now is a big challenge (see
IOCCG Protocol Series, 2019).

The prospect would be to put in future similar radiometers
on profiling floats or gliders which would enable the large
scale collection of vertically resolved phytoplankton data at
much improved horizontal coverage. But before this can be
implemented, the challenges on energy supply and big data
recording must be met in addition to reducing the size of
radiometers in order to fit them onto these platforms. For
now it seems warranted to obtain towed hyperspectral AOP
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measurements along transects that are anyways occupied by
research vessels.
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