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The prevalence of coral disease is steadily increasing throughout the global ocean, and

there is a growing need for efficient methods for detecting and monitoring coral health. At

present, coral health assessments are primarily conducted using in-situ surveys, which

record visual observations of disease in the field. Recent technological advancements

allow researchers to instead collect high-resolution imagery of benthic habitats, and these

images can be used in conjunction with digital tools to assess the health of coral colonies

at a later time. However, little is known about the relative efficacy or diagnostic accuracy of

these two approaches. This study contrasts the diagnostic accuracy of in-situ and digital

methodologies for detecting diseases and adverse health conditions affecting corals.

Multiple 1m2 plots are surveyed on coral reefs located on both the windward and leeward

side of Hawaii Island. For each plot, an in-situ visual analysis of coral health is conducted

by a diver and images are collected and rendered into a high-resolution orthomosaic for

subsequent digital analysis. Both methods assess the same coral colonies, resulting in

paired health diagnoses for multiple health conditions. Lacking a gold-standard diagnosis

of health conditions, a latent class model is used to estimate the sensitivity (true positive

rate) and specificity (true negative rate) of both methods. We find that in-situ assessments

of coral health have a higher sensitivity and lower specificity in detecting health conditions

when compared to digital analyses based on orthomosaics. However, the effect size

is relatively modest, indicating that while the in-situ method provides a more sensitive

diagnostic approach, the techniques are of comparable accuracy, and should both be

considered viable methods of characterizing and monitoring coral health.

Keywords: Hawaii, coral, coral disease, photogrammetry, orthomosaic, diagnostic test accuracy, no gold

standard, latent class model
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1. INTRODUCTION

Disease is a serious threat to coral reefs worldwide and is a
major cause of coral reef deterioration (Aeby et al., 2011; Obura
et al., 2019). Increasing levels of anthropogenic stressors such
as pollution, eutrophication, sedimentation, and recreational
overuse in near-shore environments are detrimentally affecting
the health and function of coral reef ecosystems (Harvell et al.,
2007), and global stressors such as climate change are increasing
the frequency of large-scale mortality associated with disease
outbreaks and mass coral bleaching events (Hoegh-Guldberg
et al., 2007; Ward et al., 2007). As global and local stressors
affecting coral reefs are predicted to intensify, researchers and
managers will need to implement effective monitoring strategies
to characterize and track changes in coral health.

In-situ visual benthic surveys are currently the standard
approach for characterizing coral communities (Raymundo et al.,
2008; Page et al., 2017; Obura et al., 2019). In-situ surveys
do not require complex technological equipment, but they do
feature considerable logistic constraints. In particular, in-situ
surveys require substantial underwater observation time by
specialists certified to conduct scientific diving and trained in
identification of corals and their diseases and adverse health
conditions. Surveys of deep reefs or large spatial areas present
major challenges due to the limitations associated with SCUBA
diving (Raymundo et al., 2008; Rosenberg and Loya, 2013).

Various recent technological advancements have dramatically
lowered the costs associated with collecting high-resolution
imagery of benthic habitats, while also increasing the speed at
which these images can be collected and processed. Furthermore,
improvements in computing power, algorithms, and camera
resolution have enabled wide-spread use of Structure-from-
Motion (SfM) photogrammetry. SfM techniques use overlapping
image sequences from traditional 2D cameras to estimate
3D structure, enabling users to create accurate and highly
detailed (<1 cm resolution) 3D models without the need for
specialized stereo imaging equipment. The resulting 3D models
and orthomosaics can then be processed in various ways to
characterize marine benthic communities (Burns et al., 2015;
Ferrari et al., 2016; Fukunaga et al., 2019).

Terrestrial and marine studies have validated the accuracy
and efficacy of the SfM approach for creating spatially accurate
habitat maps (Javernick et al., 2014; Lavy et al., 2014; Figueira
et al., 2015; Burns et al., 2016; Magel et al., 2019). SfM
surveys can be conducted rapidly in the field and require less
specialized training, which enables scientists to study coral
communities at much larger spatial scales and deeper depths than
are feasible using conventional visual surveys. These methods
also have the potential for the photo surveys to be carried
out by autonomous or remotely-operated underwater vehicles,
greatly reducing logistical difficulties associated with surveying
underwater habitats (Palma et al., 2017; Parsons et al., 2018;
Bayley and Mogg, 2019; Obura et al., 2019).

As monitoring programs begin adopting these new
technologies and methods, there is a need for statistical
comparisons of surveys conducted using conventional visual
assessments (hereafter: “in-situ”) to those based on photography,

orthomosaics, and 3D models (hereafter: “digital”). Both
in-situ and digital health assessments may be expected to
produce imperfect diagnoses of health conditions affecting a
coral colony: in-situ visual surveys are impacted by difficulties
inherent to working in underwater environments, while
digital computer-based surveys are limited by resolution and
restricted visual perspective inherent to the collected images.
SfM produces 3D digital surface models, however, researchers
predominantly create 2.5D digital elevation models (DEMs)
and 2D orthomosaics from a single projection angle for use in
further analyses (Bayley and Mogg, 2019; Obura et al., 2019). An
open debate now exists as to whether these products, produced
from a single projection angle, are capable of detecting and
characterizing coral health conditions. Despite the widespread
adoption of SfM photogrammetry for marine ecosystem
monitoring (Bayley and Mogg, 2019; Obura et al., 2019),
few formal comparisons of digital to in-situ techniques have
been conducted.

Page et al. (2017) conducted surveys on the same plots using
both in-situ and digital photography methods and compared
estimated prevalence values for various coral health conditions
on the reefs of Northwest Australia. The study concluded that
the digital method produces systematically lower estimates of
disease prevalence than in-situ methods. However, a difference
in estimated prevalence does not allow us to directly compare the
quality of results from the two methods, and thus leaves open the
question of which approach is more accurate.

Diagnostic tests for a binary trait, such as the presence
or absence of a disease, are often judged by their rates
of classification error (or equivalently, the corresponding
rates of correct classification). Two commonly used metrics
are the following: sensitivity, η, also known as the true
positive rate or recall, representing the probability that
an individual positive for the trait is classified as such
by the test; and the specificity, θ , or true negative rate,
representing the probability that an individual without the trait
is classified correctly. Both η and θ influence the outcome
of a diagnostic test in competing ways. A decrease in η

will lead to lower diagnosed prevalence by making false
negatives more numerous, while a decrease in θ will lead
to higher diagnosed prevalence by increasing the number of
false positives.

A diagnostic test which always (or nearly always) produces a
correct diagnosis is known as a gold-standard test. Such a test will
have sensitivity and specificity values which are both very close
to 100%. If a gold-standard diagnosis is available, it is possible
to design a straightforward experiment and directly estimate the
sensitivity and specificity of a new diagnostic test by applying the
imperfect test to groups of known-healthy and known-diseased
subjects. However, there is no practical way to obtain such a
gold-standard diagnosis of coral colony health, precluding direct
estimation of η and θ . Fortunately, the biomedical literature has
long recognized the problem of evaluating diagnostic methods
in the absence of a readily available gold-standard test and has
developed statistical methods to address this issue.

An important class of approaches to the no-gold-standard
problem treats the true disease state as an unobservable latent
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variable. The foundational model in this class was presented
by Hui and Walter (1980) and has been extended in various
ways by subsequent authors. Collins and Huynh (2014) provide
a systematic review of the no-gold-standard literature and its
applications in various disciplines. They find that the use of
latent class methods has spread well beyond the biomedical and
veterinary literature and examples can be found among diverse
topics such as trial jury decisions (Spencer, 2007), disability
eligibility determinations (Benítez-Silva et al., 2004), and wildlife
tracking (Blick and Hagen, 2002; Conn and Diefenbach, 2007).

In this study we apply the Hui and Walter model to estimate
the sensitivities and specificities of in-situ and digital assessments
of coral health. This approach requires diagnosing a sample
of individuals using both methods and linking the results of
the two methods back to the individual colonies diagnosed.
Coral colonies in multiple 1m2 quadrats are surveyed using
the in-situ method and overlapping images of the quadrats
are then immediately captured for use in the digital approach.
SfM methods are used to create high resolution orthomosaics,
and each of the colonies affected by disease are marked
and linked to entries in the diver data sheets. The digital
representations of these colonies are then diagnosed for disease
and adverse health conditions, and the resulting comparison
of the two diagnostic results are used to jointly estimate
all sensitivity and specificity values. To our knowledge, this
is the first attempt to directly compare the efficacy of the
digital and in-situ approaches by estimating each method’s
η and θ .

2. METHODS

2.1. In-situ Health Surveys and
Photography
Surveys were conducted along nearshore coral reef habitat
adjacent to Honokohau in Kailua-Kona, HI, USA (19◦40′9′′ N,
156◦1′44′′ W) from April 20th to April 21st 2019, and at Laehala
in Hilo, HI, USA (19◦44′15′′ N, 155◦1′54′′ W) from May 30th
to June 7th 2019. A stratified random sampling design was used
to determine survey locations for the 1 m2 quadrats at each
site. Divers performed a comprehensive visual assessment of
coral health for all coral colonies at least 50% contained inside
each quadrat and immediately collected the overlapping imagery
required to produce the 3D models and orthomosaics.

Before conducting the surveys, all divers completed the
standardized benthic survey training materials used by the
National Oceanic and Atmospheric Administration Pacific
Reef Assessment and Monitoring Program (Swanson et al.,
2018). Training was provided on the proper identification
and measurement of survey parameters including coral
species, morphology, size (longest linear length), number
of diseased areas, type of disease, and colony surface area
affected by disease. Diseases and adverse health conditions
targeted for diagnoses included: Bleaching (BLE), Pigmentation
Response (PRS), Tube-worm Infestation (TIN), Macro-
algae Overgrowth (MACA), Porites Trematodiasis (PTR),
Tissue Loss (TLS), Predation (PRED), Discoloration (DIS),

Skeletal Growth Anomaly (SGA), Sedimentation (SEDI),
and Physical Damage/Abrasion (DAMA). Several of these
adverse health conditions are not true diseases (BLE, PRED,
DAMA, MACA, TIN), so for the sake of brevity we refer to
all diagnosed diseases and adverse health conditions as simply
“health conditions.”

Photos for subsequent digital analysis were captured with
Canon SL2 cameras fitted with 18–55 mm lenses and mounted
in an Ikelite waterproof housing. Ground control points (GCPs)
of known dimensions were placed at opposing corners of the
quadrat. Images overlapping by approximately 70–80% were
captured from planar and oblique angles while swimming over
the survey area in a boustrophedonic (back-and-forth) pattern.
Photo surveys encompassed the entire 1m2 quadrat with a buffer
of approximately 1 m of the surrounding area to ensure spatial
accuracy of the rendered orthomosaic.

2.2. Digital Modeling
Methods developed specifically for creating 3D reconstructions
and orthomosaics from coral reef habitats were used to
create digital reconstructions of the surveyed quadrats, as
described in Burns et al. (2015). Image alignment and rendering
of digital models were completed using Agisoft Photoscan
software (Agisoft LLC). Following alignment, a dense point
cloud was estimated with SfM techniques. The point cloud
was converted into a polygon mesh and textures derived
from the photo imagery were overlaid to complete the 3D
model. Finally, we rendered a high-resolution orthomosaic
projected from a planar angle (directly overhead) to be used
for digital assessment of coral disease on all paired colonies.
An example orthomosaic from the present study is provided
in Figure 1.

2.3. Colony Matching and Digital Health
Surveys
The orthomosaics for each quadrat were imported into
ArcMap geospatial software (ArcGIS 10.1). The Hui and
Walter model requires that each surveyed individual has
paired test results for each competing diagnostic method.
To facilitate this pairing, an additional reference photo
was taken of each surveyed colony during the in-situ
phase to allow for easier identification of the colony in
the orthomosaic reconstruction. The in-situ records were
matched to the representations of the colony within the
orthomosaics, and the digital representation tagged for
digital diagnosis.

In the course of the study it became clear that pairing
could only be reliably accomplished for colonies of appreciable
size, and many small or poorly defined colonies from the in-
situ surveys were excluded. Accordingly, our findings may be
interpreted as fully justified only as applied to diagnosing colonies
that are sufficiently developed to be readily identifiable by
visual inspection.

Similar to in-situ surveys, our digital analysis parameters
included coral species, morphology, size (longest linear length
in cm and surface area), number of affected areas, type of
health condition, and colony surface area affected by the health
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FIGURE 1 | Example of orthomosaic used in digital health surveys. When

zoomed in, details of this image can be resolved at a high resolution with raster

cells under 1 cm in size.

condition(s). GCPs in the image were used to scale the model
and create accurate local coordinate systems, and ArcMap’s
spatial measurement tools were used to record length and area
information. Digital analysis on each quadrat orthomosaic was
repeated for a total of three trials, each conducted by a different
observer. An individual was not permitted to diagnose the same
colony in both the in-situ and digital phase of the project, and
the digital observers were kept blind to the results of the in-
situ health assessments of their assigned colonies. A composite
diagnosis for the presence or absence of each health condition
was produced from the three digital diagnosis replicates using
majority rule.

2.4. Statistical Model
The result of the diagnosed presence/absence of a particular
health condition under both the in-situ survey and the digital
analysis assigns each colony into one of four categories: both
tests positive (++), in-situ positive and digital negative (+−),
in-situ negative and digital positive (−+), or both tests negative
(−−). For condition k, counting the number of colonies in each
category is modeled by a multinomial random vector yk, with
parameter vector pk describing the distribution among the four
diagnosis categories,

yk ∼ Multinomial(pk).

Counts for different health conditions k are assumed to be
independent of each other. Each diagnostic method has a
sensitivity, ηs for in-situ and ηd for the digital method; and
likewise each has a specificity, θs and θd. The probability vectors
pk are specified by the Hui and Walter (1980) model in terms of

these sensitivities and specificities, together with the prevalence
of the condition πk:

pk,++ = πkηsηd + (1− πk)(1− θs)(1− θd)

pk,+− = πkηs(1− ηd)+ (1− πk)(1− θs)θd

pk,−+ = πk(1− ηs)ηd + (1− πk)θs(1− θd)

pk,−− = πk(1− ηs)(1− ηd)+ (1− πk)θsθd

(1)

This model arises by assuming independence of the two test
results conditional on true disease state. Under this assumption,
joint conditional probabilities are obtained by simplymultiplying
the relevant sensitivity and specificity values. For example, two
true positives has Pr(++|diseased) = ηsηd while the two true
negative outcome has Pr(−−|healthy) = θsθd, and so on.

This model has two potential issues that can complicate
parameter estimation. The first involves a straightforward over
parameterization issue: If there are K health conditions surveyed,
the summarized data have 3K degrees of freedom and the model
has K + 4 parameters. This problem does not affect us as we
surveyed K ≥ 2 different health conditions, and thus the data
have available degrees of freedom sufficient to estimate themodel.

The second identifiability problem is the result of the fact that
the set of probability vectors {pk} obtained from Equation (1)
is invariant to the following transformation of the underlying
prevalence, sensitivity, and specificity parameters:

πk → 1− πk, ηi → 1− θi, and

θi → 1− ηi, for every condition k and test i.

This second set of parameter values represents a situation where
the labeling of the true state is reversed (i.e., a + test result
should indicate a healthy individual instead of diseased), but the
diagnostic test output was not updated appropriately, resulting in
systematically wrong classification. Fortunately, this means that if
the diagnostic tests under consideration make practically useful
predictions, only one of these two possible sets of parameters
is reasonable. The unreasonable option can be eliminated by
placing an appropriate constraint on the parameter values, or
with the use of sufficiently strong priors in a Bayesian setting. We
opted to take the latter approach.

Moderately informative priors for health condition prevalence
were developed from previous coral health survey results at
nearby sites (Caldwell et al., 2016). We selected Beta(α,β)
distributions with means matching previous point estimates and
with an effective sample size (α + β) of 100. For conditions not
included in the Caldwell et al. study, prevalences were estimated
using technical reports that characterized coral reef health in
the Main Hawaiian Islands, and a smaller effective sample size
was used (Walsh et al., 2009). The prior hyperparameters for
disease prevalence are summarized in Table 1. Less informative
Beta (20, 10) priors were placed on each sensitivity, ηs and
ηd, and Beta (9, 1) priors were used for specificities θs and θd.
These choices reflect our belief that the diagnostic results are not
systematically wrong, and that false negatives are more common
than false positives. The joint prior assumes full independence of
all prevalence, sensitivity, and specificity parameters.
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TABLE 1 | Hyperparameters for the independent Beta(α,β) priors on health

condition prevalences, πk .

BLE PRS TIN MACA PTR TLS PRED DIS SGA SEDI DAMA

α 8 19 10 32 5 3 15 1 19 1 1

β 92 31 40 68 95 47 35 24 81 24 24

Health conditions are: BLE, bleaching; PRS, pigmentation response; TIN, tube-worm

infestation; MACA, macro-algae overgrowth; PTR, porites trematodiasis; TLS, tissue loss;

PRED, predation; DIS, discoloration; SGA, skeletal growth anomaly; SEDI, sedimentation;

DAMA, physical damage/abrasion.

To investigate possible deviations from the Equation (1)
assumption that sensitivities and specificities do not vary
across health conditions, we fitted a second model with
additional hierarchical structure. The hierarchical model allows
the sensitivity and specificity of each method to vary across the
conditions k,

ηi,k ∼ Beta(µiφi, (1− µi)φi) and

θi,k ∼ Beta(νiξi, (1− νi)ξi). (2)

For each method, i ∈ {s, d}, the parameters µi and νi represent
mean values for the sensitivity and specificity, while φi and ξi are
precision parameters controlling the degree to which individual
condition sensitivities and specificities vary about their respective
overall means. This parameterization, in terms of a mean and
precision, is often used in the beta regression problem (Ferrari
and Cribari-Neto, 2004).

Under this extended model, priors on the sensitivities
and specificities were transferred to the new hierarchical
mean parameters. Allowing the condition-specific
sensitivity and specificity parameters full freedom results in
overparameterization and unidentifiable parameters. Therefore,
we enforced statistical regularity by placing a strong prior on
the precision parameters, allowing the ηi,k and θi,k values to vary
about their respective means, µi and νi, by approximately 10% in
either direction,

µi ∼ Beta(20, 10), νi ∼ Beta(9, 1), and φi, ξi ∼ N(75, 10).

All data analysis was conducted using R, version 3.6.

3. RESULTS

A total of 46 1 m2 quadrats were surveyed for this study,
resulting in in-situ health surveys of 895 coral colonies. Of
these, 191 colonies were successfully paired with a representation
in the digital models and subsequently diagnosed using the
digital method. Every colony remaining after the pairing had
been diagnosed with at least one health condition in the in-situ
survey. Counts summarizing the distribution of these colonies
into the four categories of (dis)agreement between in-situ and
digital methods are presented in Tables 2 (single observer) and 3

(majority rule).
Samples from the posterior distributions are obtained using

the Stan sampling engine (Carpenter et al., 2017). Traceplots and

TABLE 2 | Summary of health condition diagnoses using results from a single

digital observer.

In-situ Digital BLE PRS TIN MACA PTR TLS PRED DIS SGA SEDI DAMA

+ + 53 21 15 38 0 7 6 0 0 1 0

+ − 29 24 17 36 4 16 18 8 12 0 1

− + 15 31 14 25 2 29 7 7 2 6 1

− − 94 115 145 92 185 139 160 176 177 184 189

Counts of colonies in each diagnostic category (rows) are shown for each condition

(columns). A “+” indicates diagnosed presence of the condition, and “−” indicates that

the condition is absent. Health condition abbreviations are introduced in the caption of

Table 1. Each column diagnoses the same sample of 191 colonies.

TABLE 3 | Summary of the health condition diagnoses when using the results

from majority-rule of three digital observers.

In-situ Digital BLE PRS TIN MACA PTR TLS PRED DIS SGA SEDI DAMA

+ + 56 26 11 41 0 5 5 0 0 1 0

+ − 26 19 21 33 4 18 19 8 12 0 1

− + 9 27 14 21 0 17 7 3 0 6 0

− − 100 119 145 96 187 151 160 180 179 184 190

MCMC diagnostic statistics do not indicate obvious sampling
problems, suggesting successful convergence to the stationary
distribution. In particular, the multimodality in the model
likelihood is not observed in the posterior when using the priors
described in the Statistical Model section. This multimodality is
seen when using flat priors, and when the amount of information
in the priors is reduced by decreasing the effective sample
size of the Beta prior distributions. Code used to obtain the
posterior samples and MCMC diagnostics is included in the
Supplementary Material.

Summaries of the posterior distribution of the parameters of
interest are presented in Figure 2. When using the majority-
rule diagnosis, the posterior means (standard deviations) of the
sensitivities are estimated to be η̄s = 0.67 (0.03) for in-situ and
η̄d = 0.59 (0.03) for the digital method. Posterior means for
specificity are θ̄s = 0.97 (0.01) for the in-situ method, and θ̄d =

0.99 (0.01) for the digital method. A summary of the evidence for
the size of the sensitivity effect is displayed in Figure 3, showing
the posterior probability that in-situ sensitivity exceeds that of
the digital method by at least a given amount. The difference in
sensitivity between the in-situ and digital methods is estimated
to have a mean of 0.08 with standard deviation 0.05. Summaries
of the posterior distributions of sensitivities under the expanded
hierarchical model (Equation 2) are shown in Figure 4.

4. DISCUSSION

We find substantial evidence that the sensitivity of the in-situ
method is higher than that of the digital methods, as reflected
in Figures 2, 3, and that the specificities of both approaches are
near to 100%. This result is in agreement with the findings of Page
et al. (2017) that coral health condition prevalence estimated by

Frontiers in Marine Science | www.frontiersin.org 5 May 2020 | Volume 7 | Article 304

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Burns et al. Diagnostic Accuracy of Coral Surveys

FIGURE 2 | Marginal posterior credible intervals for sensitivities and specificities. (Top) panels show results using majority-rule digital diagnoses (Table 3), and

(Bottom) panels show results of using only one digital diagnosis per colony (Table 2). Points indicate posterior medians, inner credible intervals are at the 50% level,

and outer intervals at 90% level.

FIGURE 3 | Posterior probability that in-situ diagnostic sensitivity exceeds

digital sensitivity by at least a given value, P̂r(ηs − ηd > x).

photographic analysis is lower than that of in-situ assessments
(although that study did not attempt to estimate the sensitivities
and specificities).

Sensitivity estimates for the digital method are slightly higher
when the majority-rule diagnosis is used, compared to diagnoses
based on a single individual’s judgement. However, the effect
size is small relative to the uncertainty in the estimates. The
effect on the specificity is more pronounced, with the estimates
showing an approximate halving of the false positive rate. Given
the ease of having multiple observers diagnose the coral once the
orthomosaics are constructed, and the small amount of time this
step takes compared to the preceding steps, we recommend this
be done whenever feasible.

While the in-situ approach has a higher sensitivity, the
size of the difference is not large enough to disregard the
utility of digital analysis methods for assessing coral health.
Figure 3 shows a smaller than 50% chance that the difference
in diagnostic sensitivity exceeds 8%, a 33% chance that the
difference exceeds 10% and only a 7% chance that the difference
exceeds 15%. These results suggest that a digital assessment of
coral health is a reasonable option if conducting in-situ surveys is
logistically prohibitive. As researchers push to explore deeper reef
habitats and characterize large spatial areas with the assistance of
autonomous underwater vehicles (Turner et al., 2018; Armstrong
et al., 2019), digital processing of benthic imagery can provide a
viable method to assess the prevalence of coral disease.

The model estimates also strongly suggest that in-situ visual
surveys cannot be considered a gold-standard for assessing
coral health, as the sensitivities for both approaches are not
close to 100%. Provided the health condition in question
is not extremely rare, surveys using these methods without
correcting for the effect of imperfect diagnosis may be
systematically underestimating true health condition prevalence.
It is reasonable to suggest that researchers use caution when
relying on visual estimates of coral health condition prevalence
to make broad distinctions about the health of coral reefs.
Future analyses of within-observer variability will improve our
understanding on the reliability efficacy of visual estimates of
coral health condition prevalence.

Although the parameter estimates under the hierarchical
model (Figure 4) are not very precise given our study’s sample
size, some interesting patterns emerge. These patterns suggest
some avenues for future investigations, as discussed later in this
section, and also give us some confidence in the model’s behavior
as they largely concur with other prior knowledge of coral disease.
For example, sensitivity to bleaching (BLE) is estimated to be
moderately higher, relative to other conditions, for both in-situ
and digital analysis. This is to be expected, as bleaching is one
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FIGURE 4 | Marginal posterior intervals for majority-rule sensitivity under the

hierarchical model allowing sensitivity and specificity to vary by condition.

Points indicate posterior medians, inner credible intervals are at the 50% level,

and outer intervals are at the 90% level.

of the most readily visually identifiable coral health conditions
(Rosenberg and Loya, 2013).

Pigmentation response (PRS) has the lowest sensitivity value
in relation to the other health conditions detected by in-situ
surveys, while it had the second highest sensitivity value in the
digital analysis. This may be attributable to both the bright pink
color and the small size ofmany PRS lesions. Red is one of the first
colors to be lost with depth in the water column, making a bright
pink color less likely to be detected in the field; however, it is
more easily identified when looking at a properly white-balanced
and color-corrected high-resolution image (Mumby et al., 2004).
This condition may be missed by divers when subjected to time
limitations associated with SCUBA, while the lack of such time
constraints in the digital assessments combined with the ability
to zoom in on small features may conspire to give the digital
methods an advantage for this condition.

Skeletal growth anomalies (SGA) and predation (PRED) are
estimated to have the lowest sensitivities for the digital analysis.
Conversely, the in-situ surveys of SGA and PRED have similar
sensitivity values as the other health conditions. Visually cryptic
coral diseases such as these, which form at the base and sides

of coral colonies, require careful examination from multiple
angles which can be particularly difficult when using only digital
imagery (Willis et al., 2004; Bennett et al., 2016; Page et al., 2017).

Despite the promising results of this study, we caution against
direct use of these estimates of sensitivity and specificity to
attempt to correct for non-detection. A central assumption of
the Hui and Walter model, embedded in Equation (1), is the
independence of the two diagnostic tests conditional on the true
disease state. This assumption is most reasonable when the two
diagnostic tests are based on different sources of information,
e.g., a test based on tissue chemistry and a second test based
on x-ray imaging. However, here both diagnostics are based
on a macroscopic visual inspection of the coral, making this
modeling assumption immediately suspect. Presumably, our two
approaches would be expected to agree with each other more
often than predicted by the conditionally independent model.

When this assumption is violated, the parameters η and θ

estimated by the Bayesian approach will no longer be directly
relatable to the sensitivity and specificity of the tests. However,
attempting to model this dependency requires one to specify
(and presumably estimate) the dependency structure among
tests. There are multiple reasonable dependency structures that
have been proposed, and choosing among them based solely
on data is difficult or impossible. However, while estimates
of the sensitivity and specificity may vary considerably when
fitting different dependency structures to a data set, the relative
ranking between tests is more robust (Albert and Dodd, 2004).
A better understanding of the conditional dependence of the
two diagnostic methods would likely suggest a different form for
Equation (1), leading to more robust estimates of the sensitivity
and specificity.

A second caveat relates to the difficulties arising in the
pairing process. Since small and indistinct colonies needed to be
excluded from the analysis to ensure reliability of the pairings, the
sensitivities and specificities estimated are effectively conditional
on the colonies being large enough to be confidently identifiable.
Smaller, more cryptic, colonies may have different diagnostic
characteristics. However, since monitoring efforts are usually
aimed at well-developed reefs with many large colonies, we think
these estimates are of practical interest and value.

The equivalence of sensitivities and specificities across all
health conditions is also questionable, as it seems quite
reasonable for particular conditions to be easier or harder
to successfully detect. Indeed, the results of fitting the
hierarchical model (Figure 4) provide moderate evidence that
sensitivities of some conditions (e.g., bleaching) may differ.
Over-parameterization concerns preclude letting these values
vary freely, and a hierarchical approach allowing for some
pooling of information across conditions seems to be a
reasonable compromise.

An alternative to the hierarchical approach may be found
in Johnson et al. (2001). They propose an approach to the
problem of estimating sensitivities and specificities for a single
condition that relies on sampling from distinct populations of
individuals with significantly different prevalences. Taxonomy or
morphology may provide a definition for distinct populations
suitable for this purpose, when prior information indicates
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that prevalence of a particular condition varies significantly
among the populations. Such an approach alleviates the over-
parameterization problem, allowing for diagnostic parameters
to vary freely across health conditions, and future work could
incorporate an experimental design focused on collecting data
suitable for such an analysis.

Comparing the in-situ and digital methodologies requires
precise pairing of coral colonies affected by disease or
adverse health conditions. This can be challenging due
to many corals having fragmented and indistinct colony
borders. In fact, we found that successfully pairing the
colonies was one of the most difficult aspects of this
study. Only colonies that could be distinctly identified and
confidently paired were included in the study, limiting the
sample size. Future studies comparing diagnostic sensitivities
must diligently ensure colonies are properly paired, while
also minimizing potential dependence between successful
pairing and health status. Developing a simple protocol that
allows for easy and accurate pairing would allow future
work in this area to greatly increase the usable number
of observations.

The possibility of differential diagnostic performance across
different health conditions suggests an opportunity to optimize
data collection by having certain conditions surveyed in-situ,
while others are left for the digital approach. For example,
workload on divers may be reduced by focusing on conditions
that commonly occur in difficult to photograph areas of the
colony, while digital methods might focus effort on color-
based disorders that may be difficult to perceive in the
aquatic environment. If diagnostic difficulty varies significantly
by species or morphology, this would provide additional
opportunities for such improvements to survey efficiency.
Previous studies support this approach of optimizing the use
of digital and in-situ surveys to maximize the quantity of data
collected in the face of logistical constraints (Page and Stoddart,
2010; Page et al., 2017; Obura et al., 2019).

Better knowledge of the strengths and weaknesses of each
approach could also spur improvements to the methods
themselves. For example, the digital method appears to have
weak sensitivity to certain conditions such as skeletal growth
anomalies. Since this disorder is a 3D phenomenon, performance
may significantly improve if digital surveys are conducted using
the 3D digital surface models instead of the 2D projected
orthomosaics (House et al., 2018; Obura et al., 2019). For this
study, we focused on analyzing projected orthomosaics as this
data product has been predominantly used when characterizing
coral reef habitats using SfM methods (Bayley and Mogg, 2019).

A last interesting avenue of further investigation involves
attempting to separately quantify method-specific and observer-
specific sources of diagnostic error. It is possible that the relative
contributions of these error sources may be significantly different
for the two methods. For example, if a large part of the digital
error is due to the limited perspective of the orthomosaic, finding
or training highly-skilled observers may not be a viable way
to improve survey accuracy. Conversely, it could be the case
that the in-situ errors are mostly attributable to observer-specific

effects, which would suggest a greater benefit from using highly-
trained observers. Independently addressing observer variability
will provide useful insight into the processes by which diagnostic
errors are generated.

This study is a preliminary investigation of the diagnostic
performance of conventional in-situ surveys and digital image-
based techniques. Although the in-situ technique is estimated to
have a modest advantage in sensitivity, we believe there remains a
role for both approaches in coral health monitoring. When using
digital survey methods, researchers should take the opportunity
to have multiple observers view the images and diagnose disease,
as we find this improves the specificity. A better understanding
of the dependence structure of the two tests should lead to
more robust estimates of the diagnostic performance, and this
will in turn allow for more comprehensive comparisons of the
survey methodologies. A more complete understanding of the
capabilities of the methods will allow investigators to make more
carefully informed decisions, taking into account their specific
research goals and the trade-offs involving speed, cost, scale,
and accuracy.
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