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Man-made floating objects in the surface of tropical oceans, also called drifting fish
aggregating devices (DFADs), attract tens of marine species, including tunas and non-
tuna species. In the Indian Ocean, around 80% of the sets currently made by the
EU purse-seine fleet are on DFADs. Due to the importance and value of this fishery,
understanding the habitat characteristics and dynamics of pelagic species aggregated
under DFADs is key to improve fishery management and fishing practices. This study
implements Bayesian hierarchical spatial models to investigate tuna and non-tuna
species seasonal distribution based on fisheries-independent data derived from fishers’
echo-sounder buoys, environmental information (Sea Surface Temperature, Chlorophyll,
Salinity, Eddie Kinetic Energy, Oxygen concentration, Sea Surface Height, Velocity and
Heading) and DFAD variables (DFAD identification, days at sea). Results highlighted
group-specific spatial distributions and habitat preferences, finding higher probability
of tuna presence in warmer waters, with higher sea surface height and low eddy
kinetic energy values. In contrast, highest probabilities of non-tuna species were found
in colder and productive waters. Days at sea were relevant for both groups, with
higher probabilities at objects with higher soak time. Our results also showed species-
specific temporal distributions, suggesting that both tuna and non-tuna species may
have different habitat preferences depending on the monsoon period. The new findings
provided by this study will contribute to the understanding of the ecology and behavior
of target and non-target species and their sustainable management.

Keywords: Bayesian models, bycatch species, echo-sounder, Fish Aggregating Devices, FADs, INLA, species
distribution models, tuna
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INTRODUCTION

Pelagic ecosystems are highly dynamic environments in time and
space (Kaplan et al., 2010; Dueri and Maury, 2013), accounting
for 99% of the biosphere volume (Angel, 1993) and supplying
more than 80% of the fish consumed by humans (Pauly et al.,
2002). Due to the limited knowledge of pelagic ecosystem
functioning and diversity (Kaplan et al., 2014), there is an
increasing need to obtain reliable spatial information on pelagic
species distributions (Costello and Kaffine, 2010). Indeed, it is
necessary to understand how marine populations are distributed
across the environment, and the drivers of their movement
and dynamics, for a correct assessment of fish populations and
ecosystem functioning, and, hence, fisheries management and
conservation of exploited species (Paradinas, 2017).

The industrial tropical tuna purse seine fishery is one of the
most important fisheries in the world, accounting for 64% of tuna
catches worldwide (ISSF, 2019). In the Indian Ocean, more than
80% of the total sets of purse seiners in recent years have been
on man-made drifting fish aggregating devices (DFADs) (Báez
et al., 2018). The remainder of the purse seine fishery catch comes
from sets on unassociated tuna schools, also known as free-
swimming schools. In the past, the majority of floating objects
used by fishers were natural floating objects (e.g., driftwood, logs
or coconuts) encountered by chance, traditionally called “logs.”
Over time, the objects were modified by fishers and, thus, an
operational definition was adopted for them (i.e., man-made
DFADs) to separate them from natural floating objects. Because
of the aggregative behavior of certain tropical pelagic species,
DFADs attract a large variety of marine species (Castro et al.,
2002; Lezama-Ochoa et al., 2015), including tuna and non-tuna
species. The average species composition of the tuna DFAD
catches in the Indian Ocean by Spanish purse seiners during
recent years (2014–2017) has been dominated by skipjack (60%),
followed by yellowfin (33%), and bigeye (7%) (Báez et al., 2018).
The use of DFADs has widely increased in all oceans since the
early 1990s (Dempster and Taquet, 2004; Fonteneau et al., 2013).
It is estimated that around 100,000 DFADs are deployed globally
each year (Scott and Lopez, 2014; Gershman et al., 2015). In
particular for the Indian Ocean, it was estimated that the number
of DFADs deployed increased by a factor of 4.2 over the period
2007–2013 (Maufroy et al., 2016). The figures above indicate
the importance and value of the DFAD fishery at both global
and regional scales and, therefore, it is necessary to improve the
knowledge of the DFAD fishery dynamics as well as the spatio-
temporal distribution of tuna and non-tuna species associated
to those DFADs. This understanding will contribute to enhance
stock assessments and the scientific advice for tropical tunas in
tuna regional fisheries management organizations (t-RFMOs).
Yet, studies on detailed distribution patterns of pelagic species
are scarce in the Indian Ocean. Those studies have been carried
out using fishery-dependent data, such as catch logbooks (Chen
et al., 2005; Lee et al., 2005; Rajapaksha et al., 2013; Potier et al.,
2014; Arrizabalaga et al., 2015; Druon et al., 2017) or observers
data onboard commercial vessels (Sequeira et al., 2012; Lezama-
Ochoa et al., 2016; Coelho et al., 2017) and have not necessarily
been focused on purse seine information.

Drifting fish aggregating devices are monitored and tracked
with satellite linked buoys (Moreno et al., 2016a) and have
undergone numerous technological improvements in the 2000s,
such as the introduction of an echo-sounder in the buoy to
remotely inform fishers on potential fish presence and biomass
underneath the object. The first echo-sounder buoys appeared
on the market in 2000, but fishers did not start to use them
regularly until the mid-2000’s (Lopez et al., 2014), and, nowadays,
they are used in most tropical tuna purse seine fleets around
the world (Moreno et al., 2016b). DFADs automatically collect
huge amounts of acoustic information over several months,
covering thousands of kilometers across the ocean. Because these
devices collect fishery-independent information about the pelagic
ecosystem in a cost-effective manner (Moreno et al., 2016a),
recent studies have noted the potential this data can have in the
research of several issues of scientific relevance (Dagorn et al.,
2006; Santiago et al., 2015; Lopez et al., 2016; Moreno et al.,
2016a), including the investigation of the ecology and behavior
of DFAD-associated species and the development of alternative
abundance indices (Santiago et al., 2017, 2019), among others.
Unlike fishery-dependent data, echo-sounder buoys provide
acoustic data that is less affected by fisheries-related dynamics
such as fleet behavior, effort, and spatio-temporal constraints.
However, despite these obvious advantages, this type of data has
barely been used to model species distribution and environmental
preferences of tunas and non-tuna species (Lopez et al., 2017b).

Species distribution models (SDMs) have been broadly
used in biogeography and ecology studies to answer several
environmental questions, including fisheries impacts (Varela
et al., 2011). In general, SDMs link occurrence or abundance data
of one or more species with a multivariate set of environmental
information, which allows the prediction of their distribution
in unsampled areas or periods of time (Anderson et al., 2003;
Phillips et al., 2006; Zimmermann et al., 2010; Martínez-Minaya
et al., 2018). These models therefore assess whether or not an
area is suitable for a particular species by taking into account the
relevant environmental variable (Costa et al., 2017). In order to
estimate and predict the distribution of species, a large number
of modeling algorithms have been used [e.g., BIOCLIM, general
additive models (GAMs), MaxEnt, and boosted regression trees
(BRT), APECOSM, SEAPODYM, among others] (Hastie and
Tibshirani, 1990; Guisan and Zimmermann, 2000; Lehodey
et al., 2008; Maury, 2010; Guisan et al., 2013; Young and
Carr, 2015; Hazen et al., 2017). However, these models do
not account for uncertainty in the parameters or the spatial-
autocorrelation of data which is necessary to provide a more
clear and detailed distribution of the species (Costa et al., 2017).
Bayesian statistical methods offer the possibility to use both the
model parameters and the observed data as random variables
(Banerjee et al., 2014), which provides a more realistic and precise
estimation of uncertainty (Haining et al., 2007). Using Bayes’
theorem, posterior probability distributions for all unknown
quantities of interest (i.e., parameters) are built combining
the uncertainty in the data (expressed by the likelihood) with
additional information (expressed by prior distributions) (Kinas
and Andrade, 2017). Moreover, the Bayesian approach allows
the addition of the spatial component as a random-effect term,
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considering spatial autocorrelation of the data, and reducing its
influence on the estimates of the effects of geographical variables
(Gelfand et al., 2006). Because of these advantages, Bayesian
methods are increasingly used in fisheries studies in recent years
(Muñoz et al., 2013; Pennino et al., 2014; Paradinas et al., 2015).

Within this context, this study aims to investigate tuna and
non-tuna species distribution dynamics in the Indian Ocean
implementing Bayesian Hierarchical spatial models (hereafter
B-HSMs). For this purpose, we use presence/absence data
derived from fishers’ echo-sounder buoys, a set of environmental
information, and DFAD-inherent variables such as the soak
time and object identification. In addition, the Indian Ocean
is characterized by strong fluctuations in the environment
linked with monsoon regimes, which affect ocean circulation
and biological production. Because of this, the spatio-temporal
distribution differences have also been analyzed for each
monsoon season. Understanding the habitat preferences of tuna
and non-tuna species and their dynamics may contribute to
specific spatial management and conservation measures toward
sustainable fisheries management in this area.

MATERIALS AND METHODS

Study Area
Our study area is bounded by longitude 30◦E to 80◦E and latitude
15◦N to 30◦S in the Western Indian Ocean, within the Indian
Ocean Tuna Commission (IOTC) convention area. DFADs are
not uniformly distributed, and surface currents and winds affect
their trajectory (Davies et al., 2014b). The marked monsoon
system strongly influences the ocean circulation in the Indian
Ocean, which could have a significant impact on oceanography
and productivity in the area (Schott and McCreary, 2001; Wiggert
et al., 2006; Schott et al., 2009). The Intertropical Convergence
Zone (ITCZ) location changes through the year inducing regime
fluctuations, creating southwestern trade winds during summer
in the northern hemisphere and northeastern trade winds during
winter period in the northern hemisphere (Wyrtki, 1973).
The summer monsoon lasts from June to September and the
winter monsoon lasts from December to March, with two inter-
monsoon periods in April-May and October-November. The
drastic changes in circulation of the surface currents induced
by the monsoon affects biophysical factors (i.e., chlorophyll,
temperature, salinity, dissolved oxygen) (Tomczak and Godfrey,
2013) and thus, may affect the presence and the relative
composition of species in an area (Jury et al., 2010).

Data Collection
The acoustic information was obtained by Satlink buoys
(SATLINK, Madrid, Spain1), which were linked to DFADs and
deployed at sea by a Spanish purse seine fishing company
Echebastar. The buoys are equipped with a Simrad ES12 echo-
sounder which transmits to the user the potential amount of
biomass (in tons, t) aggregated underneath DFADs using a depth
layer echo-integration procedure (Simmonds and MacLennan,

1www.satlink.es

2005), with an internal detection threshold of 1 ton. The Simrad
ES12 operates at a frequency of 190.5 kHz with a power of
140 W (beam angle at –3 dB: 20◦) and is programmed to
operate for 40 s every time it samples. Thirty two pings are sent
from the transducer during this period and an average acoustic
response is measured and stored in the buoy (hereafter called
“acoustic sample”). The observation depth range is composed
of ten homogeneous layers, each with a resolution of 11.2 m,
and it extends from 3 to 115 m, with a blanking zone between
0 and 3 (see Lopez et al., 2016; Orue et al., 2019a for further
technical details on the buoy and the protocol used to process the
acoustic information). A virtual vertical depth limit of 25 m was
established as a possible boundary between tuna and non-tuna
species based on scientific evidence from tagging and acoustic
surveys in the Indian Ocean around DFADs (Dagorn et al., 2007;
Moreno et al., 2007b; Taquet et al., 2007; Govinden et al., 2010;
Filmalter et al., 2011; Forget et al., 2015). Though there may
be temporary overlaps in the depth range used by the species
at DFADs, evidence suggests that tuna spend most of the time
below 25 m and non-tuna species remain in shallower waters in
the Indian Ocean (Forget et al., 2015). Signals corresponding to
depths shallower than 25 m (i.e., the sum of the first two layers)
were thus assumed to be non-tuna species, and those deeper
than 25 m (i.e., the sum of the third to the tenth layer) were
presumed to be tuna. Similar depth limits were used by other
studies in the field using the same buoy (Robert et al., 2013; Lopez
et al., 2017a,b). As highlighted by Phillips et al. (2019), some
tuna individuals are likely to be present in the area above 25 m.
However, considering the data above 25 m as tuna introduces
considerable uncertainty. The 25 m cut-off was kept constant
throughout the experiment.

The acoustic dataset contains information about the owner
vessel, buoy ID (unique alphanumeric code provided by the
manufacturer), location (latitude and longitude), date and GMT
hour, and biomass estimates from 962 buoys spanning January
2012 to May 2015 in the Indian Ocean. The buoys used in this
study were linked to newly deployed DFADs (i.e., objects with
no aggregation associated when deployed), with a maximum
monitoring time of 60 days at sea. This time constraint is based on
a preliminary data analysis showing that after 60 days only 50%
of the objects were available. A single daily acoustic signal was
selected per day for each of the 962 buoys. The database was pre-
processed following a protocol proposed by Orue et al. (2019a).
Presence/absence data are modeled in this paper to avoid loss of
information and maximize the available data. If the echo-sounder
buoy emitted a signal other than zero between 3 and 25 m it was
considered to record the presence of non-tuna species, regardless
of the time of day, while if the echo-sounder emitted a signal other
than zero between 25 and 115 m it was considered to record the
presence of tuna species. The final number of acoustic samples
available for this study after data cleaning was 42,322 (Figure 1).

For additional validation of the model, the logbooks of
the DFADs were collected for the time periods considered in
the study. These logbooks have been developed by Spanish
national authorities to monitor the fishing activity of the fleet
(De Molina et al., 2013).
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FIGURE 1 | Density map of acoustic samples in the Indian Ocean from January 2012 to May 2015.

Autocorrelation (ACF) and Partial Autocorrelation Functions
(PACF) were performed to identify annual, seasonal (i.e.,
monsoonal) and daily non-random temporal patterns in the
data using the stats package of the R software (R Development
Core Team, 2017). No correlation was found at year level.
Non-random distributions of acoustic records were detected
for different monsoon seasons and at the daily scale. For this
reason, data was aggregated in four different groups following the
monsoon pattern of the area: (i) Winter Monsoon (December–
March), (ii) Spring Intermonsoon (April–May), (iii) Summer
Monsoon (June–September) and (iv) Autumn Intermonsoon
(October–November). Day-scale patterns in acoustic records
between the 7th and 53rd days did not show autocorrelation and
were therefore deemed appropriate for inclusion in the models.
Data from the first and last weeks of the time series were removed.

Environmental Data
The environmental variables were obtained from the
EU Copernicus Marine Environment Monitoring Service
(CMEMS).2 Eight abiotic and biotic variables were extracted
for each position and date of the acoustic dataset: sea surface
temperature (SST), velocity (VEL), and heading (HEADING)
of the current, salinity (SAL), eddie kinetic energy (EKE), sea

2http://marine.copernicus.eu/

surface height (SSH), chlorophyll concentration (CHL), and
oxygen concentration (O2) (Table 1).

Before their use in the models, all environmental variables
were tested for outliers, missing values and correlation. In
addition, collinearity was assessed using the variance inflation
factor analysis (VIF) with the function “corvif ” in the AED
R-package and a cut-off value of 5 (Zuur et al., 2009). Based
on these preliminary analyses, velocity was eliminated for the
posterior modeling as it was highly correlated with eddie kinetic
energy (Pearson correlation, r > 0.9; p-value < 0.001). In order
to facilitate interpretation and enable comparison of relative
weights between variables (Kinas and Andrade, 2017), these
were standardized using the function “decostand” in the vegan
R-package (Oksanen et al., 2013). Moreover, days at sea (i.e., time
spent in the water since initial deployment) was also included in
the models as explanatory variable.

Bayesian Hierarchical Spatial Models
(B-HSMs)
B-HSMs (Muñoz et al., 2013) were used to investigate the
relationship of tuna and non-tuna species with the selected
environmental variables and to obtain the predicted spatio-
temporal probability of presence of these groups. In addition
to the environmental variables and days at sea, buoy ID was
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TABLE 1 | Predictor variables used for modeling tuna and non-tuna occurrence with DFAD data in the Indian Ocean.

Variable acronym Variable name Unit Average Min Max Spatial resolution Temporal resolution

SST Sea surface temperature ◦C 27.72 21.23 31.96 0.25◦ Daily

SAL Salinity PSU 35.38 32.26 36.55 0.25◦ Daily

SSH Sea surface height m 0.326 −0.193 0.845 0.25◦ Daily

VEL Velocity m/s 0.44 0.002 3.002 0.25◦ Daily

EKE Eddy kinetic energy m2. s2 0.15 0 4.505 0.25◦ Daily

HEADING Direction Degrees 185.62 0 359.99 0.25◦ Daily

CHL Chlorophyll concentration mg.m−3 0.15 0.025 0.85 0.50◦ Weekly

O2 Oxygen concentration mmol.m−3 208.2 193.2 223.4 0.50◦ Weekly

included in the models as a random effect to verify its relevance
and account of possible sampling structure autocorrelation.
A buoy’s individual behavior due to random factors or non-
observed characteristics may have caused some variability in
the data. Ignoring such non-independence may result in an
invalid statistical inference (Sainani, 2010). Thus, the buoy ID
was included in the models to remove any buoy-specific bias
(Lopez et al., 2017b).

In the B-HSM framework we used, Yi represents the species
group (i.e., tuna and non-tuna) occurrence (1 being presence; 0
being absence) for each location i, and then the occurrence was
modeled as:

Yi ∼ Bernoulli (πi) i = 1, . . . ., p

log(πi)
= Xiβ+ Zi +Wi

β ∼ N
(
µβ, qβ

)
Wi = N(0, Q(k, τ)

2logk = N (µk, ρk)

2logτ = N (µτ, ρτ)

where πi is the probability of presence of a species for a specific
location i, Xiβ is the matrix of the fixed effects of the linear
predictor, Zi is the buoy random effect and Wi represents the
spatially structured random effect at location i. In particular
Wi, account for the spatial correlation among observations at
nearby locations. As required by the Bayesian approach prior
distributions were assigned to every parameter of the model.
For Wi we assumed a prior Gaussian distribution with a zero
mean and a Matérn covariance function, which depends on the
hyperparameters k and τ, that represents its range and variance.
The range was fixed as the 20% of the diameter of the region and
the variance equal to 1 (Lindgren et al., 2011).

Parameters estimation and prediction were obtained using
the Integrated Nested Laplace Approximations (INLA) approach
(Rue et al., 2009) and R-INLA package.3 INLA is an alternative
to Monte Carlo Markov Chain (MCMC) for fitting a large
class of Bayesian models (Rue et al., 2009) and has several
advantages over other Bayesian approaches. For example, it is
faster (i.e., needs less computing time) since the algorithm is
naturally parallelized, which makes possible to take advantage

3www.r-inla.org

of the new generation of multicore processors (Beguin et al.,
2012). The model syntax is straightforward, which permits a great
compromise of automation with relatively few lines of code.

For fixed effects, no prior information on the parameters of the
model was available, so we used vague prior distributions with
a mean of 0 and a variance of 1000 as suggested by Held et al.
(2010). Posterior distributions were obtained for each parameter
of the model. Unlike traditional frequentist approaches, where
the mean and the confidence interval are provided, this type
of distribution enables explicit probability statements about
parameters. Consequently, values included between the 0.025
and 0.975 quantiles of the posterior distribution represent that
the unknown parameter is 95% likely to fall within this region
(Dell’Apa et al., 2017).

Model Selection
Explanatory variable selection was performed beginning with
all possible interaction terms but only the best combination
of variables was chosen based on three different measures: (i)
the Watanabe-Akaike information criterion (WAIC) (Watanabe,
2010), (ii) Deviance Information Criterion (DIC) (Spiegelhalter
et al., 2002), and (iii) Log-Conditional Predictive Ordinates
(LCPO) (Roos and Held, 2011). The smaller the values of these
measures, the better the compromise between fit, parsimony, and
predictive quality of the model. Thus, we choose the best model
based on the best balance between lowest DIC, WAIC, and LCPO
values, including only relevant predictors (i.e., those with 95%
credibility intervals, not including the zero; Fonseca et al., 2017).

Model Validation
B-HSMs were validated using a cross-validation procedure
(Fielding and Bell, 1997). The dataset was randomly split into
two main subsets: a training dataset including 80% of the
total observations, and a testing dataset with the remaining
20%. The training dataset was used to model the relationship
between observed data and the explanatory variables and the
testing dataset was used to evaluate the predictions’ accuracy.
The validation procedure was repeated 10 times for the best
model of each group of species (i.e., tuna or non-tuna species)
and the results were averaged over different random subsets.
In particular, to evaluate the model’s performance, we used the
area under the receiver-operating characteristic curve (AUC)
(Fielding and Bell, 1997) and the True Skill Statistic (TSS)
(Allouche et al., 2006).
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AUC measures the model’s ability to discriminate between
sites where the species are present and those in which the species
are absent. The values for AUC range from 0 to 1, where 0.5
indicates a performance no better than random, values between
0.6 and 0.9 indicate results of presence/absence different from
random, and values > 0.9 are excellent to ensure that the results
are non-random (Roos et al., 2015). TSS is a threshold-dependent
measure that is not affected by the size of the validation set and
corrects AUC for the dependence of prevalence on specificity (i.e.,
ability to correctly predict absences) and sensitivity (i.e., ability to
correctly predict presence) (Allouche et al., 2006). Both statistics
are used in combination when evaluating the predictive power of
an SDM (Pearson et al., 2006; Brodie et al., 2015).

In addition, a second cross-validation approach was
performed for tuna models using an additional fishery-
dependent dataset. FAD logbooks were used to verify whether
or not the B-HSM predictions matched with catches in the same
spatio-temporal window. Fishing sets on DFAD were identified
as presences, while visits to DFADs without fishing activity
and where no fish were observed were classified as absences,
providing 3603 data points for cross-validation. This cross-
validation procedure provided additional and complementary
AUC and TSS measures.

Model Prediction
The probability of presence was predicted in the rest of the area
of interest using Bayesian kriging, which treats the parameters
as random variables in order to incorporate uncertainty in
the prediction process (see Muñoz et al., 2013 for further
information). To predict the relationship between species group
and habitat features per season, explanatory variables were
aggregated with a seasonal monsoon temporal resolution using
the “raster” package (Hijmans et al., 2017).

Finally, with the intention of capturing general patterns in
spatial trends, we plot the functional response between selected
environmental variables and predicted values using ggplot R-
package (Wickham, 2016) to apply a smoothing function. This
technique uses locally weighted scatterplot smoothing (lowess),
which is an outlier-resistant method to estimate a polynomial
regression curve including local bootstrap methods with the
percentile technique to gather the original lowess fit change.

RESULTS

Tuna
The best fit B-HSM model included SST, SSH, EKE and days at
sea as relevant predictors for tuna presence, in addition to spatial
and buoy random effects. All models without these two random
effects resulted in higher WAIC, DIC, and LCPO than those with
them (Table 2).

Based on the final model, a high probability of tuna presence
is expected in warmer surface waters (posterior mean = 0.14;
95% CI = [0.11, 0.17]), with higher values of SSH (posterior
mean = 0.16; 95% CI = [0.12, 0.19]) and lower eddy kinetic energy
values (posterior mean = −0.18; 95% CI = [−0.22, −0.14]). The
probability of tuna presence is also explained by days at sea,

indicating higher probabilities when the object stayed more days
in the water (posterior mean = 0.03; 95% CI = [0.02, 0.03])
(Table 3). Figure 2 shows that the model found the highest
probabilities of tuna presence in warm waters (i.e., between 26
and 30◦), moderate SSH values and EKE values around 0.1 m2. s2.

Maps of predicted probability of tuna presence show different
preferential habitat patterns in monsoon periods (Figure 3). In
winter periods two hotspots were observed, one over 10◦ north
and another over 5◦ south. The main hotspots seem to lay on the
equatorial area during the spring inter-monsoon and, then, the
probability pattern spreads eastward through the equator during
the summer period. During autumn inter-monsoon (October–
November), the highest probabilities of tuna presence were found
in three well-defined lactations between 0 and 10◦ south.

When the spatial effect was included, maps showed similar
patterns as when only environmental variables were included.
Therefore, most of the variability in the data is explained by
the environmental variables included in the B-HSM (Figure 4).
Hotspots on spatial effect maps are more marked than on maps
of the posterior mean of tuna occurrence probability, which may
indicate that there are other ecological processes that are not
being considered in this study.

Non-tuna Species
The occurrence probability for this group was explained by the
SST, the CHL and the days at sea. The final B-HSM for non-
tuna species also included spatial and buoy random effects as
relevant predictors. As for the tuna B-HSM, all models without
these random effects resulted in higher WAIC, DIC and LCPO
scores (Table 4).

TABLE 2 | Comparison of the most relevant models for the tuna B-HSMs.

Model WAIC DIC LCPO

b0 + W + SST + SSH + EKE + Days at
sea + buoy ID

26282.32 26287.74 0.54

b0 + W + SST + SSH + EKE + buoy ID 28327.81 28338.91 0.55

b0 + W + EKE + buoy ID 29858.95 29859.81 0.55

b0 + W + SST + SSH + EKE + Days at sea 31066.52 31066.48 0.58

b0 + CHL + SAL + SST + SSH + O2 + EKE 32064.56 32064.49 0.58

Statistics acronyms are: WAIC, Watanabe Akaike Information Criterion; DIC,
Deviance Information Criterion; LCPO, Logarithmic Cross Validated Score.
Predictor acronyms are: W, spatial effect; SST, Sea Surface Temperature; SSH,
Sea Surface Height; SAL, Salinity; O2, Oxygen Concentration; EKE, Kinetic Energy;
CHL, Chlorophyll. The best model is highlighted in bold.

TABLE 3 | Numerical summary of the marginal posterior distribution of the fixed
effects for the best tuna B-HSMs selected.

Model Variable Mean SD Q0.025 Q0.975

b0 + W + SSH + SST + EKE +

Days at sea + buoy ID
SSH 0.16 0.02 0.12 0.19

SST 0.14 0.02 0.11 0.17

EKE −0.18 0.02 −0.22 −0.14

Days at sea 0.03 0.01 0.02 0.03

For each variable the mean, standard deviation, and a 95% credible central
interval (Q0 .025− Q0 .975) is provided, containing 95% of the probability under the
posterior distribution.
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FIGURE 2 | Functional responses of the final tuna B-HSMs (A, Sea Surface Temperature; B, Sea Surface Height; C, Kinetic Energy). The solid line represents the
smooth function estimate; the shaded region represents the approximate 95% credibility interval.

Higher probabilities of non-tuna species were found in colder
(posterior mean = −0.08; 95% CI = [−0.13, −0.03]) and
productive waters (posterior mean = 0.11; 95% CI = [0.04, 0.17]).
Days at sea was positively related with probability of presence
(posterior mean = 0.01; 95% CI = [0.01, 0.02]) although its
effect is smaller than in the tuna model, based on the posterior
mean values (Table 5). In particular, as shown in Figure 5, the
probability of non-tuna presence decreased with temperature
continuously from 20◦C, while the chlorophyll showed an
increasing pattern, with the highest probabilities of non-tuna
presence found in waters with chlorophyll concentrations higher
than 0.8 mg/m3.

Maps of the predicted probability of non-tuna species presence
identified more marked hotspots during the winter and spring
periods, versus scattered hotspots during summer monsoon
and autumn inter-monsoon (Figure 6). Throughout the year,
intermediate probabilities are found off the coast of Somalia
between 0 and 10◦ north. During the winter period another
hotspot in the SE of Seychelles is detected, also for tuna,
but less marked.

Spatial effect maps for non-tuna species showed patterns
similar to the posterior mean maps (i.e., although with different
scales), which suggests that most of the variability is explained by
the variables included in the model (Figure 7).

Model Validation
Model prediction performance scores showed AUC values
greater than 0.65 (i.e., 0.75 ± 0.07 for tuna models and
0.68 ± 0.06 for non-tuna models), which indicates a good
degree of discrimination between locations where tuna and non-
tuna groups were present and those where they were absent
(Table 2). Likewise, TSS values ranged between 0.20 and 0.39,
which represents good model ability to predict true negative
and true positive predictions (Brodie et al., 2015). The values of
AUC and TSS for the tuna model using the fishery-dependent
dataset (i.e., catch and DFADs activities information from fishing
and FAD logbooks respectively) achieved lower values than
the ones obtained from the echo-sounder estimated presence
by B-HSMs (Table 6). However, AUC and TSS values were
reasonable, 0.60 ± 0.06 and 0.18 ± 0.08, respectively, indicating
good prediction performance for the models.

DISCUSSION

This study represents the first investigation of the spatial and
temporal distribution of tropical tuna and non-tuna species
aggregated under DFADs in the Indian Ocean using fishery-
independent data collected by fishers’ echo-sounder buoys. The
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FIGURE 3 | Maps of the posterior mean of tuna occurrence probability in different seasons.

results showed species-specific distribution patterns based on
relevant environmental preferences and provide new insights on
species habitat when associated with DFADs. Despite tuna and
tuna-like species being the most important resources exploited by
a variety of fleets operating in the Indian Ocean, detailed studies
of their habitat and ecological preferences are limited. Previous
knowledge of the distribution dynamics and environmental
preferences of tropical tuna in the Indian Ocean have primarily
been obtained from fishery-dependent data of purse seiners
and longlines fisheries (Chen et al., 2005; Lee et al., 2005;
Fonteneau et al., 2008; Song et al., 2008, 2009; Tew-Kai and
Marsac, 2009; Lan et al., 2013; Lumban-Gaol et al., 2015), but
not fisheries-independent data. Furthermore, only a few studies
have considered tuna and other species associated with DFADs.
Therefore, the relationship of DFAD-associated species and their
local environment is still unclear (Fraile et al., 2010). To our
knowledge, only one other study has used acoustic data collected
by fishers’ echo-sounder buoys to relate the biomass gathered
under the objects to environmental factors, but it was focused on
the Atlantic Ocean (Lopez et al., 2017b).

Differing species-specific environmental preferences are
suggested by existing literature, likely reflecting differences in the
target data (e.g., body size) and the spatio-temporal bounds of the
varied methodologies. For example, Mohri and Nishida (2000)
and Song et al. (2008), used fishery data that commonly target
adult individuals of yellowfin tuna (Thunnus albacares) to suggest

a depth range of 100–180 m for this species. In contrast, Cayré
and Marsac (1993) and Dagorn et al. (2006) suggested a depth
range of 40–110 m for the same species using electronic tagging
for juveniles. Temperature has been used as an explanatory
variable for tuna habitat in many studies. Mohri and Nishida
(2000) and Song et al. (2008) suggested 15–17◦C as an optimal
temperature range for yellowfin tuna, while Romena (2001)
found 17–20◦C using qualitative methods. Romena (2001) also
suggested an optimal salinity range of 34.2 to 35 PSU for adults of
yellowfin tuna in the Indian Ocean. Dissolved oxygen is another
important factor commonly used in these studies. Romena (2001)
suggested a range of 2.6–5 mg · L−1 of dissolved oxygen for
yellowfin tuna, while Song et al. (2008) of 2–3 mg · L−1. Song
et al. (2009) suggested an optimum of chlorophyll-a of 0.090–
0.099 mg L−1 for yellowfin tuna, different from Lee et al. (1999)
which used monthly means of sea surface color in the analysis.
Similarly, inter-species environmental preference data is varied.
For the habitat preference of bigeye tuna, (Thunnus obesus) in
the Indian Ocean, Song et al. (2009) showed an optimal range of
240–280 m of depth, 12–14◦C of temperature, and 2–3 mg · L−1

of dissolved oxygen, whereas for skipjack (Katsuwonus pelamis)
sea surface temperature varied between 15 and 30◦C (Barkley
et al., 1978) and a preferred range from 23 to 28◦C (Arrizabalaga
et al., 2015). Aggregating these complimentary datasets provides
greater overall insight on the tuna environmental preference in
the Indian Ocean.
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FIGURE 4 | Maps of the posterior mean of the spatial effect for tuna model in different seasons.

The species-specific temporal distributions found in this study
suggest that both tuna and non-tuna species associated with
DFADs may have different habitat preferences depending on
the monsoon period. These results are consistent with previous
studies in which regular seasonal variability in catch has been
observed (Kaplan et al., 2014) as well as different spatial patterns
in fishing effort in fleet behavior during the monsoon period
in the Indian Ocean (Davies et al., 2014a). We note that
the temporal scale (e.g., daily, monthly, seasonal or monsoon
aggregation) could be case-dependent. Here, we selected the

TABLE 4 | Comparison of the most relevant models for the non-tunas B-HSMs.

Model WAIC DIC LCPO

b0 + W + SST + CHL + Days
at sea + buoy ID

14680.23 14722.57 0.26

b0 +W+ SST+CHL+ EKE+ buoy
ID

15533.79 15533.52 0.27

b0 + W + Days at sea + buoy ID 15624.38 15624.28 0.28

b0 + SSH + O2 + HEADING 15764.38 15764.50 0.28

Statistics acronyms are: WAIC, Watanabe Akaike Information Criterion; DIC,
Deviance Information Criterion; LCPO, Logarithmic Cross Validated Score for
the non-tuna models selected for each period. Predictor acronyms are: W,
spatial effect; SST, Sea Surface Temperature; SSH, Sea Surface Height; O2,
Oxygen Concentration; EKE, Kinetic Energy; CHL, Chlorophyll. The best model is
highlighted in bold.

monsoon aggregation on the basis of the ACF and PACF
analysis after testing daily and monthly aggregations in B-HSMs
and achieving worse predictions and fits (in terms of WAIC,
and LCPO). However, others temporal scales (e.g., quarterly)
could provide different results, therefore comparative studies
are needed to assess the appropriate temporal aggregations
(Pennino et al., 2019).

A major difference in this study with respect to fisheries-
dependent studies (e.g., Davies et al., 2014a) is that we did not
find high probability of presence in the Mozambique Channel
throughout the year. However, it is known that the purse seine
fisheries have recorded consistent annual catches in this area
since 1985 and large quantities of tunas associated to floating
objects within this local fishery yearly in March (end of the winter

TABLE 5 | Numerical summary of the marginal posterior distribution of the fixed
effects for the best non-tuna B-HSM selected.

Model Variable Mean SD Q0.025 Q0.975

b0 + W + SST + CHL + Days
at sea + buoy ID

SST −0.08 0.03 −0.13 −0.03

CHL 0.11 0.03 0.04 0.17

Days at sea 0.01 0.01 0.01 0.02

For each variable the mean, standard deviation, and a 95% credible central
interval (Q0 .025− Q0 .975) is provided, containing 95% of the probability under the
posterior distribution.
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FIGURE 5 | Functional responses of the final non-tuna B-HSMs (A, Sea Surface Temperature; B, Chlorophyll). The solid line represents the smooth function
estimate; the shaded region represents the approximate 95% credibility interval.

FIGURE 6 | Maps of the posterior mean of non-tuna occurrence probability in different seasons.

monsoon) and in April–May (inter-monsoon). Model bias likely
explains the absence of probability of presence for this area and
timeframe. First, this model has a lower prediction power in areas
with few or no observations. Second, B-HSMs implicitly assume
that correlation is only dependent on the distance between

observations, and therefore does not account for the presence of
physical barriers– in this case, the island of Madagascar. Efforts to
account for spatial disruptions within current model algorithms
are in development (Martínez-Minaya et al., 2019). Moreover,
there are some differences between our presence probability maps
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FIGURE 7 | Maps of the posterior mean of the spatial effect of non-tuna in different seasons.

and fishery catch distribution maps. This could be because the
probability of occurrence may show different spatio-temporal
trends than biomass abundance or catch. For example, for some
species, measures of occurrence and measures of abundance
respond differently to environmental variables (Heinänen et al.,
2008) depending on the life habits, age-size, and trophic niche.

Understanding the habitat characteristics and dynamics
of pelagic species aggregated under DFADs contributes to
the management and design of conservation measures for
these valuable fishery resources, for example, by providing a
baseline for the design of area closures, which is especially
important in a changing ocean. Currently, the vast majority
of spatial management measures for marine species, such as
Marine Protected Areas (MPA), set fixed boundaries around
mobile species (Hyrenbach et al., 2000; Norse et al., 2005;

TABLE 6 | Average and standard deviation AUC and TSS values for the final
models selected in each case for tuna and non-tuna species using two different
datasets (fisheries-independent and fisheries-dependent) for the cross-validation.

Cross validation Cross validation

train/test split fishery-dependent dataset

AUC TSS AUC TSS

Tuna 0.75 ± 0.07 0.39 ± 0.10 0.61 ± 0.06 0.18 ± 0.08

Non-Tuna 0.68 ± 0.06 0.20 ± 0.09

Crowder and Norse, 2008), which may be rendered inadequate
by the dynamism of the ocean. In recent years, the concept of
dynamic ocean management has been defined as “management
that changes in space and time in response to the shifting
nature of the ocean and its users based on the integration of
new biological, oceanographic, social and/or economic data in
near real-time” (Maxwell et al., 2015). This concept requires
more precise data and faster collection, processing, and analysis
to enable near real-time responses (Wilson et al., 2018). The
approach used in this study could be the first steps toward
designing, in the near future, spatio-temporal conservation
management measures (e.g., area closures) for both target and
non-target species, using near real-time habitat predictions based
on acoustic data provided by fishers’ echo-sounders and remote
sensing systems.

Environmental Predictors of Species
Distribution
This study showed that the spatio-temporal distribution and
relevant environmental factors were different for tuna and
non-tuna species aggregated at DFADs, suggesting that tuna and
non-tuna species may have different habitat preferences.

Tuna
B-HSM results highlighted the importance of SST, SSH, EKE and
days at sea for tuna presence. In particular, these results suggest
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that areas with higher SST and SSH and lower EKE yielded higher
probability of tuna presence.

The negative effect with eddy kinetic energy may be due to
the energetic cost of being associated with fast-DFADs. This
relationship can be observed during summer and in autumn
inter-monsoon, when the North Equatorial Current reverses its
directions toward the east and combines with the eastward-
flowing Equatorial Countercurrent, such that its broad eastward
flow dominates the northern Indian Ocean (Benny, 2002). The
probability of tuna presence is close to zero during this period
above 0◦N probably due to the high speed of the buoys that flow
with this current eastwards at high speeds (Schott and McCreary,
2001; Tomczak and Godfrey, 2013). This result is consistent with
the study of Lopez et al. (2017b), in which tuna predilection to
associate with DFADs at speeds between 0.5 and 1 kn or lower
was shown. Additionally, in a study by Moreno et al. (2007a)
to better understand tuna behavior at DFADs in Indian Ocean,
fishers who were interviewed believe that fish leave DFADs when
a significant change in the DFAD speed or change in the direction
of the trajectory occurs.

Sea surface height was also relevant for the tuna model,
presenting a positive relationship with tuna occurrence. This
finding is consistent with previous studies that showed a similar
relationship in the three oceans (Druon et al., 2017; Lan et al.,
2017). Areas of positive SSH values are usually associated with
deeper mixed layer depths (MLDs) (Gaube et al., 2013; Dufois
et al., 2014, 2017) and mesoscale features (López-Calderón et al.,
2006; Benitez-Nelson et al., 2007; Lopez et al., 2017b), suggesting
that tuna may prefer deep and well mixed waters in the center
or the edge of productivity structures (e.g., eddies). Higher
probabilities of tuna presence were also found in areas with
high SST. Tuna’s preference for warm surface waters has been
observed in previous investigations, where warm waters have
been linked to both higher catch rates of large tunas (Zagaglia
et al., 2004; Lan et al., 2011, 2017) and acoustic biomass data
(Lopez et al., 2017b). Overall, B-HSM results are in accordance
with previous studies in the field, which suggest that tropical
tunas usually prefer warmer environments that display near null
or positive SSH values (Arrizabalaga et al., 2015; Lan et al., 2017;
Lopez et al., 2017b).

One uncommon result in this study is a low probability of
tuna in the Mozambique Channel area throughout the year. Our
methodology only considered DFADs deployed by a single fishing
company, and having known trajectories since their deployment.
Buoys deployed on natural objects were excluded, because their
soak time could not be accurately determined. High abundances
of natural floating objects have been observed in the Mozambique
Canal (Dagorn et al., 2013), so there have always been fewer
deployments of DFADs in this area than in the rest of the Indian
Ocean (Davies et al., 2014b). Incorporation of data from this area
would provide information complimentary to our study.

A positive relationship was also identified between tuna
occurrence and the number of days that the DFAD were at sea,
meaning that the longer the DFAD spends in the water, the higher
its probability of aggregating tuna. This positive relationship
is probably related to the colonization process of the DFADs
and is in accordance with other studies (Lopez et al., 2017b;

Orue et al., 2019b) showing that, in general, biomass increases
with time at DFADs. DFADs may contribute to the formation
of large schools of fish and shaping the optimal size of the
school (Pitcher and Parrish, 1993) during the first 30–60 days
at sea (Orue et al., 2019b). This study only considers DFADs
that have stayed at sea 60 days. Additional studies should
try to include longer time series in the analysis and test the
importance this variable has in the long-term processes associated
with DFADs ecology.

The echo-sounder buoys used in this study provide a single
value of tuna biomass that includes the three associated species
under the DFADs so, for the moment, the specific distribution of
each species cannot be analyzed. This has been widely discussed
in other studies, where the need for multi-frequency studies
on echo-sounder buoys has been highlighted for more effective
tuna species discrimination at DFADs (Moreno et al., 2019;
Orue et al., 2019b). Once it is possible to effectively discriminate
between the three tropical tuna species associated with DFADs,
further analyses should identify differences in species behavior
and environmental variables.

Non-tuna Species
For non-tuna species, the probabilities of presence were, in
general, lower than for the tuna group where the maps of the
posterior mean probability show less marked hotspots. This may
be related to the buoy detection ability. The buoy used in this
study has a blanking zone (i.e., a data exclusion zone to remove
transducer’s near-field effect; Simmonds and MacLennan, 2005)
between 0 and 3 m, so species located at distances closer from
the DFAD are not easily detected by the beam. In this case,
we do not believe that the detectability limit will greatly affect
outcomes, since some by-catch species are known to be strongly
and tightly associated with the DFAD (intranatant/extranatant
species, see Freon and Dagorn, 2000) and thus, may be more
easily detected. The minimum detection threshold calculated by
the buoy (i.e., 1 ton) may be important for non-tuna species,
as bycatch species are usually found in DFADs in relatively low
biomass (Romanov, 2002, 2008; Amandé et al., 2008; Dagorn
et al., 2012; Ruiz et al., 2018). However, as has been explained in
previous studies using this buoy brand (Orue et al., 2019b), due to
the empirical algorithm used to convert raw acoustic backscatter
into biomass, one ton of biomass determined through the
skipjack-based algorithm may not necessarily represent the same
quantity of non-target species, but certainly less, suggesting that
the one ton threshold may not have impacted results significantly.
Although we do not believe that these limitations have important
implications for the final results, they may affect, to some extent,
the smaller estimated probabilities of non-tuna presence.

In this case, the most relevant environmental variables were
CHL and again, SST, although in this case the relationship
with surface temperature was negative. The negative relationship
between SST and non-tuna species presence, and the positive one
with CHL, indicates that non-tuna species may show predilection
to cold, high productivity waters. In the monsoon predictions, we
found a relatively stable area throughout the year with the highest
probability of non-tuna presence off the coast of Somalia, which
is characterized by the chlorophyll-rich water (Jury et al., 2010).
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These results are in accordance with published research that
investigated the environmental preferences of non-tuna species
associated with DFADs in the Atlantic Ocean (Lopez et al.,
2017b). The most marked hotspots during the spring period
coincide with the Great Whirl, an anticyclonic eddy generated
by the Somali current. Although the eddy is usually evident
between June and September, the Great Whirl’s anticyclonic
circulation reveals on average in April (Beal and Donohue, 2013).
Non-tuna probability presence, as well as for tuna, is positively
correlated with days at sea. This finding is consistent with a
previous study that used fishery-independent data which showed
increasing non-tuna biomass the longer the DFAD is at sea
(Orue et al., 2019b).

Random Effects for Species Distribution
Results showed that the buoy random effect was relevant to
explain part of the variability in the distribution of both tuna
and non-tuna species that is not explained by the environment.
These results could indicate that other processes driving the
associative behavior of tuna and non-tuna species at DFADs
have not been incorporated in this study. Some of these may
be characteristics associated to the structure of the DFAD. In
fact, fishers state that characteristics of the construction can have
direct impacts on the effectiveness of the DFAD for fish attraction
(Moreno et al., 2016c). For example, fishers build objects with
float depth and underwater features dependent on the ocean, and
evidence has been provided of a significant relationship between
DFAD depth and the colonization of tuna in the Indian Ocean
(Orue et al., 2019b).

The spatial effects, which explain the intrinsic spatial
variability of the data without the use of explanatory variables,
showed similar patterns in probability maps for both tuna
as well as non-tuna species. Indeed, maps of the spatial
effects highlighted the same hotspots identified in the response
variables, although the patterns are more marked than for the
models without spatial effects. This is especially true for non-
tuna species, which may suggest that part of the variability
of DFAD data is not explained by the selected variables.
This suggests that other ecological processes not considered
in this study may be implicated in the process of species
aggregation in DFADs at different scales (e.g., social behavior
of tuna at DFADs, FAD densities in the area, dispersal or
the patterns of aggregative species). This is consistent with
previous studies, where environmental factors were seen to
have a more important role in free schools than in DFAD
communities in the Indian Ocean (Lezama-Ochoa et al., 2015).
Therefore, we could hypothesize that for small tuna that
usually aggregate with DFADs, the importance of environmental
conditions are not as relevant as for big tunas, which are usually
found in free swimming schools. Marsac et al. (2000), raising
the ecological trap hypothesis, suggested the possibility that
tuna could be trapped in DFADs even when environmental
conditions were not biologically optimal, which may affect
natural migration routes of tunas and potentially their biology
if habited in poor feeding conditions. Future studies should
analyze the comparison of preferential/non-preferential areas
and biomass aggregation/decrease around DFADs, which could

inform the effect of DFADs on tuna and non-tuna species
movement and habitat, and shed light on the ecological
trap hypothesis.

Dataset Features and Statistical Reliance
Large-scale habitat preference predictions, such as those carried
out in this study, allow wider and more comprehensive
knowledge of species distribution, although their use can result in
a certain level of compromise in the analysis. Mapping of critical
habitats requires a high level of accuracy, but the problem is that
the amount of data available over large areas is often limited
or very aggregated in certain regions. Bayesian interpolation
and extrapolation are sufficiently reliable for the identification
of species distribution for effective decision making in fishery
management. The use of B-HSM for habitat identification is
founded on a number of predictive evaluation criteria that
prove a reasonable predictive performance for this approach
and its benefits in terms of ecological interpretation. Fishery-
dependent datasets matched, in general with various exceptions
due to lack of data in those regions, the predicted presences of
the fishery-independent data and Bayesian distribution models
with a reasonable level of accuracy, as shown by the TSS
and AUC indexes.

The use of monsoon seasons, which are not consistent with
seasonal catch and catch rates of the DFAD fishery, coupled with
the limited DFAD buoy information in some areas or seasons
means that the model does not predict the probability of tuna
occurrence in areas or seasons where fishing hotspots usually
occur (i.e., Somalia area each year accounting for large amount
of DFAD catches and Mozambique area where a seasonal fishery
take place during March, April and May). Therefore, the present
results and conclusions should be taken with caution due to
the limited DFAD buoy data analyzed. Future work should be
devoted to apply same approach using data covering the entire
Indian Ocean consistently.

CONCLUSION

The B-HSM used in this study provides a description of the
seasonal distribution of tuna and non-tuna species associated
to DFADs in the Indian Ocean using large-scale, non-invasive
sampling, and identifies the suitable and preferential areas of
these species’ groups. However, these results and conclusions
should be taken with caution due to the limited data from DFAD
buoys analyzed. The vast majority of management measures
for marine species set fixed boundaries around mobile species
(Hyrenbach et al., 2000; Norse et al., 2005), which is not very
useful for species like tuna as they are highly mobile. DFADs
attached to echo sounder buoys continuously record and provide
information on the DFADs trajectories as well as the biomass
of fish aggregated below them, so they may represent powerful
tools for the study of pelagic ecosystems in a dynamic way
(Moreno et al., 2016a). The approach used in this study could
be very useful to help designing spatio-temporal conservation
management measures, using near real-time habitat predictions
based on acoustic data provided by fishers’ echo-sounders and
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remote sensing systems. Nevertheless, much work remains
to be done, especially related to the improvement of
biomass estimation by echo-sounders buoys. Moreover,
none of the echo-sounders used at this time have
the ability to discriminate fish species and sizes, since
these buoys operate with a single frequency. If echo-
sounder buoys had the capability to directly identify this
information of tunas found at DFADs, these real-time
habitat predictions could provide specific management
measures for certain species or sizes. Making this possible
will require initiatives of data-exchange between fleets and
scientific organizations, which allow, either directly or
with certain delay, the transmission of echo-sounder buoy
data to scientists.

DATA AVAILABILITY STATEMENT

The datasets for this manuscript are not publicly available
because they reflect individual fishing strategies of a private
fishing vessel company. Requests to access the datasets should
be directed to the company by contacting Julen Marques from
Echebastar (julen@echebastar.com).

AUTHOR CONTRIBUTIONS

BO, MP, HM, GM, LR, and JL designed the research. BO, MP,
HM, GM, and JL performed the research. BO and MP analyzed
the data. BO, MP, JL, GM, JS, LR, and HM wrote the manuscript.

FUNDING

This study was partly funded by a Ph.D. grant by the AZTI
Foundation to BO.

ACKNOWLEDGMENTS

We would like to thank Spanish fishing company Echebastar
who kindly agreed to provide the acoustic data from their echo-
sounder buoys used in the present study. We would also like
to thank the reviewers who helped us to improve the first
version of the manuscript. Also, we extend our appreciation to
Dr. Emma J. Harrison for helping with the written language. This
manuscript is contribution No. 974 from AZTI-Tecnalia, Marine
Research Division.

REFERENCES
Allouche, O., Tsoar, A., and Kadmon, R. (2006). Assessing the accuracy of species

distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl.
Ecol. 43, 1223–1232. doi: 10.1111/j.1365-2664.2006.01214.x

Amandé, J. M., Ariz, J., Chassot, E., Chavance, P., Delgado De Molina, A., Gaertner,
D., et al. (2008). By-Catch and Discards of the European Purse Seine Tuna Fishery
in the Indian Ocean Estimation and Characteristics for the 2003-2007 Period.
IOTC-2008-WPEB-12. Victoria: Indian Ocean Tuna Commission.

Anderson, R., Lew, D., and Peterson, A. (2003). Evaluating predictive models of
species’ distributions: criteria for selecting optimal models. Ecol. Modell. 162,
211–232. doi: 10.1016/s0304-3800(02)00349-6

Angel, M. V. (1993). Biodiversity of the pelagic ocean. Conserv. Biol. 7, 760–772.
doi: 10.1046/j.1523-1739.1993.740760.x

Arrizabalaga, H., Dufour, F., Kell, L., Merino, G., Ibaibarriaga, L., Chust, G., et al.
(2015). Global habitat preferences of commercially valuable tuna. Deep Sea Res.
II Top. Stud. Oceanogr. 113, 102–112. doi: 10.1016/j.dsr2.2014.07.001

Báez, J. C., Fernández, F., Pascual-Alayón, P. J., Ramos, M. L., Deniz, S., and
Abascal, F. (2018). Updating the Statistics of the EU-Spain Purse Seine Fleet in
the Indian Ocean (1990-2017). Victoria: Indian Ocean Tuna Commission.

Banerjee, S., Carlin, B. P., and Gelfand, A. E. (2014). Hierarchical Modeling and
Analysis for Spatial Data. Boca Raton, FL: CRC Press.

Barkley, R. A., Neill, W. H., and Gooding, R. M. (1978). Skipjack tuna, Katsuwonus
pelamis, habitat based on temperature and oxygen requirements. Fish. Bull. 76,
653–662.

Beal, L., and Donohue, K. (2013). The great whirl: observations of its seasonal
development and interannual variability. J. Geophys. Res. Oceans 118, 1–13.
doi: 10.1029/2012jc008198

Beguin, J., Martino, S., Rue, H., and Cumming, S. G. (2012). Hierarchical analysis
of spatially autocorrelated ecological data using integrated nested Laplace
approximation. Methods Ecol. Evol. 3, 921–929. doi: 10.1111/j.2041-210x.2012.
00211.x

Benitez-Nelson, C. R., Bidigare, R. R., Dickey, T. D., Landry, M. R., Leonard, C. L.,
Brown, S. L., et al. (2007). Mesoscale eddies drive increased silica export in
the subtropical Pacific Ocean. Science 316, 1017–1021. doi: 10.1126/science.
1136221

Benny, P. N. (2002). Variability of western Indian Ocean currents. Western Indian
Ocean J. Mar. Sci. 1, 81–90.

Brodie, S., Hobday, A. J., Smith, J. A., Everett, J. D., Taylor, M. D., Gray, C. A.,
et al. (2015). Modelling the oceanic habitats of two pelagic species using
recreational fisheries data. Fish. Oceanogr. 24, 463–477. doi: 10.1111/fog.
12122

Castro, J., Santiago, J., and Santana-Ortega, A. (2002). A general theory on fish
aggregation to floating objects: an alternative to the meeting point hypothesis.
Rev. Fish Biol. Fish. 11, 255–277.

Cayré, P. A., and Marsac, F. (1993). Modeling the yellowfin tuna
(Thunnus albacares) vertical distribution using sonic tagging results
and local environmental parameters. Aquat. Living Resour. 6, 1–14.
doi: 10.1051/alr:1993001

Chen, I., Lee, P. F., and Tzeng, W. N. (2005). Distribution of albacore (Thunnus
alalunga) in the Indian Ocean and its relation to environmental factors. Fish.
Oceanogr. 14, 71–80. doi: 10.1111/j.1365-2419.2004.00322.x

Coelho, R., Mejuto, J., Domingo, A., Yokawa, K., Liu, K. M., Cortés, E., et al. (2017).
Distribution patterns and population structure of the blue shark (Prionace
glauca) in the Atlantic and Indian Oceans. Fish Fish. 19, 90–106.

Costa, T. L., Pennino, M. G., and Mendes, L. F. (2017). Identifying ecological
barriers in marine environment: The case study of Dasyatis marianae. Mar.
Environ. Res. 125, 1–9. doi: 10.1016/j.marenvres.2016.12.005

Costello, C., and Kaffine, D. T. (2010). Marine protected areas in spatial property-
rights fisheries. Austral. J. Agric. Resour. Econ. 54, 321–341. doi: 10.1111/j.1467-
8489.2010.00495.x

Crowder, L., and Norse, E. (2008). Essential ecological insights for marine
ecosystem-based management and marine spatial planning. Mar. Policy 32,
772–778. doi: 10.1016/j.marpol.2008.03.012

Dagorn, L., Bez, N., Fauvel, T., and Walker, E. (2013). How much do fish
aggregating devices (FADs) modify the floating object environment in the
ocean? Fish. Oceanogr. 22, 147–153. doi: 10.1111/fog.12014

Dagorn, L., Filmalter, J., Forget, F., Amandè, M. J., Hall, M. A., Williams, P., et al.
(2012). Targeting bigger schools can reduce ecosystem impacts of fisheries. Can.
J. Fish. Aquat. Sci. 69, 1463–1467. doi: 10.1139/f2012-089

Dagorn, L., Holland, K. N., and Itano, D. G. (2006). Behavior of yellowfin (Thunnus
albacares) and bigeye (T. obesus) tuna in a network of fish aggregating devices
(FADs). Mar. Biol. 151, 595–606. doi: 10.1007/s00227-006-0511-1

Dagorn, L., Pincock, D., Girard, C., Holland, K., Taquet, M., Sancho, G., et al.
(2007). Satellite-linked acoustic receivers to observe behavior of fish in remote
areas. Aquat. Living Resour. 20, 307–312. doi: 10.1051/alr:2008001

Frontiers in Marine Science | www.frontiersin.org 14 June 2020 | Volume 7 | Article 441

mailto:julen@echebastar.com
https://doi.org/10.1111/j.1365-2664.2006.01214.x
https://doi.org/10.1016/s0304-3800(02)00349-6
https://doi.org/10.1046/j.1523-1739.1993.740760.x
https://doi.org/10.1016/j.dsr2.2014.07.001
https://doi.org/10.1029/2012jc008198
https://doi.org/10.1111/j.2041-210x.2012.00211.x
https://doi.org/10.1111/j.2041-210x.2012.00211.x
https://doi.org/10.1126/science.1136221
https://doi.org/10.1126/science.1136221
https://doi.org/10.1111/fog.12122
https://doi.org/10.1111/fog.12122
https://doi.org/10.1051/alr:1993001
https://doi.org/10.1111/j.1365-2419.2004.00322.x
https://doi.org/10.1016/j.marenvres.2016.12.005
https://doi.org/10.1111/j.1467-8489.2010.00495.x
https://doi.org/10.1111/j.1467-8489.2010.00495.x
https://doi.org/10.1016/j.marpol.2008.03.012
https://doi.org/10.1111/fog.12014
https://doi.org/10.1139/f2012-089
https://doi.org/10.1007/s00227-006-0511-1
https://doi.org/10.1051/alr:2008001
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-00441 June 15, 2020 Time: 23:16 # 15

Orúe et al. Distribution of Species Associated With DFADs

Davies, T. K., Mees, C. C., and Milner-Gulland, E. (2014a). Modelling the spatial
behaviour of a tropical tuna purse seine fleet. PLoS One 9:e114037. doi: 10.1371/
journal.pone.0114037

Davies, T. K., Mees, C. C., and Milner-Gulland, E. (2014b). The past, present and
future use of drifting fish aggregating devices (FADs) in the Indian Ocean. Mar.
Policy 45, 163–170. doi: 10.1016/j.marpol.2013.12.014

De Molina, A. D., Ariz, J., Santana, J., and Rodriguez, S. (2013). EU/Spain Fish
Aggregating Device Management Plan. SCRS/2013/029. Victoria: Indian Ocean
Tuna Commission.

Dell’Apa, A., Pennino, M. G., and Bonzek, C. (2017). Modeling the habitat
distribution of spiny dogfish (Squalus acanthias), by sex, in coastal waters of
the northeastern United States. Fish. Bull. 115, 89–100. doi: 10.7755/fb.115.1.8

Dempster, T., and Taquet, M. (2004). Fish aggregation device (FAD) research: gaps
in current knowledge and future directions for ecological studies. Rev. Fish Biol.
Fish. 14, 21–42. doi: 10.1007/s11160-004-3151-x

Druon, J.-N., Chassot, E., Murua, H., and Lopez, J. (2017). Skipjack tuna availability
for purse seine fisheries is driven by suitable feeding habitat dynamics in the
Atlantic and Indian Oceans. Front. Mar. Sci. 4:315. doi: 10.3389/fmars.2017.
00315

Dueri, S., and Maury, O. (2013). Modelling the effect of marine protected areas on
the population of skipjack tuna in the Indian Ocean. Aquat. Living Resour. 26,
171–178. doi: 10.1051/alr/2012032

Dufois, F., Hardman-Mountford, N. J., Fernandes, M., Wojtasiewicz, B., Shenoy,
D., Slawinski, D., et al. (2017). Observational insights into chlorophyll
distributions of subtropical South Indian Ocean eddies. Geophys. Res. Lett. 44,
3255–3264. doi: 10.1002/2016gl072371

Dufois, F., Hardman-Mountford, N. J., Grenwood, J., Richardson, A. J., Feng,
M., Herbette, S., et al. (2014). Impact of eddies on surface chlorophyll in the
South Indian Ocean. J. Geophys. Res. Oceans 119, 8061–8077. doi: 10.1002/
2014jc010164

Fielding, A. H., and Bell, J. F. (1997). A review of methods for the assessment of
prediction errors in conservation presence/absence models. Environ. Conserv.
24, 38–49. doi: 10.1017/s0376892997000088

Filmalter, J. D., Dagorn, L., Cowley, P. D., and Taquet, M. (2011). First descriptions
of the behavior of silky sharks, Carcharhinus falciformis, around drifting fish
aggregating devices in the Indian Ocean. Bull. Mar. Sci. 87, 325–337. doi:
10.5343/bms.2010.1057

Fonseca, V. P., Pennino, M. G., De Nóbrega, M. F., Oliveira, J. E. L., and De
Figueiredo Mendes, L. (2017). Identifying fish diversity hot-spots in data-poor
situations. Mar. Environ. Res. 129, 365–373. doi: 10.1016/j.marenvres.2017.
06.017

Fonteneau, A., Chassot, E., and Bodin, N. (2013). Global spatio-temporal patterns
in tropical tuna purse seine fisheries on drifting fish aggregating devices
(DFADs): taking a historical perspective to inform current challenges. Aquat.
Living Resour. 26, 37–48. doi: 10.1051/alr/2013046

Fonteneau, A., Lucas, V., Tewkai, E., Delgado, A., and Demarcq, H. (2008).
Mesoscale exploitation of a major tuna concentration in the Indian Ocean.
Aquat. Living Resour. 21, 109–121. doi: 10.1051/alr:2008028

Forget, F. G., Capello, M., Filmalter, J. D., Govinden, R., Soria, M., Cowley, P. D.,
et al. (2015). Behaviour and vulnerability of target and non-target species at
drifting fish aggregating devices (FADs) in the tropical tuna purse seine fishery
determined by acoustic telemetry. Can. J. Fish. Aquat. Sci. 72, 1398–1405. doi:
10.1139/cjfas-2014-0458

Fraile, I., Murua, H., Goni, N., and Caballero, A. (2010). Effects of Environmental
Factors on Catch Rates of FAD-Associated Yellowfin (Thunnus albacares) and
Skipjack (Katsuwonus pelamis) Tunas in the Western Indian Ocean. IOTC-2010-
WPTT-46. Victoria: Indian Ocean Tuna Commission.

Freon, P., and Dagorn, L. (2000). Review of fish associative behaviuour: toward a
generalisation of the meeting point hypothesis. Rev. Fish Biol. Fish. 10, 183–207.

Gaube, P., Chelton, D. B., Strutton, P. G., and Behrenfeld, M. J. (2013). Satellite
observations of chlorophyll, phytoplankton biomass, and Ekman pumping in
nonlinear mesoscale eddies. J. Geophys. Res. Oceans 118, 6349–6370. doi: 10.
1002/2013jc009027

Gelfand, A. E., Silander, J. A., Wu, S., Latimer, A., Lewis, P. O., Rebelo, A. G., et al.
(2006). Explaining species distribution patterns through hierarchical modeling.
Bayesian Anal. 1, 41–92. doi: 10.1214/06-ba102

Gershman, D., Nickson, A., and O’toole, M. (2015). Estimating The Use of FADS
Around the World. Washington, DC: PEW Environmental group.

Govinden, R., Dagorn, L., Filmalter, J., and Soria, M. (2010). Behaviour of Tuna
Associated with Drifting Fish Aggregating Devices (FADs) in the Mozambique
Channel. IOTC-2010-WPTT-25. Victoria: Indian Ocean Tuna Commission.

Guisan, A., Tingley, R., Baumgartner, J. B., Naujokaitis-Lewis, I., Sutcliffe, P. R.,
Tulloch, A. I, et al. (2013). Predicting species distributions for conservation
decisions. Ecol. Lett. 16, 1424–1435.

Guisan, A., and Zimmermann, N. E. (2000). Predictive habitat distribution models
in ecology. Ecol. Model. 135, 147–186. doi: 10.1016/s0304-3800(00)00354-9

Haining, R., Law, J., Maheswaran, R., Pearson, T., and Brindley, P. (2007). Bayesian
modelling of environmental risk: example using a small area ecological study of
coronary heart disease mortality in relation to modelled outdoor nitrogen oxide
levels. Stochastic Environ. Res. Risk Assess. 21, 501–509. doi: 10.1007/s00477-
007-0134-1

Hastie, T. J., and Tibshirani, R. J. (1990). Generalized additive models. Monographs
on Statistics and Applied Probability. London: Chapman and Hall/CRC.

Hazen, E. L., Palacios, D. M., Forney, K. A., Howell, E. A., Becker, E., Hoover,
A. L., et al. (2017). WhaleWatch: a dynamic management tool for predicting
blue whale density in the California current. J. Appl. Ecol. 54, 1415–1428.
doi: 10.1111/1365-2664.12820

Heinänen, S., Rönkä, M., and Von Numers, M. (2008). Modelling the occurrence
and abundance of a colonial species, the arctic tern Sterna paradisaea in the
archipelago of SW Finland. Ecography 31, 601–611. doi: 10.1111/j.0906-7590.
2008.05410.x

Held, L., Schrödle, B., and Rue, H. (2010). “Posterior and cross-validatory
predictive checks: a comparison of MCMC and INLA,” in Statistical Modelling
and Regression Structures, eds T. Kneib, and G. Tutz, (Cham: Springer), 91–110.
doi: 10.1007/978-3-7908-2413-1_6

Hijmans, R., van Etten, J., Cheng, J., Mattiuzzi, M., Sumner, M., Greenberg, J.
(2017). Raster: Geographic Data Analysis and Modeling. R Package Version
2.3-33; 2016. Availale online at: https://rspatial.org/raster

Hyrenbach, K. D., Forney, K. A., and Dayton, P. K. (2000). Marine protected
areas and ocean basin management. Aquat. Conserv. Mar. Freshw. Ecosyst. 10,
437–458.

ISSF (2019). Status of the world fisheries for tuna. Mar. 2019. ISSF Technical Report
2019-07. Washington, DC: Seafood Sustainability Foundation.

Jury, M., Mcclanahan, T., and Maina, J. (2010). West Indian ocean variability
and east African fish catch. Mar. Environ. Res. 70, 162–170. doi: 10.1016/j.
marenvres.2010.04.006

Kaplan, D., Chassot, E., Gruss, A., and Fonteneau, A. (2010). Pelagic MPAs: the
devil is in the details. Trends Ecol. Evol. 25, 62–63. doi: 10.1016/j.tree.2009.
09.003

Kaplan, D. M., Chassot, E., Amandé, J. M., Dueri, S., Demarcq, H., Dagorn, L., et al.
(2014). Spatial management of Indian Ocean tropical tuna fisheries: potential
and perspectives. ICES J. Mar. Sci. J. Conseil 71, 1728–1749. doi: 10.1093/
icesjms/fst233

Kinas, P. G., and Andrade, H. A. (2017). Introdução à Análise Bayesiana (com R).
London: Consultor Editorial Publicações.

Lan, K.-W., Evans, K., and Lee, M.-A. (2013). Effects of climate variability on the
distribution and fishing conditions of yellowfin tuna (Thunnus albacares) in
the western Indian Ocean. Clim. Change 119, 63–77. doi: 10.1007/s10584-012-
0637-8

Lan, K.-W., Lee, M.-A., Lu, H.-J., Shieh, W.-J., Lin, W.-K., and Kao, S.-C. (2011).
Ocean variations associated with fishing conditions for yellowfin tuna (Thunnus
albacares) in the equatorial Atlantic Ocean. ICES J. Mar. Sci. 68, 1063–1071.
doi: 10.1093/icesjms/fsr045

Lan, K.-W., Shimada, T., Lee, M.-A., Su, N.-J., and Chang, Y. (2017). Using remote-
rensing environmental and fishery data to map potential yellowfin tuna habitats
in the tropical Pacific Ocean. Remote Sensing 9:444. doi: 10.3390/rs9050444

Lee, P.-F., Chen, I., and Tzeng, W.-N. (2005). Spatial and temporal distribution
patterns of bigeye tuna (Thunnus obesus) in the Indian Ocean. Zool. Stud. 44,
260–270.

Lee, P. F., Chen, I. C., and Tseng, W. N. (1999). “Distribution patterns of
three dominant tuna species in the Indian Ocean,” in Proceedings of the 19th
International ERSI Users Conference, San Diego, CA.

Lehodey, P., Senina, I., and Murtugudde, R. (2008). A spatial ecosystem and
populations dynamics model (SEAPODYM)–Modeling of tuna and tuna-
like populations. Prog. Oceanogr. 78, 304–318. doi: 10.1016/j.pocean.2008.
06.004

Frontiers in Marine Science | www.frontiersin.org 15 June 2020 | Volume 7 | Article 441

https://doi.org/10.1371/journal.pone.0114037
https://doi.org/10.1371/journal.pone.0114037
https://doi.org/10.1016/j.marpol.2013.12.014
https://doi.org/10.7755/fb.115.1.8
https://doi.org/10.1007/s11160-004-3151-x
https://doi.org/10.3389/fmars.2017.00315
https://doi.org/10.3389/fmars.2017.00315
https://doi.org/10.1051/alr/2012032
https://doi.org/10.1002/2016gl072371
https://doi.org/10.1002/2014jc010164
https://doi.org/10.1002/2014jc010164
https://doi.org/10.1017/s0376892997000088
https://doi.org/10.5343/bms.2010.1057
https://doi.org/10.5343/bms.2010.1057
https://doi.org/10.1016/j.marenvres.2017.06.017
https://doi.org/10.1016/j.marenvres.2017.06.017
https://doi.org/10.1051/alr/2013046
https://doi.org/10.1051/alr:2008028
https://doi.org/10.1139/cjfas-2014-0458
https://doi.org/10.1139/cjfas-2014-0458
https://doi.org/10.1002/2013jc009027
https://doi.org/10.1002/2013jc009027
https://doi.org/10.1214/06-ba102
https://doi.org/10.1016/s0304-3800(00)00354-9
https://doi.org/10.1007/s00477-007-0134-1
https://doi.org/10.1007/s00477-007-0134-1
https://doi.org/10.1111/1365-2664.12820
https://doi.org/10.1111/j.0906-7590.2008.05410.x
https://doi.org/10.1111/j.0906-7590.2008.05410.x
https://doi.org/10.1007/978-3-7908-2413-1_6
https://rspatial.org/raster
https://doi.org/10.1016/j.marenvres.2010.04.006
https://doi.org/10.1016/j.marenvres.2010.04.006
https://doi.org/10.1016/j.tree.2009.09.003
https://doi.org/10.1016/j.tree.2009.09.003
https://doi.org/10.1093/icesjms/fst233
https://doi.org/10.1093/icesjms/fst233
https://doi.org/10.1007/s10584-012-0637-8
https://doi.org/10.1007/s10584-012-0637-8
https://doi.org/10.1093/icesjms/fsr045
https://doi.org/10.3390/rs9050444
https://doi.org/10.1016/j.pocean.2008.06.004
https://doi.org/10.1016/j.pocean.2008.06.004
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-00441 June 15, 2020 Time: 23:16 # 16

Orúe et al. Distribution of Species Associated With DFADs

Lezama-Ochoa, N., Murua, H., Chust, G., Ruiz, J., Chavance, P., De Molina,
A. D., et al. (2015). Biodiversity in the by-catch communities of the pelagic
ecosystem in the Western Indian Ocean. Biodivers. Conserv. 24, 2647–2671.
doi: 10.1007/s10531-015-0951-3

Lezama-Ochoa, N., Murua, H., Chust, G., Van Loon, E., Ruiz, J., Hall, M.,
et al. (2016). Present and future potential habitat distribution of Carcharhinus
falciformis and Canthidermis maculata by-catch species in the tropical tuna
purse-seine fishery under climate change. Front. Mar. Sci. 3:34. doi: 10.3389/
fmars.2016.00034

Lindgren, F., Rue, H., and Lindström, J. (2011). An explicit link between Gaussian
fields and Gaussian Markov random fields: the stochastic partial differential
equation approach. J. R. Stat. Soc. Ser. B 73, 423–498. doi: 10.1111/j.1467-9868.
2011.00777.x

Lopez, J., Moreno, G., Boyra, G., and Dagorn, L. (2016). A model based on
data from echosounder buoys to estimate biomass of fish species associated
with fish aggregating devices. Fish. Bull. 114, 166–178. doi: 10.7755/fb.11
4.2.4

Lopez, J., Moreno, G., Ibaibarriaga, L., and Dagorn, L. (2017a). Diel behaviour of
tuna and non-tuna species at drifting fish aggregating devices (DFADs) in the
Western Indian Ocean, determined by fishers’ echo-sounder buoys. Mar. Biol.
164:44.

Lopez, J., Moreno, G., Lennert-Cody, C., Maunder, M., Sancristobal, I., Caballero,
A., et al. (2017b). Environmental preferences of tuna and non-tuna species
associated with drifting fish aggregating devices (DFADs) in the Atlantic Ocean,
ascertained through fishers’ echo-sounder buoys. Deep Sea Res. II Top. Stud.
Oceanogr. 140, 127–138. doi: 10.1016/j.dsr2.2017.02.007

Lopez, J., Moreno, G., Sancristobal, I., and Murua, J. (2014). Evolution and current
state of the technology of echo-sounder buoys used by Spanish tropical tuna
purse seiners in the Atlantic, Indian and Pacific Oceans. Fish. Res. 155, 127–137.
doi: 10.1016/j.fishres.2014.02.033

López-Calderón, J., Manzo-Monroy, H., Santamaría-Del-Ángel, E., Castro, R.,
González-Silvera, A., and Millán-Núñez, R. (2006). Mesoscale variability of the
Mexican Tropical Pacific using TOPEX and SeaWiFS data. Ciencias Mar. 32,
539–549. doi: 10.7773/cm.v32i3.1125

Lumban-Gaol, J., Leben, R. R., Vignudelli, S., Mahapatra, K., Okada, Y., Nababan,
B., et al. (2015). Variability of satellite-derived sea surface height anomaly,
and its relationship with Bigeye tuna (Thunnus obesus) catch in the Eastern
Indian Ocean. Eur. J. Remote Sens. 48, 465–477. doi: 10.5721/eujrs2015
4826

Marsac, F., Fonteneau, A., and Menard, F. (2000). “Drifting FADs used in tuna
fisheries: an ecological trap?,” in Proceedings of the Conference on Pêche thonière
et dispositifs de concentration de poissons, Martinique, eds J. Y. Le Gall, P. Cayré,
and M. Taquet, (Issy-les-Moulineaux: IFREMER), 537–552.

Martínez-Minaya, J., Cameletti, M., Conesa, D., and Pennino, M. G. (2018). Species
distribution modeling: a statistical review with focus in spatio-temporal issues.
Stochastic Environ. Res. Risk Assess. 32, 3227–3244. doi: 10.1007/s00477-018-
1548-7

Martínez-Minaya, J., Conesa, D., Bakka, H., and Pennino, M. G. (2019). Dealing
with physical barriers in bottlenose dolphin (Tursiops truncatus) distribution.
Ecol. Model. 406, 44–49. doi: 10.1016/j.ecolmodel.2019.05.013

Maufroy, A., Kaplan, D. M., Bez, N., De Molina, A. D., Murua, H., Floch, L.,
et al. (2016). Massive increase in the use of drifting Fish Aggregating Devices
(dFADs) by tropical tuna purse seine fisheries in the Atlantic and Indian oceans.
ICES J. Mar. Sci. 74, 215–225. doi: 10.1093/icesjms/fsw175

Maury, O. (2010). An overview of APECOSM, a spatialized mass balanced
“Apex Predators ECOSystem Model” to study physiologically structured tuna
population dynamics in their ecosystem. Prog. Oceanogr. 84, 113–117. doi:
10.1016/j.pocean.2009.09.013

Maxwell, S. M., Hazen, E. L., Lewison, R. L., Dunn, D. C., Bailey, H., Bograd, S. J.,
et al. (2015). Dynamic ocean management: defining and conceptualizing real-
time management of the ocean. Mar. Policy 58, 42–50. doi: 10.1016/j.marpol.
2015.03.014

Mohri, M., and Nishida, T. (2000). Consideration on distribution of adult yellowfin
tuna (Thunnus albacares) in the Indian Ocean based on Japanese tuna longline
fisheries and survey information. J. Natl. Fish. Univ. 49, 1–11.

Moreno, G., Boyra, G., Sancristobal, I., Itano, D., and Restrepo, V. (2019). Towards
acoustic discrimination of tropical tuna associated with fish aggregating devices.
PLoS One 14:e0216353. doi: 10.1371/journal.pone.0216353

Moreno, G., Dagorn, L., Capello, M., Lopez, J., Filmalter, J., Forget, F., et al. (2016a).
Fish aggregating devices (FADs) as scientific platforms. Fish. Res. 178, 122–129.
doi: 10.1016/j.fishres.2015.09.021

Moreno, G., Dagorn, L., Sancho, G., and Itano, D. (2007a). Fish behaviour
from fishers’ knowledge: the case study of tropical tuna around drifting fish
aggregating devices (DFADs). Can. J. Fish. Aquat. Sci. 64, 1517–1528. doi:
10.1139/f07-113

Moreno, G., Josse, E., Brehmer, P., and Nøttestad, L. (2007b). Echotrace
classification and spatial distribution of pelagic fish aggregations around
drifting fish aggregating devices (DFAD). Aquat. Living Resour. 20, 343–356.
doi: 10.1051/alr:2008015

Moreno, G., Murua, J., and Restrepo, V. (2016b). The Use of Echo-Sounder Buoys
in Purse Seine Fleets Fishing with DFADs in the Eastern Pacific Ocean. IATTC,
SAC-07 INF- C (c). La Jolla, CA: Inter-American Tropical Tuna Commission.

Moreno, G., Restrepo, V., Dagorn, L., Hall, M., Murua, J., Sancristobal, I., et al.
(2016c). Workshop on the Use of Biodegradable Fish Aggregating Devices (FADs).
Technical Report 2016-18A. Virginia: International Seafood Sustainability
Foundation.

Muñoz, F., Pennino, M. G., Conesa, D., López-Quílez, A., and Bellido, J. M.
(2013). Estimation and prediction of the spatial occurrence of fish species
using Bayesian latent Gaussian models. Stochastic Environ. Res. Risk Asses. 27,
1171–1180. doi: 10.1007/s00477-012-0652-3

Norse, E. A., Crowder, L. B., Gjerde, K., Hyrenbach, D., Roberts, C., Safina, C., et al.
(2005). Place-based ecosystem management in the open ocean. Mar. Conserv.
Biol. 8, 302–327.

Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’hara, R., et al.
(2013). Package ‘vegan’. Community ecology package, version 2.

Orue, B., Lopez, J., Moreno, G., Santiago, J., Boyra, G., Uranga, J., et al. (2019a).
From fisheries to scientific data: a protocol to process information from fishers’
echo-sounder buoys. Fish. Res. 215, 38–43. doi: 10.1016/j.fishres.2019.03.004

Orue, B., Lopez, J., Moreno, G., Santiago, J., Soto, M., and Murua, H. (2019b).
Aggregation process of drifting fish aggregating devices (DFADs) in the
Western Indian Ocean: who arrives first, tuna or non-tuna species? PLoS One
14:e0210435. doi: 10.1371/journal.pone.0210435

Paradinas, I. (2017). Species Distribution Modelling in Fisheries Science. Doctoral
dissertation, Universitat de València, València.

Paradinas, I., Conesa, D., Pennino, M. G., Muñoz, F., Fernández, A. M., López-
Quílez, A., et al. (2015). Bayesian spatio-temporal approach to identifying fish
nurseries by validating persistence areas. Mar. Ecol. Prog. Ser. 528, 245–255.
doi: 10.3354/meps11281

Pauly, D., Christensen, V., Guénette, S., and Pitcher, T. J. (2002). Towards
sustainability in world fisheries. Nature 418:689. doi: 10.1038/nature01017

Pearson, R. G., Thuiller, W., Araújo, M. B., Martinez-Meyer, E., Brotons, L.,
Mcclean, C., et al. (2006). Model-based uncertainty in species range prediction.
J. Biogeogr. 33, 1704–1711. doi: 10.1111/j.1365-2699.2006.01460.x

Pennino, M. G., Muñoz, F., Conesa, D., López-Quílez, A., and Bellido, J. M. (2014).
Bayesian spatio-temporal discard model in a demersal trawl fishery. J. Sea Res.
90, 44–53. doi: 10.1016/j.seares.2014.03.001

Pennino, M. G., Vilela, R., and Bellido, J. M. (2019). Effects of environmental data
temporal resolution on the performance of species distribution models. J. Mar.
Syst. 189, 78–86. doi: 10.1016/j.jmarsys.2018.10.001

Phillips, J. C., Leroy, B., Peatman, T., Escalle, L., and Smith, N. (2019). Electronic
Tagging Mitigtion of Bigeye and Yellowfin Tuna Juveniles by Purseine Fisheries.
WCPFC-SC15-2019/EB-WP-08. Kolonia: WCPFC.

Phillips, S. J., Anderson, R. P., and Schapire, R. E. (2006). Maximum entropy
modeling of species geographic distributions. Ecol. Model. 190, 231–259. doi:
10.1016/j.ecolmodel.2005.03.026

Pitcher, T., and Parrish, J. (1993). “Functions of shoaling behaviour in teleosts,”
in Behaviour of Teleost Fishes, ed. T. J. Pitcher, (London: Chapman and Hall),
363–439. doi: 10.1007/978-94-011-1578-0_12

Potier, M., Bach, P., Ménard, F., and Marsac, F. (2014). Influence of mesoscale
features on micronekton and large pelagic fish communities in the Mozambique
Channel. Deep Sea Res. II Top. Stud. Oceanogr. 100, 184–199. doi: 10.1016/j.
dsr2.2013.10.026

R Development Core Team (2017). R: A Language and Environment for Statistical
Computing. Vienna: R.Foundation for Statistical Computing.

Rajapaksha, J. K., Samarakoon, L., and Gunathilaka, A. A. J. K. (2013).
Environmental preferences of yellowfin Tuna in the North East Indian Ocean:

Frontiers in Marine Science | www.frontiersin.org 16 June 2020 | Volume 7 | Article 441

https://doi.org/10.1007/s10531-015-0951-3
https://doi.org/10.3389/fmars.2016.00034
https://doi.org/10.3389/fmars.2016.00034
https://doi.org/10.1111/j.1467-9868.2011.00777.x
https://doi.org/10.1111/j.1467-9868.2011.00777.x
https://doi.org/10.7755/fb.114.2.4
https://doi.org/10.7755/fb.114.2.4
https://doi.org/10.1016/j.dsr2.2017.02.007
https://doi.org/10.1016/j.fishres.2014.02.033
https://doi.org/10.7773/cm.v32i3.1125
https://doi.org/10.5721/eujrs20154826
https://doi.org/10.5721/eujrs20154826
https://doi.org/10.1007/s00477-018-1548-7
https://doi.org/10.1007/s00477-018-1548-7
https://doi.org/10.1016/j.ecolmodel.2019.05.013
https://doi.org/10.1093/icesjms/fsw175
https://doi.org/10.1016/j.pocean.2009.09.013
https://doi.org/10.1016/j.pocean.2009.09.013
https://doi.org/10.1016/j.marpol.2015.03.014
https://doi.org/10.1016/j.marpol.2015.03.014
https://doi.org/10.1371/journal.pone.0216353
https://doi.org/10.1016/j.fishres.2015.09.021
https://doi.org/10.1139/f07-113
https://doi.org/10.1139/f07-113
https://doi.org/10.1051/alr:2008015
https://doi.org/10.1007/s00477-012-0652-3
https://doi.org/10.1016/j.fishres.2019.03.004
https://doi.org/10.1371/journal.pone.0210435
https://doi.org/10.3354/meps11281
https://doi.org/10.1038/nature01017
https://doi.org/10.1111/j.1365-2699.2006.01460.x
https://doi.org/10.1016/j.seares.2014.03.001
https://doi.org/10.1016/j.jmarsys.2018.10.001
https://doi.org/10.1016/j.ecolmodel.2005.03.026
https://doi.org/10.1016/j.ecolmodel.2005.03.026
https://doi.org/10.1007/978-94-011-1578-0_12
https://doi.org/10.1016/j.dsr2.2013.10.026
https://doi.org/10.1016/j.dsr2.2013.10.026
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-00441 June 15, 2020 Time: 23:16 # 17

Orúe et al. Distribution of Species Associated With DFADs

an application of satellite data to longline catches. Int. J. Fish. Aquat. Sci. 2,
72–80.

Robert, M., Dagorn, L., Lopez, J., Moreno, G., and Deneubourg, J.-L. (2013). Does
social behavior influence the dynamics of aggregations formed by tropical tunas
around floating objects? An experimental approach. J. Exp. Mar. Biol. Ecol. 440,
238–243. doi: 10.1016/j.jembe.2013.01.005

Romanov, E. V. (2002). Bycatch in the tuna purse-seine fisheries of the western
Indian Ocean. Fish. Bull. 100, 90–105.

Romanov, E. V. (2008). Bycatch and discards in the Soviet purse seine tuna fisheries
on FAD-associated schools in the north equatorial area of the Western Indian
Ocean. Western Indian Ocean J. Mar. 7, 163–174.

Romena, N. A. (2001). Factors affecting distribution of adult yellowfin tuna
(Thunnus albacares) and its reproductive ecology in the Indian Ocean based
on Japanese tuna longline fisheries and survey information. IOTC Proc. 4,
336–389.

Roos, M., and Held, L. (2011). Sensitivity analysis in Bayesian generalized linear
mixed models for binary data. Bayesian Anal. 6, 259–278. doi: 10.1214/11-
ba609

Roos, N. C., Carvalho, A. R., Lopes, P. F., and Pennino, M. G. (2015). Modeling
sensitive parrotfish (Labridae: Scarini) habitats along the Brazilian coast. Mar.
Environ. Res. 110, 92–100. doi: 10.1016/j.marenvres.2015.08.005

Rue, H., Martino, S., and Chopin, N. (2009). Approximate Bayesian inference for
latent Gaussian models by using integrated nested Laplace approximations. J. R.
Stat. Soc. Ser. B 71, 319–392. doi: 10.1111/j.1467-9868.2008.00700.x

Ruiz, J., Abascal, F. J., Bach, P., Baez, J. C., Cauquil, P., Grande, M., et al. (2018).
Bycatch of the European, and Associated Flag, Purse-Seine Tuna Fishery in
the Indian Ocean for the Period 2008-2017. IOTC-2018-WPEB14-15. Victoria:
Indian Ocean Tuna Commission.

Sainani, K. (2010). The importance of accounting for correlated observations.
P. M. R. 2, 858–861. doi: 10.1016/j.pmrj.2010.07.482

Santiago, J., Lopez, J., Moreno, G., Murua, H., Quincoces, I., and Soto, M. (2015).
Towards a Tropical Tuna Buoy-derived Abundance Index (TT-BAI). WCPFC-
SC12-2016/ SA-IP-14. Kolonia: WCPFC.

Santiago, J., Murua, H., López, J., and Quincoces, I. (2017). Buoy Derived
Abundance Indices of Tropical Tunas in the Indian Ocean. IOTC-2017-
WGFAD01-13. Victoria: Indian Ocean Tuna Commission.

Santiago, J., Uranga, J., Quincoces, I., Orue, B., Grande, M., Murua, H., et al. (2019).
A Novel Index of Abundance of Juvenile Yellowfin Tuna in the Atlantic Ocean
Derived from Echosounder Buoys. SCRS/2019/075. Victoria: Indian Ocean Tuna
Commission.

Schott, F. A., and McCreary, J. P. (2001). The monsoon circulation of the Indian
Ocean. Prog. Oceanogr. 51, 1–123. doi: 10.1016/s0079-6611(01)00083-0

Schott, F. A., Xie, S. P., and Mccreary, J. P. (2009). Indian Ocean circulation and
climate variability. Rev. Geophys. 47:RG1002.

Scott, G. P., and Lopez, J. (2014). The Use of FADs in Tuna Fisheries. Fisheries
IP/B/PECH/IC/2013-123, 70. Brussels: European Parliament.

Sequeira, A., Mellin, C., Rowat, D., Meekan, M. G., and Bradshaw, C. J. (2012).
Ocean-scale prediction of whale shark distribution. Divers. Distrib. 18, 504–518.
doi: 10.1111/j.1472-4642.2011.00853.x

Simmonds, J., and MacLennan, D. (2005). Fishery Acoustic Theory and Practice.
Oxford: Blackwell Scientific Publications.

Song, L., Zhou, J., Zhou, Y., Nishida, T., Jiang, W., and Wang, J. (2009).
Environmental preferences of bigeye tuna, Thunnus obesus, in the Indian
Ocean: an application to a longline fishery. Environ. Biol. Fishes 85, 153–171.
doi: 10.1007/s10641-009-9474-7

Song, L. M., Zhang, Y., Xu, L. X., Jiang, W. X., and Wang, J. Q. (2008).
Environmental preferences of longlining for yellowfin tuna (Thunnus albacares)

in the tropical high seas of the Indian Ocean. Fish. Oceanogr. 17, 239–253.
doi: 10.1111/j.1365-2419.2008.00476.x

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and Van Der Linde, A. (2002).
Bayesian measures of model complexity and fit. J. R. Stat. Soc. B 64, 583–639.
doi: 10.1111/1467-9868.00353

Taquet, M., Dagorn, L., Gaertner, J.-C., Girard, C., Aumerruddy, R., Sancho, G.,
et al. (2007). Behavior of dolphinfish (Coryphaena hippurus) around drifting
FADs as observed from automated acoustic receivers. Aquat. Living Resour. 20,
323–330. doi: 10.1051/alr:2008008

Tew-Kai, E., and Marsac, F. (2009). Patterns of variability of sea surface chlorophyll
in the Mozambique Channel: a quantitative approach. J. Mar. Syst. 77, 77–88.
doi: 10.1016/j.jmarsys.2008.11.007

Tomczak, M., and Godfrey, J. S. (2013). Regional Oceanography: An Introduction.
Amsterdam: Elsevier.

Varela, S., Lobo, J. M., and Hortal, J. (2011). Using species distribution models
in paleobiogeography: a matter of data, predictors and concepts. Palaeogeogr.
Palaeoclimatol. Palaeoecol. 310, 451–463. doi: 10.1016/j.palaeo.2011.07.021

Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely
applicable information criterion in singular learning theory. J. Mach. Learn. Res.
11, 3571–3594.

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Cham: Springer.
Wiggert, J., Murtugudde, R., and Christian, J. (2006). Annual ecosystem variability

in the tropical Indian Ocean: Results of a coupled bio-physical ocean general
circulation model. Deep Sea Res. II Top. Stud. Oceanogr. 53, 644–676. doi:
10.1016/j.dsr2.2006.01.027

Wilson, J. R., Lomonico, S., Bradley, D., Sievanen, L., Dempsey, T., Bell, M., et al.
(2018). Adaptive comanagement to achieve climate-ready fisheries. Conserv.
Lett. 11:e12452. doi: 10.1111/conl.12452

Wyrtki, K. (1973). “Physical oceanography of the Indian Ocean,” in The Biology of
the Indian Ocean, eds B. Zeitzschel, and S. A. Gerlach, (Cham: Springer), 18–36.
doi: 10.1007/978-3-642-65468-8_3

Young, M., and Carr, M. H. (2015). Application of species distribution models to
explain and predict the distribution, abundance and assemblage structure of
nearshore temperate reef fishes. Divers. Distrib. 21, 1428–1440. doi: 10.1111/
ddi.12378

Zagaglia, C. R., Lorenzzetti, J. A., and Stech, J. L. (2004). Remote sensing
data and longline catches of yellowfin tuna (Thunnus albacares) in the
equatorial Atlantic. Remote Sens. Environ. 93, 267–281. doi: 10.1016/j.rse.2004.
07.015

Zimmermann, N. E., Edwards, T. C., Graham, C. H., Pearman, P. B., and Svenning,
J. C. (2010). New trends in species distribution modelling. Ecography 33,
985–989. doi: 10.1111/j.1600-0587.2010.06953.x

Zuur, A., Ieno, E., Walker, N., Saveliev, A., and Smith, G. (2009). Mixed Effects
Models and Extensions in Ecology with R. New York, NY: Spring Science and
Business Media.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Orúe, Pennino, Lopez, Moreno, Santiago, Ramos and Murua.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Marine Science | www.frontiersin.org 17 June 2020 | Volume 7 | Article 441

https://doi.org/10.1016/j.jembe.2013.01.005
https://doi.org/10.1214/11-ba609
https://doi.org/10.1214/11-ba609
https://doi.org/10.1016/j.marenvres.2015.08.005
https://doi.org/10.1111/j.1467-9868.2008.00700.x
https://doi.org/10.1016/j.pmrj.2010.07.482
https://doi.org/10.1016/s0079-6611(01)00083-0
https://doi.org/10.1111/j.1472-4642.2011.00853.x
https://doi.org/10.1007/s10641-009-9474-7
https://doi.org/10.1111/j.1365-2419.2008.00476.x
https://doi.org/10.1111/1467-9868.00353
https://doi.org/10.1051/alr:2008008
https://doi.org/10.1016/j.jmarsys.2008.11.007
https://doi.org/10.1016/j.palaeo.2011.07.021
https://doi.org/10.1016/j.dsr2.2006.01.027
https://doi.org/10.1016/j.dsr2.2006.01.027
https://doi.org/10.1111/conl.12452
https://doi.org/10.1007/978-3-642-65468-8_3
https://doi.org/10.1111/ddi.12378
https://doi.org/10.1111/ddi.12378
https://doi.org/10.1016/j.rse.2004.07.015
https://doi.org/10.1016/j.rse.2004.07.015
https://doi.org/10.1111/j.1600-0587.2010.06953.x
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles

	Seasonal Distribution of Tuna and Non-tuna Species Associated With Drifting Fish Aggregating Devices (DFADs) in the Western Indian Ocean Using Fishery-Independent Data
	Introduction
	Materials and Methods
	Study Area
	Data Collection
	Environmental Data
	Bayesian Hierarchical Spatial Models (B-HSMs)
	Model Selection
	Model Validation
	Model Prediction

	Results
	Tuna
	Non-tuna Species
	Model Validation

	Discussion
	Environmental Predictors of Species Distribution
	Tuna
	Non-tuna Species

	Random Effects for Species Distribution
	Dataset Features and Statistical Reliance

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


