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Monitoring the spatio-temporal variations of surface chlorophyll-a concentration (Chl, a
proxy of phytoplankton biomass) greatly benefited from the availability of continuous and
global ocean color satellite measurements from 1997 onward. These two decades of
satellite observations are however still too short to provide a comprehensive description
of Chl variations at decadal to multi-decadal timescales. This paper investigates the
ability of a machine learning approach (a non-linear statistical approach based on
Support Vector Regression, hereafter SVR) to reconstruct global spatio-temporal Chl
variations from selected surface oceanic and atmospheric physical parameters. With
a limited training period (13 years), we first demonstrate that Chl variability from a 32-
years global physical-biogeochemical simulation can generally be skillfully reproduced
with a SVR using the model surface variables as input parameters. We then apply
the SVR to reconstruct satellite Chl observations using the physical predictors from
the above numerical model and show that the Chl reconstructed by this SVR more
accurately reproduces some aspects of observed Chl variability and trends compared
to the model simulation. This SVR is able to reproduce the main modes of interannual
Chl variations depicted by satellite observations in most regions, including El Niño
signature in the tropical Pacific and Indian Oceans. In stark contrast with the trends
simulated by the biogeochemical model, it also accurately captures spatial patterns of
Chl trends estimated by satellite data, with a Chl increase in most extratropical regions
and a Chl decrease in the center of the subtropical gyres, although the amplitude of
these trends are underestimated by half. Results from our SVR reconstruction over
the entire period (1979–2010) also suggest that the Interdecadal Pacific Oscillation
drives a significant part of decadal Chl variations in both the tropical Pacific and Indian
Oceans. Overall, this study demonstrates that non-linear statistical reconstructions can
be complementary tools to in situ and satellite observations as well as conventional
physical-biogeochemical numerical simulations to reconstruct and investigate Chl
decadal variability.
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KEY POINTS

1. A machine learning approach is applied to reconstruct
the surface phytoplankton biomass at global scale
over three decades.

2. Chlorophyll variability derived from this statistical
approach accurately reproduces satellite observations
(possibly better than biogeochemical models).

3. The sole use of surface predictors allows to accurately
reproduce chlorophyll variability, in spite of its known
sensitivity to three-dimensional processes.

INTRODUCTION

Phytoplankton—the microalgae that populate the upper lit layers
of the ocean—fuels the oceanic food web and regulates oceanic
and atmospheric carbon dioxide levels through photosynthetic
carbon fixation. The launch of the “Coastal Zone Color
Scanner” (CZCS) onboard the Nimbus-7 spacecraft in October
1978 (Hovis et al., 1980) provided the first synoptic view
of near-surface chlorophyll-a concentration (Chl, a proxy of
phytoplankton biomass). Although primarily focusing on coastal
regions, CZCS also provided global pictures of Chl distribution
and a new perspective on phytoplankton biomass seasonal
variability (Campbell and Aarup, 1992; Longhurst et al., 1995;
Yoo and Son, 1998; Banse and English, 2000).

After the failure of CZCS in 1986, ocean color observations
were not available for more than a decade. The launch of
the modern radiometric Sea-viewing Wide Field-of-View Sensor
(SeaWiFS; McClain et al., 2004) in late 1997 followed later
by other satellites allowed monitoring and understanding the
spatio-temporal Chl variations at global scale over the past two
decades. For instance, it revealed that El Niño events induce a Chl
decrease in the central and eastern equatorial Pacific in response
to reduced upwelled nutrients to the surface layers (e.g., Chavez
et al., 1999; Wilson and Adamec, 2001; McClain et al., 2002;
Radenac et al., 2012) but also a Chl signature outside the tropical
Pacific through atmospheric teleconnections (Behrenfeld et al.,
2001; Yoder and Kennelly, 2003; Dandonneau et al., 2004; Messié
and Chavez, 2012). It also allowed identifying the Indian Ocean
Dipole (IOD; Saji et al., 1999) as the main climate mode driving
Chl interannual variations in the Indian Ocean (e.g., Murtugudde
et al., 1999; Wiggert et al., 2009; Currie et al., 2013) and
monitoring a Chl increase in the subpolar North Atlantic related
to the positive phase of the North Atlantic Oscillation (NAO)
(Martinez et al., 2016). Aside from the Chl decrease monitored
in the mid-ocean gyres over the first decade of the XXIst century
(Polovina et al., 2008; Irwin and Oliver, 2009; Vantrepotte and
Mélin, 2009; Signorini and McClain, 2012), the reliability of
the long-term trends derived from these satellite data are more
questionable and led to conflicting results in the past literature
(Behrenfeld et al., 2006; Vantrepotte and Mélin, 2011; Siegel et al.,
2013; Gregg and Rousseaux, 2014). These discrepancies suggest
that detection of robust global trend may require several decades
of continuous observations (Beaulieu et al., 2013).

The production of longer, consistent ocean color time series
can partly alleviate this issue. The combination of the global
CZCS and SeaWiFS datasets provided an insight on the Chl
response to natural decadal climate variations (Martinez et al.,
2009; D’Ortenzio et al., 2012), such as the Pacific Decadal
Oscillation (PDO; Mantua et al., 1997) and the Atlantic
Multidecadal Oscillation (AMO; Enfield et al., 2001). However,
blending these two archives or reconstructing them using
compatible algorithms also led to contrasting results (Gregg and
Conkright, 2002; Antoine et al., 2005).

The time span of the modern radiometric observations
(∼20 years), as well as the CZCS-SeaWiFS reprocessed time
series, are still too short to investigate Chl decadal variations and
longer-term trends. Longer, continuous and consistent records
are required. In situ biogeochemical observatories can provide
such long and continuous records, but their inhomogeneous
spatial distribution and varying record length prevent a confident
assessment of Chl long-term changes at the scale of a basin
(Henson et al., 2016).

Coupled physical-biogeochemical ocean model simulations
can provide additional, valuable information’s in areas with
limited observational coverage. These models resolve reasonably
well the seasonal to interannual biogeochemical variability
(Dutkiewicz et al., 2001; Wiggert et al., 2006; Aumont et al.,
2015). They can however diverge in capturing Chl variations at a
timescale of a decade (Henson et al., 2009a,b; Patara et al., 2011),
in particular phytoplankton regime shifts (Henson et al., 2009b).
Different biological models are often coupled to different physical
models, which renders the attribution of the different modeled
responses to their physical or biological components difficult. The
decadal or longer variability of the simulated primary producers
should then be interpreted cautiously.

In this context, statistical methods reconstructing past Chl
variations may be useful alternatives to overcome limitations
associated with both observations and numerical models. While
statistical reconstructions are now commonly used to extend
physical variables back in time (e.g., Smith et al., 2012; Huang
et al., 2017; Nidheesh et al., 2017), reconstructions of surface Chl
are still in their infancy. Phytoplankton distribution is strongly
controlled by physical processes, such as mixing and uplifting,
fueling nutrients in the upper-lit layer (i.e., bottom up processes).
Thus, relevant physical variables may allow to reconstruct Chl
past variations. To our knowledge, a single study allowed the
derivation of spatio-temporal surface Chl variations over several
decades in the tropical Pacific (Schollaert Uz et al., 2017). This
reconstruction used a linear canonical correlation analysis on
Sea Surface Temperature (SST) and Sea Surface Height (SSH) to
improve the description of the Chl response to the diversity of
observed El Niño events and decadal climate variations in the
tropical Pacific.

The objective of the present study is to explore the potential
of an alternative statistical technique to reconstruct Chl at
global scale over a 32-year time-series (i.e., 1979–2010). The
considered machine learning technique is based on a Support
Vector Regression (SVR) which accounts for non-linearities
between predictors and Chl. First, the SVR is trained over 1998–
2010 on a self-consistent dataset of physical and Chl variables,
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all extracted from a forced ocean model simulation that includes
a biogeochemical component (i.e., the NEMO-PISCES model).
Then, modeled physical variables are used to reconstruct Chl
over 1979–2010. The feasibility and robustness of the proposed
reconstruction process is assessed through the comparison of
modeled vs. reconstructed Chl. In a second step, this framework
is applied to satellite ocean color observations.

DATA AND METHODS

The NEMO-PISCES Simulation
In this study, we used the “Nucleus for European Modeling
of the Ocean” (NEMO) modeling framework (Madec,
2008). The NEMO configuration used displays a coarse
resolution with 31 vertical levels and a 2◦ horizontal grid
with a refined 0.5◦ resolution in the equatorial band. The
model includes a biogeochemical component, the Pelagic
Interaction Scheme for Carbon and Ecosystem Studies (PISCES;
Aumont et al., 2015). PISCES is a model of intermediate
complexity designed for global ocean applications (Aumont
and Bopp, 2006), which uses 24 prognostic variables and
simulates biogeochemical cycles of oxygen, carbon and the
main nutrients controlling phytoplankton growth (nitrate,
ammonium, phosphate, silicic acid, and iron). It simulates the
lower trophic levels of marine ecosystems distinguishing four
plankton functional types based on size: two phytoplankton
groups (small = nanophytoplankton and large = diatoms)
and two zooplankton groups (small = microzooplankton and
large = mesozooplankton). Chl from PISCES (hereafter referred
to as ChlPISCES) is defined as the sum of the simulated diatoms
and nanophytoplankton Chl content.

The NEMO-PISCES simulation is forced with atmospheric
fields from the interannual Drakkar Forcing Set 5 (DFS5.2,
Dussin et al., 2014) for wind, air temperature and humidity,
precipitation, shortwave and longwave radiations. It is initialized
with the World Ocean Atlas 2005 (WOA05) climatology for
temperature, salinity, phosphate, nitrate and silicate (Garcia et al.,
2006), while iron initial state is similar to the model climatology
employed by Aumont and Bopp (2006). The model simulation
was spun up using 3 repetitions of the 30 years’ DFS5.2 forcing
set, and finally ran over 1979–2010.

Although successfully used in a variety of biogeochemical
studies (e.g., Bopp et al., 2005; Gehlen et al., 2006; Lengaigne et al.,
2007; Schneider et al., 2008; Steinacher et al., 2010; Tagliabue
et al., 2010; Séférian et al., 2013; Aumont et al., 2015; Keerthi
et al., 2017; Parvathi et al., 2017 and references therein), the ability
of the PISCES model to reproduce satellite surface Chl is briefly
illustrated in section “Evaluation of ChlPISCES at global scale.”

Chl Derived From Satellite Radiometric
Observations
Satellite surface Chl for Case I waters is provided by the Ocean
Color – Climate Change Initiative (OC-CCI, hereafter referred
to as ChlOC−CCI) from the European Space Agency1. This

1http://www.esaoceancolour-cci.org/

product combines multi-sensor, global, ocean-color products
while attempting to reduce inter-sensor biases for climate
research (Storm et al., 2013). OC-CCI extends the time series
beyond that provided by single satellite sensors and is performant
in terms of long-term consistency than other products from
multi-mission initiatives (Belo Couto et al., 2016).

Only deep oceanic areas (depth > 200 m) are considered
to avoid coastal waters where specific non-case-1 waters
products are required. The Chl Level-3 product is binned on a
regular 1◦ grid with a monthly resolution over January 1998–
December 2010. This time period does not extend beyond
2010 to be consistent with the NEMO-PISCES simulation.
ChlOC−CCI is used to evaluate the PISCES model performances
in Section “Evaluation of ChlPISCES at global scale,” and to
train the statistical method in Section “Application to satellite
radiometric observations.”

Predictors and Chl Variables
The variability of phytoplankton biomass is driven in many
regions of the world ocean and at many timescales by physical
processes (e.g., Wilson and Adamec, 2002; Wilson and Coles,
2005; Kahru et al., 2010; Feng et al., 2015; Messié and Chavez,
2015). Our statistical architecture relates to 12 predictors and one
biological variable (Chl). A sample thus refers to 13 variables.
The 12 predictors (7 physical variables from NEMO-DFS5.2,
2 temporal and 3 spatial parameters) are detailed in Table 1,
including their influence on Chl variations and the references
supporting this influence.

We purposely limited the predictors to surface variables
because our objectives are (1) to reconstruct Chl from physical
observations, which are mainly available through remotely
sensed surface data (oceanic observations below the surface
are indeed usually not accessible at large spatial-scales or
interannual time-scales); (2) to build a statistical scheme that
can complement more complex numerical models (here, NEMO-
PISCES) which simulate complex three-dimensional processes
and are costly to run.

A first SVR is trained on physical predictors from NEMO
and DFS5.2 vs. ChlPISCES. The reconstructed Chl time-series
is referred to as ChlSvr−PISCES. A second SVR is trained using
the same physical predictors but vs. satellite Chl observations
(ChlOC−CCI). The reconstructed Chl time-series is referred to as
ChlSvr−CCI.

Climate Indices
Climate indices are provided by the National Oceanic and
Atmospheric Administration (NOAA) website2: the AMO, the
Multivariate El Niño Southern Oscillation (ENSO) Index (MEI)
and the Interdecadal Pacific Oscillation (IPO).

Support Vector Regression
The statistical reconstruction technique is based on a SVR.
This method belongs to kernel methods in Statistical Learning
Theory and relates to the Support Vector Machine (SVM, Vapnik,
1998). SVM is a kernel-based supervised learning method

2www.esrl.noaa.gov/psd
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TABLE 1 | Physical predictors, their relevance to Chl variations and associated references.

Proxy used as predictors Relevance to Chl variations References

SST Vertical mixing and upwelling Impacts on phytoplankton
metabolic rates

Behrenfeld et al., 2006; Polovina et al., 2008; Martinez
et al., 2009; Thomas et al., 2012; Lewandowska et al.,
2014

Sea level anomaly Thermocline/pycnocline depths Wilson and Adamec, 2001, 2002; Radenac et al., 2012

Zonal and meridional surface wind
components

Surface momentum flux forcing and vertical motions driven
by Ekman pumping

Martinez et al., 2011; Thomas et al., 2012

Zonal and meridional surface
current components

Horizontal advective processes Messié and Chavez, 2012; Radenac et al., 2013

Short-wave radiations Photosynthetically active radiation Sakamoto et al., 2011

Month (cos and sin) Periodicity of the day of the year (day 1 is very similar to day
365 from a seasonal perspective)

Sauzède et al., 2015

Longitude (cos and sin) Latitude (sin) Periodicity (longitude 0◦ = longitude 360◦) Sauzède et al., 2015

(Vapnik, 2000) developed for classification purpose in the early
1990s and then extended for regression by Vapnik (1995). The
basic idea behind SVR is to map the variables into a new non-
linear space using the kernel function, so that the regression
task becomes linear in this space. The learning step estimates
the parameters of the regression model according to a linear
quadratic optimization problem, which can be solved efficiently.
SVR also uses a robust error norm based on the principle of
structural risk minimization, where both the error rates and the
model complexity should be minimized simultaneously. Because
SVR can efficiently capture complex non-linear relationships,
it has been used in a variety of fields, and more specifically
for oceanographic, meteorological and climate impact studies
(Aguilar-Martinez and Hsieh, 2009; Descloux et al., 2012; Elbisy,
2015; Neetu et al., 2020), as well as in marine bio-optics (Kim
et al., 2014; Hu et al., 2018; Tang et al., 2019).

Predictors and Chl are normalized by removing their
respective average and dividing them by their standard
deviations. Two SVR are trained over 1998-2010: one on
ChlPISCES and one on ChlOC−CCI (Step A in Figure 1). This time
period has been chosen as 1998 is the first complete year of the
satellite ChlOC−CCI time-series, and 2010 is the last year available
of the modeled ChlPISCES. The two resulting SVR schemes
are applied on the NEMO-DFS5.2 physical predictors over
1979–2010. Finally, the annual means and standard deviations
initially removed are applied to perform the back transformation
and reconstruct either ChlSvr−PISCES or ChlSvr−CCI (Step B
in Figure 1).

Considering a Gaussian kernel, SVR only involves the
selection of two hyperparameters: the penalty parameter C of
the error term and the kernel coefficient gamma, driving the
reduction of the cost function. C and gamma values are 1 and 0.1,
respectively when the SVR is trained on ChlPISCES, and 2 and 0.3
when trained on ChlOC−CCI (see details in the Supplementary
Material and Supplementary Figure 1A). Sensitivity tests to an
increasing portion of the sample total number (from 0.2 to 9% of
the full dataset) used in the training process are performed (see
Supplementary Material and Supplementary Figure 1B). The
mean absolute error stabilizes for a sample number higher than
6%, suggesting that the SVR skills don’t improve much afterward.
This observation combined with computational limitations lead
us to present the 9% experiment hereafter.

Empirical Orthogonal Function Analysis
The SVR skills to reconstruct Chl interannual to decadal
variations are investigated performing Empirical Orthogonal
Function analysis on ChlPISCES, ChlOC−CCI, ChlSvr−PISCES and
ChlSvr−CCI. First, Chl data are centered and reduced (i.e., the
monthly climatology is removed and the induced anomalies
are divided by their standard deviations) to avoid an overly
dominant contribution of high values on the analysis (Emery
and Thomson, 1997) over the periods of interest (i.e., 1998–
2010 or 1979–2010). A 5-month running mean is applied
to focus on the interannual/decadal signal. The analysis is
separately performed for the Atlantic, Pacific and Indian Oceans
north of 40◦S until 60◦N, and for the 40◦S–60◦S region
hereafter referred to as the Austral Ocean. Indeed, the large
area covered by the Pacific Ocean and its dominant modes in
climate variability (i.e., ENSO/IPO), could regionally dampen
other modes of variability. Basin-scale spatial maps are then
gathered to a global one, referred to as EOF. The associated
time-series refer to as the Principal Components (PCs).

SYNTHETIC RECONSTRUCTION FROM
A PHYSICAL-BIOGEOCHEMICAL
OCEAN MODEL

This section assesses the reliability and robustness of the SVR
approach using a complete and coherent dataset extracted
from a global simulation performed with a coupled physical-
biogeochemical ocean model. The SVR is first trained over
1998–2010 on ChlPISCES, and ChlSvr−PISCES is reconstructed over
1979–2010. ChlPISCES and ChlSvr−PISCES are then compared over
32 years to evaluate the consistency of the proposed data-driven
reconstruction scheme.

Evaluation of ChlPISCES at Global Scale
The ability of the NEMO-PISCES model to reproduce the satellite
Chl over 1998–2010 is briefly presented here. Boreal winter
and summer climatology from ChlPISCES compare reasonably
well with those of ChlOC−CCI (Figure 2A vs. 2B and 2C vs.
2D). The model correctly represents the main spatial patterns
with, for instance, higher Chl and a stronger seasonal cycle
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FIGURE 1 | Steps performed to train the SVR and reconstruct Chl time-series.

at high latitudes, despite an overestimated biomass in the
Southern Ocean (Launois et al., 2015). The model also captures
low Chl in the subtropical gyres, with some underestimation.
This discrepancy may be explained by the lack of acclimation
dynamics to oligotrophic conditions or by the assumption of
constant stoichiometry either in phytoplankton or in organic
matter in the model (Ayata et al., 2013; Aumont et al., 2015). The
model underestimates Chl values in the equatorial Atlantic and
Arabian Sea. In this latter region, mesoscale and submesoscale
processes unresolved by the model have been shown to be of
critical importance (Hood et al., 2003; Resplandy et al., 2011).
Finally, the parameterization of nitrogen-fixing organisms not
explicitly modeled in that PISCES version could explain the
ChlPISCES underestimation in the western Pacific in austral
summer (Dutheil et al., 2018).

High Chl are accurately simulated in the eastern boundary
upwelling systems. In two of the three main High Nutrient Low
Chlorophyll (HNLC) regions, i.e. the equatorial Pacific and
the eastern subarctic Pacific, the model successfully reproduces
the moderate ChlOC−CCI. However, the model overestimates
ChlOC−CCI east of Japan because of an incorrect representation
of the Kuroshio current trajectory. This common bias in coarse
resolution models (i.e., Gnanadesikan et al., 2002; Dutkiewicz
et al., 2005; Aumont and Bopp, 2006) is potentially related
to too deep mixed layer simulated in winter inducing very
strong spring blooms (Aumont et al., 2015). In the Southern
Ocean, the third and largest main HNLC region, the model
overestimates ChlOC−CCI values, especially during summer.
However, the standard satellite algorithms that deduce Chl
from reflectance tend to underestimate in situ observations by a
factor of about 2–2.5, especially for intermediate concentrations

(e.g., Dierssen and Smith, 2000; Kahru and Mitchell, 2010).
It is to note that Chl in physical-biogeochemical coupled
models is commonly overestimated in the Southern Ocean,
and systematically underestimated in the oligotrophic gyres
(Séférian et al., 2013).

The 1st mode of the EOF analysis performed on interannual
Chl displays close percent of total variance for ChlOC−CCI and
ChlPISCES (16.6% vs. 21.1%, respectively). Their PCs in the Pacific
Ocean are well correlated with the MEI (r = 0.71 and 0.89
with p = 0.0015 and p < 0.001, respectively; Figure 3C). PCs
show the greatest positive values in January 1998 during the
peak of the strong 1997/1998 El Niño event and the greatest
negative values during the following La Niña beginning of
1999. The associated EOFs display a Chl horseshoe pattern
(Figures 3A,B), reminiscent of the ENSO pattern on SST
(Supplementary Figure 2; Messié and Chavez, 2012). While the
tropical Pacific experiences a Chl decrease during El Niño events,
the North and South Pacific display a Chl increase, and inversely
during La Niña. This typical ENSO pattern is also related to
remote Chl anomalies outside the Pacific induced by atmospheric
teleconnections, such as a Chl decrease in the tropical North
Atlantic and in the South Indian Ocean during El Niño. Although
the Atlantic and Indian Ocean’s PCs are not correlated with
the MEI (0.14 and 0.05, respectively), their EOFs are similar
to those obtained from analysis performed at global scale (vs.
basin scale here) and which have been largely discussed in the
past (e.g., Behrenfeld et al., 2001, 2006; Yoder and Kennelly,
2003; Chavez et al., 2011). ChlPISCES reasonably well captures
the first mode of ChlOC−CCI interannual variability over 1998–
2010 in the Pacific and Atlantic Oceans, with 0.89 and 0.77
(p < 0.001) correlations between their PCs, respectively, but not
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FIGURE 2 | Surface seasonal mean of Chl (mg.m−3) over 1998–2010 derived from satellite (left panels) and the PISCES model (right panels), in
October–November–December (A,B) and April–May–June (C,D).

in the Indian Ocean, where the PCs correlation is far weaker
(0.13) and insignificant (Figures 3C–E).

Evaluation of the SVR Method Trained on
Synthetic Data Only
Statistical Performances
A first evaluation of the SVR applied on the synthetic dataset (i.e.,
both physical and biogeochemical model outputs) is provided for
the dedicated subset (i.e., 20% of 9% of the total data set) over
the 1998–2010 training time period. ChlPISCES and ChlSvr−PISCES
datasets display a determination coefficient of 0.95 and a
root mean square error (RMSE) of 0.22 (see Supplementary
Figure 1C), indicating at first glance a very good ability of the
SVR to reconstruct ChlPISCES. The SVR reconstruction is very
accurate when comparing the full modeled and reconstructed Chl
for (i) the 1998–2010 training time period, (ii) the 1979–1997
fully independent dataset, and (iii) the 1979–2010 whole dataset,
both at global and basin scales (Table 2 and Figure 4). For each
oceanic basin, determination coefficients between both datasets
over 1979–1997 exceed 0.84, except in the Austral Ocean where
they get down to 0.71. RMSE are lower than 0.14 and associated
with a slope ranging from 0.84 in the Austral to 0.97 in the
Atlantic (Figure 4). In addition, the quality of the reconstructed
ChlSvr−PISCES over the 1979–1997 independent time period is
only marginally degraded compared to the 1998–2010 training
period or the 1979–2010 full period.

Evaluation of the Reconstructed Chl Spatio-Temporal
Variability
The Normalized Root-Mean-Square-Error (NRMSE, i.e., RMSE
normalized by the average Chl used to train the SVR) between
ChlPISCES and ChlSvr−PISCES filtered with a 5-month running
mean (to discard the high frequency signal) shows an error
ranging between 10 and 20% over 1998–2010 (Figure 5A). Their
correlation exceeds 0.7 (p < 0.001) over most of the global
ocean (Figure 5B). At mid-latitudes they are generally larger
than 0.8, and they range between 0.6 and 0.9 in the equatorial
Pacific. This accurate reconstruction demonstrates that a strong
relationship exists between physical processes and Chl at global
scale. However, the reconstructed Chl field can be regionally
less accurate. For instance, the edges of the oligotrophic gyres
(delimited by the 0.1 mg.m−3 contour in Figure 5A) exhibit
the highest NRMSE and lowest correlations. Large NRMSE are
also evident in the Gulf Stream region while the western tropical
Atlantic exhibits lower correlations than 0.5.

Those discrepancies could be due first to the zooplankton
grazing pressure (top–down control) which is often
overestimated in PISCES simulations. It results in an
underestimated nanophytoplankton biomass in the oligotrophic
gyres, emphasized along their edges (Laufkötter et al., 2015).
Because the top–down control is not accounted for by the
SVR, Chl variability induced by the overgrazing in these
areas might not be captured. Second, in the equatorial Pacific
Ocean, a minimum iron threshold value has been imposed
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FIGURE 3 | First mode of basin-scale EOFs of interannual (A) ChlOC−CCI and (B) ChlPISCES, and their corresponding PCs over 1998–2010 in the (C) Pacific,
(D) Indian and (E) Atlantic Oceans. ChlOC−CCI and ChlPISCES PCs are represented by the black and blue lines, respectively. The MEI index is reported in red (right
y-axis) on (C).

TABLE 2 | Statistical performances between ChlPISCES vs. ChlSvr−PISCES normalized monthly anomalies for the global ocean and the 4 oceanic basins over the
1998–2010, 1979–1997, and the whole 1979–2010 time period.

1998–2010 1979–1997 1979–2010

R2 RMSE Slope Number of bins R2 RMSE Slope Number of bins R2 RMSE Slope Number of bins

Global 60◦S-60◦N 0.96 0.1 0.95 4,487,457 0.93 0.12 0.95 6,562,272 0.94 0.11 0.95 11,049,729

Pacific 0.92 0.1 0.93 1,945,173 0.89 0.12 0.9 2,843,501 0.9 0.11 0.91 4,788,674

Indian 0.86 0.11 0.85 612,612 0.84 0.11 0.89 895,356 0.85 0.11 0.87 1,507,968

Austral 0.81 0.06 0.8 1,026,876 0.71 0.08 0.75 1,506,260 0.76 0.07 0.77 2,533,136

Atlantic 0.96 0.12 0.96 902,796 0.94 0.14 0.94 1,317,155 0.94 0.13 0.95 2,219,951

The determination coefficient, NRMSE and the slope of the ChlPISCES vs. ChlSvr−PISCES regression line are indicated.
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FIGURE 4 | Scatter plots of ChlPISCES vs. ChlSvr−PISCES normalized monthly anomalies over 1979–1997, (A–D) for each basin and (E) at global scale between 60◦S
and 60◦N. The ChlPISCES vs. ChlSvr−PISCES and the 1:1 regression lines are plotted as the continuous red and dash black lines, respectively. The figure is color-coded
according to the density of observations.

FIGURE 5 | (A,B) NRMSE (in%) and (C,D) correlation between ChlPISCES vs. ChlSvr−PISCES after applying a 5 month-running mean on both time-series. These 2
diagnostics are calculated over 1998–2010 (left column) and 1979–1997 (right column). Contours on the upper panels show their respective 1998–2010 Chl time
average (every 0.1 mg.m−3).

(0.01 nmol.L−1) in the biogeochemical model. Without that
threshold Chl is too low on both sides of the equator, resulting
in a strong accumulation of macronutrients and a spurious
poleward migration of the subtropical gyre boundaries (Aumont
et al., 2015). While the existence of such a threshold suggests that
a minor but regionally important source of iron is missing in

PISCES, it also suggests the inability of the SVR in reproducing
ecosystem dynamics related to such artificial input of micro-
nutrient. Finally, atmospheric input of iron through desert
dust deposition is known to be stronger in the Atlantic than
in the Pacific Ocean (Jickells et al., 2005). Such signal cannot
be accounted for by the SVR with the given predictors, which
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might (with meso – and sub-mesoscale activities) explain
the higher NRMSE in the north western Atlantic than in the
north-western Pacific.

As expected, areas of high NRMSE and low correlations
between ChlPISCES and ChlSvr−PISCES identified over 1998–2010
(Figure 5, left column) extend and strengthen over 1979–1997
(Figure 5, right column). Indeed, the correlations significantly
decrease in the tropical Pacific while they slightly decrease in mid-
latitudes between the two periods. Correlations remain high and
NRMSE low in the North-West Pacific, North and South-West
Atlantic, and South Indian Oceans as well as over a large part of
the Southern Ocean providing confidence for analyses extended
beyond the training period of the SVR.

The analysis is now extended to the 1979–2010 time-
period to investigate the skills of the SVR in reproducing
phytoplankton interannual/decadal cycles. The 1st EOFs of
ChlPISCES vs. ChlSvr−PISCES have the same sign of variability
over 72% of the global ocean (Figures 6A,B). Both EOFs are
similar in the Pacific and Atlantic Oceans and their PCs are
highly correlated over 1979-2010 (Table 3 and Figures 6C,E). In
the Pacific, these EOFs strongly resemble the typical horseshoe
pattern of IPO with SST anomalies of opposite polarities in
the tropical and extra-tropical Pacific regions (Supplementary
Figure 3). Correlations between ChlPISCES and ChlSvr−PISCES 1st
PCs and the IPO index are high (0.94 and 0.95 with p < 0.001,
respectively; blue and black vs. red lines in Figure 6C). It
highlights that the 1st mode of Chl variability in the Pacific
is strongly driven by the IPO. In the Atlantic, both PCs are
strongly correlated with the AMO (−0.8 for ChlSvr−PISCES
and −0.85 for ChlPISCES with p < 0.001; Figure 6E). The
AMO shifts from a cold to a warm phase in the mid-1990’s
(Supplementary Figure 3), and is associated with a decrease in
Chl (Figures 6A,B).

The 1st two modes explain a similar percent variance for
ChlPISCES and ChlSvr−PISCES in the four oceanic basins, with the
exception of the 1st mode in the Atlantic Ocean (see Table 3). In
this basin ChlSvr−PISCES percent variance is underestimated by a
factor 2 compared to ChlPISCES, while their 1st EOFs and PCs are
well correlated. One explanation might be that the AMO is the
climate cycle with the longest period (80 years) when compared to
the IPO. Thus, it might be the most difficult signal to reproduce as
the SVR is trained over a relatively “short” 12 years’ time-period.

The agreement between ChlPISCES and ChlSvr−PISCES
1st mode is not as good in the Austral and Indian Oceans

when compared to the Atlantic and Pacific Oceans
(Table 3 and Figures 6A,B,D,F). In the Indian Ocean, the
ChlPISCES EOF exhibits a maximum positive variability
along the western Arabian Sea, while it is located north-
east of Madagascar for ChlSvr−PISCES. In the Austral
Ocean, ChlPISCES and ChlSvr−PISCES EOFs roughly follow a
zonal distribution.

A strong correspondence between SST and Chl has been
previously reported over a large part of the global ocean
(Behrenfeld et al., 2006; Martinez et al., 2009; Siegel et al.,
2013), demonstrating the close interrelationship between
ocean biology and climate variations. Consequently, it is not
surprising to observe strong correlations between ChlPISCES or
ChlSvr−PISCES and climatic indexes mostly built on SST anomalies
(Supplementary Figure 3).

The 2nd mode of variability of ChlPISCES is also well
reproduced by the SVR. The percent variances are close (Table 3)
as well as their spatio-temporal variability in the four oceanic
basins (Supplementary Figure 4). The high correlations between
the first two modes of ChlPISCES vs. ChlSvr−PISCES highlight
the SVR ability to relatively well reproduce the ChlPISCES low-
frequency variability.

APPLICATION TO SATELLITE
RADIOMETRIC OBSERVATIONS

SVR Statistical Performances and
Sensitivity Tests
In this section, the SVR uses the same physical predictors from
NEMO-DFS5.2 as in Section “Synthetic reconstruction from
a physical-biogeochemical ocean model,” but it is trained
on satellite radiometric observations (e.g., ChlOC−CCI).
The same procedure is followed (see Supplementary
Figures 5A,B). A first validation is performed for 20% of
9% of the full data set and over the 1998–2010 training
period showing a high determination coefficient of 0.87
and RMSE of 0.37 between ChlOC−CCI and ChlSvr−CCI
(Supplementary Figure 5C).

As expected, the regression lines between the whole dataset
of ChlOC−CCI vs. ChlSvr−CCI for each oceanic basin and at
global scale are farther away from the 1:1 line than for the
synthetic study over the training period, but still remain close

TABLE 3 | Percent variance explained by the first two modes of the Empirical Orthogonal Function analysis performed on ChlPISCES and ChlSvr−PISCES for each oceanic
basin over 1979–2010.

1st mode 2nd mode

ChlPISCES ChlSvr−PISCES r ChlPISCES ChlSvr−PISCES r

Pacific 19.7 23.5 0.95* 7.8 6.7 0.6*

Indian 13.1 14.1 0.58* 10.5 9.4 0.78*

Austral 13.8 12.1 0.62* 11 8.4 0.47**

Atlantic 23.2 13.9 0.81* 9.6 10.9 0.73*

The correlation (r) between the ChlSvr−PISCES and ChlPISCES PCs is also reported with a significant level of *p < 0.001 and **p < 0.002.
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FIGURE 6 | First mode of basin-scale EOFs of interannual (A) ChlPISCES and (B) ChlSvr−PISCES, and their corresponding PCs over 1979–2010 in the (C) Pacific,
(D) Indian, (E) Atlantic, and (F) Austral Oceans (black and blue lines, respectively). Climate indices are reported in red (right y-axis).
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FIGURE 7 | Scatter plots of ChlOC−CCI vs. ChlSvr−CCI normalized monthly anomalies over 1998–2010, (A–D) for each basin and (E) at global scale between 60◦S
and 60◦N. The ChlOC−CCI vs. ChlSvr−CCI and the 1:1 regression lines are plotted as the continuous red and dash black lines, respectively. The figure is color-coded
according to the density of observations.

(higher slope than 0.8, except in the Austral Ocean; Figure 7).
The SVR trained on NEMO-DFS5.2 predictors vs. satellite
Chl is expected to be less efficient than the SVR trained on
the coherent NEMO-DFS5.2-PISCES physical-biogeochemical
dataset. Some of the biological interactions/processes (such as
the diversity of the prey-predator relationships, the complexity of
photoacclimation phenomena) are not yet optimally formulated
by model equations inducing that Chl derived from numerical
modeling is oversimplified compared to the complexity of the
real ocean. Not to mention that satellite Chl may itself be
partially affected by other components that are not Chl, such
as colored dissolved organic matter (CDOM; Morel and Gentili,
2009) and suspended particulate matter (SPM). Phytoplankton
can also adjust their intracellular Chl according to light and
nutrient availability (e.g., Laws and Bannister, 1980; Behrenfeld
et al., 2015). The induced Chl changes are no longer ascribed to
changes in biomass. All these signatures on satellite Chl could
explain ChlSvr−CCI underestimation. Nevertheless, determination
coefficients between ChlSvr−CCI and ChlOC−CCI remain high over
the training time period (0.85, 0.89, and 0.86 for the Indian,
Pacific and Atlantic Oceans, respectively, Figure 7).

The NRMSE between ChlOC−CCI vs. ChlSvr−CCI is lower than
20% over most of the global ocean (Figure 8A). Correlations
higher than 0.9 (p < 0.001) are evident over large subtropical
areas in the Atlantic, Indian and Pacific Oceans as well as in the
Equatorial Pacific (Figure 8B). Interestingly, the SVR generally
does a better job at reconstructing the satellite Chl than the
modeled one (Figures 5A,C vs. Figure 8). NRMSE are higher
at high latitudes and along the oligotrophic area boundaries,
although to a less extent than for ChlPISCES. Because ChlOC−CCI

can only be retrieved under clear sky conditions, gaps in satellite
observations (especially during wintertime) likely alters the SVR
learning and could explain such a degradation of ChlSvr−CCI as
moving toward high latitudes.

Reconstruction of Satellite Chl
Interannual to Decadal Variability and
Trends
The SVR ability to replicate ChlOC−CCI interannual variability
is now investigated over 1998–2010 (Figure 9). In the Pacific
Ocean, ChlOC−CCI and ChlSvr−CCI 1st EOFs are close (Figure 9A
vs. 9B), their PCs are highly correlated (r = 0.89, p < 0.001;
Figure 9C), and their percent variance are similar (Table 4). As
presented in Section “Evaluation of ChlPISCES at global scale,” this
mode of Chl variability can be attributed to ENSO, given their
EOFs pattern as well as their PCs highly correlated with the MEI
(rOC−CCI/MEI = 0.71 and rSvr−CCI/MEI = 0.91, with p = 0.0015 and
p< 0.001, respectively). Interestingly, ChlSvr−CCI EOFs are closer
to ChlOC−CCI than ChlPISCES in several areas such as in the north-
western Pacific, the south-western Atlantic and the Indian Ocean
from Madagascar to the western coast of Australia (Figures 9A,B
vs. Figure 3B). Consistently, correlations between ChlOC−CCI
and ChlSvr−CCI PCs in the three basins and for the 1st two modes
are higher than between ChlOC−CCI and ChlPISCES (Table 4).

ChlOC−CCI linear trends over 1998–2010 exhibit large areas
of increase or decrease (red and blue areas in Figure 10A,
respectively). Productive regions at high latitudes and along
the equatorial and upwelling areas generally exhibit positive
ChlOC−CCI trends, albeit many underlying regional nuances.
Contrastingly, trends are generally negative in the center of the
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FIGURE 8 | (A) NRMSE (in%) and (B) correlation between ChlOC−CCI vs. ChlSvr−CCI over 1998–2010 after applying a 5 month-running mean on both time-series.
Contours on the NRMSE show the 1998–2010 ChlOC−CCI time average (every 0.1 mg.m−3). Correlations < 0.73 and 0.6 are significant with a p-value < 0.001 and
0.01, respectively.

gyres. These regional trends are consistent with those extracted
from the first 13 years of the SeaWiFS record and discussed
by Siegel et al. (2013) (see their Figures 5B, 8B). The negative
trends in the oligotrophic gyres were also reported by Signorini
et al. (2015) who attributed this behavior to MLD shallowing
trends. Surface water density variability induced by changes
in temperature and salinity, combined with wind stirring, are
effective drivers of vertical mixing, which in turn control the
renewal of nutrients from the rich-deep layers toward the
euphotic zone. Thus, shallower MLD would decrease nutrient
uplift and phytoplankton growth in the oligotrophic areas.

ChlSvr−CCI trends agree qualitatively well with those of
ChlOC−CCI at global scale (Figure 10B vs. 10A, respectively).
Indeed, decline of ChlSvr−CCI can be observed in the center of the
gyres, while outside ChlSvr−CCI generally increases in a similar
way to ChlOC−CCI. ChlSvr−CCI accurately captures the largest
ChlOC−CCI increase observed in the Southern Ocean along the
Antarctic Circumpolar Current. While Gregg and Casey (2004)
reported a substantial negative bias in the SeaWiFS data for
this region when compared to in situ observations, which could
hamper the reliability of satellite trends discussed in this area
(e.g., Siegel et al., 2013), the SVR remains able to reproduce the
positive observed trend. Despite qualitative spatial agreements, it
is noteworthy that the SVR underestimates by half the magnitude
of the satellite trend (see scales in Figure 10A vs. 10B).

Interestingly, trends in ChlPISCES generally differ from
ChlOC−CCI (Figure 10C). This is striking for the North Pacific
and Atlantic high latitudes, but also in the equatorial Atlantic
and Arabian Sea with opposite trends when compared with
ChlOC−CCI and ChlSvr−CCI, and in a more mitigated manner in
the Austral Ocean.

ChlSvr−CCI is also compared with the only historical consistent
dataset built by Antoine et al. (2005) who reanalyzed ocean color
time series from CZCS (1979–1983) and SeaWiFS (1998–2002).
A 22% global mean increase of Chl between the two era was
reported. It was mainly due to large increases in the intertropical
areas and to a lesser extent in higher latitudes, while oligotrophic
gyres displayed declining concentrations (Figure 11A). SST from

the SODA reanalysis was used as a proxy of ocean stratification
and opposite Chl and SST changes over 60% of the ocean
between 50◦S and 50◦N was reported (light blue and yellow in
Figure 11B, adapted from Martinez et al., 2009). This inverse
relationship was used to hypothesized that multidecadal changes
in global phytoplankton abundances were related to basin-scale
oscillations of the ocean dynamics. Briefly, SST changes were
related to a regime shift of the PDO (although the use of the
basin-scale IPO would have been more appropriate) from a warm
to a cold phase in the Pacific and Indian Oceans leading to
an increase of Chl, and inversely in the Atlantic Ocean with a
regime shift from a cold to a warm phase of the AMO leading
to a Chl decrease.

Observed Chl changes over the last decades are accurately
reproduced by ChlSvr−CCI, including a Chl increase in the
equatorial Pacific and the southern tropical Indian Oceans,
as well as a Chl decline in both the Atlantic and Pacific
oligotrophic gyres (Figure 11C). However, the magnitude of the
SVR reconstructed Chl is underestimated (note that the Chl
ratio is multiplied by 2 in Figure 11C to allow the comparison
with Figure 11A). On average, the inverse relationship between
ChlSvr−CCI and SSTNEMO (Figure 11D) occurs over 69.4% of
the global ocean between 50◦S and 50◦N in a similar way to
that reported by Martinez et al. (2009), especially in the Pacific
Ocean (see Figure 11D vs. 11B). In the Indian Ocean, although
Chl mainly increases in both studies, it is here associated with
a SST decrease. Interestingly, this inverse Chl-SST relationship
in the Indian Ocean (yellow area in Figure 11D) was reported
in Behrenfeld et al. (2006) over the SeaWiFS era, suggesting that
the SST dataset used in Martinez et al. (2009) may have decadal
discrepancies for this region.

In their study, Martinez et al. (2009) analyzed two 5-year
time periods apart from each other by 15 years. They suggested
that averaging observations separately over the two time-periods
may have dampen the effect of interannual variability and reveal
the decadal one. Most of the changes observed between the
time periods covered by the two satellites are here confirmed
based on the reconstructed ChlSvr−CCI. However, the continuous
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FIGURE 9 | First mode of basin-scale EOFs of interannual (A) ChlOC−CCI and (B) ChlSvr−CCI and their associated PCs over 1998–2010 in the (C) Pacific, (D) Indian,
and (E) Atlantic Oceans as the black and blue lines, respectively (left y-axis). The climate indices are reported in red on the right y-axis.

TABLE 4 | Percent variance explained by the first two modes of the Empirical Orthogonal Function analysis performed on ChlOC−CCI, ChlSvr−CCI, and ChlPISCES for each
oceanic basin over 1998–2010.

1st mode 2nd mode

% of variance r ChlOC−CCI vs. % of variance r Chl OC−CCI vs.

ChlOC−CCI ChlSvr−CCI ChlPISCES ChlSvr−CCI ChlPISCES ChlOC−CCI ChlSvr−CCI ChlPISCES ChlSvr−CCI ChlPISCES

Pacific 16.6 23.7 21.1 0.89* 0.89* 10.7 12.5 13.6 0.81* 0.52**

Indian 16.9 16.6 17.3 0.57** 0.13 11.8 12.2 15.1 0.48 0.36

Atlantic 14 17.9 19.4 0.85* 0.77* 10.7 9.1 12.5 0.82* 0.59**

The correlation (r) between the PCs of ChlOC−CCI vs. ChlSvr−CCI and between ChlOC−CCI vs. ChlPISCES is also reported with a significant level of *P < 0.001 and **P < 0.02.
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FIGURE 10 | Linear trends (in% year −1) calculated over 1998–2010 from the monthly (A) ln(ChlOC−CCI), (B) ln(ChlSvr−CCI), (C) ln(ChlPISCES). Note that the scale is
divided by 2 for ln(ChlSvr−CCI).

30-year time series of ChlSvr−CCI provides new insights on the
observed regime shifts (Figure 12). In the Pacific Ocean, the
1st EOF of ChlSvr−CCI (Figure 12A) is close to the Chl spatial
patterns obtained from the CZCS to SeaWiFS era (Figure 11C)
and the PC remains highly correlated with the IPO over 1979-
2010 (r = 0.94 with p < 0.001, Figure 12B). The Chl increase
in the Indian Ocean, north-east of Madagascar toward the west
coast of Australia, between the 1980’s and the 2000’s also appears
on the ChlSvr−CCI EOF. These temporal changes might also be
related to the IPO variability (correlation between the IPO index
and ChlSvr−CCI PC = 0.6, p < 0.001; Figure 12C).

In the Atlantic Ocean, CZCS-SeaWiFS Chl and ChlSvr−CCI 1st
EOF also share some similarities, including a decrease of Chl in
the subtropical gyres and an increase in the equatorial/tropical
regions. The associated PC (Figure 12D), exhibits a shift
between 1979–1983 and 1998–2002 consistently with Figure 2C
of Martinez et al. (2009). In this latter study, this change was
attributed to a regime shift of the AMO. However, the AMO
index is not correlated with the 1st ChlSvr−CCI PC (r = 0.03,
p = 0.43) but rather with the 2nd mode (r = 0.43 with p =

0.003, Supplementary Figure 6), likely explaining the spatial
discrepancies in Figure 11A vs. 11C. Although the detailed
analysis of Chl decadal variability is beyond the scope of the
present study, these initial findings underscore the importance
of continuous time series at regional/global scales to combine
spatial and temporal information’s and properly investigate Chl
long-term variability.

SUMMARY AND CONCLUSION

In this paper, we assess the efficiency of a machine learning
statistical approach based on support vector regression
to reconstruct surface Chl from oceanic and atmospheric
variables. We first apply this strategy on a self-consistent
global dataset gathering physical predictors and Chl data
simulated by a coupled physical-biogeochemical model
simulation. Our results indicate that this non-linear method
accurately hindcasts interannual-to-decadal variations of
the phytoplankton biomass simulated at global scale by the
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FIGURE 11 | Chl change from the CZCS (1979–1983) to the SeaWiFS (1998–2002) era, expressed as the logarithm of the ratio of the average values over the two
time periods (A) from satellite Chl adapted from Antoine et al. (2005), (C) from ChlSvr−CCI. Note that this ratio is multiplied by 2 to fit the same color bar as in (A).
Maps of areas with concomitant parallel or opposite changes of Chl and SST (B) from Chl satellite and SST from the SODA reanalysis adapted from Martinez et al.
(2009) and (D) from ChlSvr−CCI and SSTNEMO. The respective SST zero differences are shown on the maps as a thick black curve.

model, except at the boundaries of the subtropical gyres
where the strong top-down control of zooplankton grazing
in the numerical model is not accounted for by the SVR.
Likewise, this statistical approach cannot yet reproduce
Chl variability induced by nutrient inputs that are not
directly related to our selected physical predictors, such as
atmospheric iron deposit.

The SVR was then trained on satellite Chl observations.
It accurately reproduces observed interannual Chl variations
in most regions, including El Niño signature in the tropical
Pacific and Indian Oceans as well as the main modes of
Atlantic Chl variability. Despite an amplitude underestimation
by half, it also accurately captures spatial patterns of Chl
trends over the satellite period, with a Chl increase in most
extratropical regions and a Chl decrease in the center of the
subtropical gyres, as well as their changes between the CZCS
and SeaWiFS era. Interestingly, while ChlPISCES magnitude is
closer to ChlOC−CCI than ChlSvr−CCI, interannual variability
and spatial trends of ChlPISCES are farther than ChlSvr−CCI to
ChlOC−CCI. Equations representing the processes that govern
the evolution of biogeochemical variables in a biogeochemical
model are obviously less complex than the ones at play in the
real ocean. We thus anticipated the modeled Chl to be easier
to reconstruct than the satellite one. Additional complications
were also expected through the reconstruction of satellite Chl
from the model oceanic and atmospheric predictors, which
may be less realistic than physical parameters derived from
satellite measurements. As a consequence, the SVR is indeed

slightly less efficient at reproducing the major satellite Chl
patterns compared to the model ones but is surprisingly more
efficient at capturing observed Chl temporal variations. This
results in a NRMSE generally weaker when reconstructing
satellite data compared to the model one, although the predictors
used are identical.

Machine learning techniques are powerful tools to statistically
model non-linear processes. They require a significant amount of
data to be trained and are well-suited to analyze remote sensing
data. While several attempts have been made over the last decade
to retrieve oceanic Chl content (Kwiatkowska and Fargion, 2003;
Zhan et al., 2003; Camps-Valls et al., 2009; Jouini et al., 2013; Blix
and Eltoft, 2018), the present work is one of the first attempt
to use such machine learning techniques to reconstruct past
time series of phytoplankton biomass at global scale. To our
knowledge only Schollaert Uz et al. (2017) tried to reconstruct
the Chl multi-decadal variability in the tropical Pacific using a
canonical correlation analysis built only from SST and SSH. Our
SVR approach leads to higher correlations between reconstructed
and satellite Chl in the tropical Pacific, highlighting the strength
of such non-linear machine-learning methods with multiple
predictors. These results emphasize deep learning approaches as
promising tools to reconstruct multidecadal Chl time series in
the global ocean, based on the knowledge of physical conditions.
The successful use of surface variables only in reproducing Chl
variability which is influenced by 3D-processes is here clearly
noteworthy, and investigation of variable importance in the Chl
reconstruction will deserve some future insights.
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FIGURE 12 | (A) 1st mode of basin-scale EOFs of interannual ChlSvr−CCI over 1979–2010 and their corresponding PCs in the (B) Pacific (23.2% of the total
variance), (C) Indian (15.2% of the total variance), (D) Atlantic (13.5% of the total variance) and (E) Austral Oceans (11.4% of the total variance). IPO is reported in
red (right y-axis).

An obvious short-term perspective of the current study is
to train a wider range of such statistical models with physical
predictors from surface satellite observations but also from
observations within the water column which could be derived
from Argo data (i.e., mixed layer and thermocline depth).
Including complementary variables such as satellite particulate
backscattering coefficient (as a proxy of the Particulate Organic
Carbon) in the training/reconstruction process should also be
considered. It would allow to investigate the extent to which

the Chl variability reflects changes in phytoplankton biomass
vs. cellular changes in response to light (e.g., Siegel et al.,
2005; Westberry et al., 2008; Behrenfeld et al., 2015). The
use of longitude and latitude as predictors may limit the
ability to capture long-term trends in the evolution of the
biogeochemical province boundaries, such as the expansion of
the oligotrophic areas (Polovina et al., 2008; Irwin and Oliver,
2009; Staten et al., 2018). Thus, exploring deep learning schemes
which may not explicitly depend on longitude and latitude,
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especially convolutional representations (LeCun et al., 2015), are
particularly appealing. Further efforts need also to be dedicated
to alleviate the issue of the underestimation of the long-term
Chl trends. For instance, it would be noteworthy to investigate
secular trends such as the 30% Chl decrease reported at global
scale over the last century by Boyce et al. (2010), which remains
largely debated (Mackas, 2011; McQuatters-Gollop et al., 2011;
Rykaczewski and Dunne, 2011).

Whatever the methodology used (i.e., numerical models,
satellite or in situ observations), they all have both advantages
and drawbacks. In situ observations are considered as
ground truth (with some errors/uncertainties depending
for instance on the field measurement protocols), but are
heterogeneous in time and space. Satellite Chl data provide
a spatio-temporal synoptic view but they have their own
measurement issues and uncertainties (e.g., radiometric
sensors and spectral properties, atmospheric corrections, water
constituents and their optical properties) and are limited
to 20 years in their record length. Biogeochemical models
are useful tools to (i) interpolate or extrapolate in time
and space biogeochemical tracers such as Chl and to (ii)
investigate complex three-dimensional processes responsible
for their variations. However, those models also suffer from
biases and are farther from in situ observations than satellite
data. They are also not straightforward to run and require
large computing resources. Thus, machine learning statistical
schemes could be seen as a complementary tool to the
“interpolate/extrapolate” use of biogeochemical models in
providing a long-term synoptic surface view built from
observations (being aware of the uncertainties associated with
the variables used in the training schemes). Such methods,
applied on observations only, will then provide an independent
tool that may either question or enforce conclusions drawn
from model simulations. Comparison between both methods
and observations will help to improve biogeochemical models
with acute quantification of model biases and identification
of the most meaningful predictors that may point to missing
processes in biogeochemical models. As a conclusion, machine
learning is a versatile tool that, associated with biogeochemical
models and observations, may greatly enhance our view of global
biogeochemistry.
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