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In this study, we present unique data collected with a Surface and Under-Ice Trawl (SUIT)

during five campaigns between 2012 and 2017, covering the spring to summer and

autumn transition in the Arctic Ocean, and the seasons of winter and summer in the

Southern Ocean. The SUIT was equipped with a sensor array from which we retrieved:

sea-ice thickness, the light field at the underside of sea ice, chlorophyll a concentration

in the ice (in-ice chl a), and the salinity, temperature, and chl a concentration of the

under-ice water. With an average trawl distance of about 2 km, and a global transect

length of more than 117 km in both polar regions, the present work represents the first

multi-seasonal habitat characterization based on kilometer-scale profiles. The present

data highlight regional and seasonal patterns in sea-ice properties in the Polar Ocean.

Light transmittance through Arctic sea ice reached almost 100% in summer, when the

ice was thinner and melt ponds spread over the ice surface. However, the daily integrated

amount of light under sea ice was maximum in spring. Compared to the Arctic, Antarctic

sea-ice was thinner, snow depth was thicker, and sea-ice properties were more uniform

between seasons. Light transmittance was low in winter with maximum transmittance of

73%. Despite thicker snow depth, the overall under-ice light was considerably higher

during Antarctic summer than during Arctic summer. Spatial autocorrelation analysis

shows that Arctic sea ice was characterized by larger floes compared to the Antarctic. In

both Polar regions, the patch size of the transmittance followed the spatial variability

of sea-ice thickness. In-ice chl a in the Arctic Ocean remained below 0.39mgchl

am−2, whereas it exceeded 7mgchl am−2 during Antarctic winter, when water chl a

concentrations remained below 1.5mgchl am−2, thus highlighting its potential as an

important carbon source for overwintering organisms. The data analyzed in this study

can improve large-scale physical and ecosystem models, habitat mapping studies and

time series analyzed in the context of climate change effects and marine management.
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1. INTRODUCTION

Sea ice is one of the Earth system components most sensitive
to climate change. Besides playing an essential role in global
ocean circulation (e.g., Schmitz, 1995; Ferrari et al., 2014) and in
regulating Earth’s climate and weather (e.g., Liu, 2012; Dethloff
et al., 2019), sea ice is crucial for the Arctic and Antarctic polar
food webs (e.g., Eicken, 1992; McMinn et al., 2010; Meyer
and Auerswald, 2014). Arctic and Antarctic pack ice serve as
unique habitats for microalgae (Arrigo, 2014), which contribute
to primary production and carbon transfer to higher trophic
levels (Gradinger, 1999; Søreide et al., 2006; Budge et al., 2008;
Fernández-Méndez et al., 2015;Wang et al., 2015, 2016; Kohlbach
et al., 2016, 2017a,b, 2018; Schaafsma et al., 2017). Since light is
the energy source of algae, the quantity and spectral composition
of the light that penetrates the ice and reaches the surface
ocean impacts primary productivity and biological activity at the
bottom of the sea ice and below in the water column. Due to
changes from complete darkness to 24 h daylight, and extreme
natural variations in water temperature in high latitudes, the
concentration of primary production in both the sea ice and the
water column undergoes a seasonal cycle, which has a major
impact on food availability and life cycle of animals living in
polar regions (Swadling et al., 1997; Brierley and Thomas, 2002).
Small organisms living inside or under the sea ice, and feeding on
residing algae in (ice algae) or below (phytoplankton) it, transfer
both ice-algae-produced and phytoplankton-produced carbon to
the pelagic food web (Budge et al., 2008; Wang et al., 2015,
2016; Kohlbach et al., 2016, 2017a,b, 2018). Thus, knowledge
of sea ice and under-ice environmental properties as drivers of
large-scale patterns in the abundance and distribution of sea-
ice algae and phytoplankton, and, consequently, of zooplankton
and nekton, is essential for understanding ecosystem functioning
and predicting possible consequences of climate change for the
ecosystems (Flores et al., 2011, 2019; David et al., 2015, 2016;
Ehrlich et al., 2020).

Sampling in polar regions is limited in space and time
because of the harsh weather during most of the year and
because of the remote and hard to access locations. Particularly
for sea-ice algae, for which chlorophyll a (in the following
abbreviated as chl a) is usually used as a proxy for their
biomass, estimates are often based on a small number of ice
core observations, which do not fully capture the patchiness
and the spatial and temporal variability in their distribution
(Miller et al., 2015; Lange et al., 2016, 2017b). Satellite remote
sensing during the past decades has vastly improved, enabling
large-scale monitoring of certain sea-ice parameters, such as
sea-ice concentration and thickness. However, uncertainties of
global satellite sea-ice concentration and thickness retrievals on
smaller scales, e.g., in the range of a few kilometers, can reach
the magnitude of the measurement itself (Ivanova et al., 2014;
Ricker et al., 2015). Moreover, despite new satellite advancements
(i.e., ALOS—Advanced Land Observation Satellite), resolving
small scale features such as ridges is still a challenge due to the
relatively large footprint. Satellite snow depth retrievals are under
development, but further evaluation and validation are needed
(Guerreiro et al., 2016). Furthermore, satellite measurements

do not provide enough information for the study of in-ice
and under-ice environmental characteristics. This is particularly
true for ice algae and phytoplankton in ice-covered regions
that cannot be observed by satellite so that a comprehensive
picture of their distribution on large scales remains difficult to
obtain. Therefore, non-disruptive time series of sea-ice algae are
non-existent. Only recently, technological developments allowed
the estimation of under-ice properties, including light and in-
ice chl a, on the scale of hundreds of meters in the Arctic
region (Nicolaus et al., 2012; Nicolaus and Katlein, 2013; Katlein
et al., 2015, 2019; Lange et al., 2017b) and in the Antarctic
(Arndt et al., 2017).

The effects of ice algae on the spectral distribution of light
under the ice were first observed by Maykut and Grenfell (1975),
followed by studies focused on investigating the wavelengths that
are affected by the presence of algae (Legendre and Gosselin,
1991), and on distinguishing between effects of algae and
snow on the spectral distribution of under-ice light (Perovich,
1990). Mundy et al. (2007) used, for the first time, normalized
difference indices (NDI) for studying the effects of ice algae and
snow on the under-ice hyperspectral measurements conducted
under landfast first-year ice in the Canadian Arctic Archipelago.
After comparing different methods for in-ice chl a retrieval,
the NDI method was employed by Melbourne-Thomas et al.
(2015) to estimate ice-algae biomass in two Antarctic regions,
the Weddell Sea and off East Antarctica, and to retrieve in-
ice chl a in the Weddell Sea in winter (Meiners et al.,
2017). Lange et al. (2016) developed and compared different
algorithms for the retrieval of ice algae in the Arctic pack ice
during summer 2012, and applied such algorithms to under-ice
hyperspectral measurements collected with under-ice profiling
platforms (Lange et al., 2017b). For the first time, in this
work these methods are applied to multi-annual data sets of
under-ice hyperspectral measurements conducted over hundreds
to thousands of meters, providing a unique large-scale study
of the spatial variability of Arctic and Antarctic sea-ice algae
biomass estimates.

In the present study, we present data collected with a
Surface and Under Ice Trawl (SUIT) and used these data to
characterize ice-associated environments in the Arctic Ocean
and the Southern Ocean. We aim to provide a regional, and
seasonal comparison of sea-ice properties on large scales in both
Polar regions with a focus on: (1) under-ice water properties,
(2) ice thickness, (3) light transmittance through sea ice and
under-ice light, and (4) in-ice chl a estimates. Moreover, the
spatial scale covered by the present data sets also allow for an
(5) unprecedented investigation of the scales of variability for all
the variables measured. Our account of the meter- to kilometer
variability of structural and optical sea-ice properties should
contribute to the validation and parameterizations of sea-ice
models as well as habitat mapping in the polar oceans.

2. DATA AND METHODS

2.1. Data
Data were collected during five campaigns in the Arctic Ocean
and in the Southern Ocean, on board RV Polarstern (Figures 1, 2
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FIGURE 1 | Map of the Arctic with the stations carried out during PS80 (summer-autumn 2012), PS92 (early spring 2015) and PS106 (late spring 2017). Ice

concentration averaged over the period of sampling of each expedition was taken from OSISAF (EUMETSAT, 2011).

and Table 1). In the Arctic Ocean, data were collected during
early springtime (PS92, May-June 2015, Peeken, 2016), late
springtime (PS106, June-July 2017, Macke and Flores, 2018),
and during summer-autumn (PS80, August-September 2012,
Boetius, 2013). In the Southern Ocean, the campaigns cover
wintertime (PS81, August-October 2013, Meyer and Auerswald,
2014), and summertime (PS89, December 2014-January 2015,
Boebel, 2015).

Sampling was performed with Surface and Under Ice Trawls
(SUIT, van Franeker et al., 2009; Flores et al., 2012). The SUIT

consists of a steel frame with a 2 × 2m opening and two 15m
long nets: a 7mm half-mesh commercial shrimp net, and a
zooplankton net with a 0.15mm (PS106) or 0.30mm (PS80, PS81,
PS89, PS92) mesh. Floats attached to the frame keep the net
at the surface or right at the sea-ice underside. An asymmetric
brindle forces the net to tow off at an angle of approximately
60◦ so that it samples undisturbed sea ice away from the ship’s
wake. Previous studies using the SUIT nets have described in
detail the ecological and biological aspects of the catch and
distribution of organisms in both polar regions (Flores et al.,
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FIGURE 2 | Map of the Antarctic with stations carried out during PS81 (winter 2013) and PS89 (summer 2014/2015). Ice concentration averaged over the period of

sampling of each expedition was taken from OSISAF (EUMETSAT, 2011).

2011, 2012, 2019; David et al., 2015, 2016, 2017; Schaafsma et al.,
2016, 2017). Since 2012 the SUIT is equipped with a sensors
array (Lange et al., 2016, 2017b; Lange, 2017) developed in order
to conduct coincident quantitative observations of the sea-ice
and under-ice water environments. The sensors allow the direct
observations of: (1) water inflow speed and direction, pitch and
roll angles, and pressure (i.e., depth) using an Acoustic Doppler
Current Profiler (ADCP; Nortek Aquadopp R© Profiler) with three
acoustic beams, which allows 3-dimensional measurements of

current velocities, at a frequency of 2MHZ, and a sampling
interval of 1 s; (2) water temperature, water salinity (practical
salinity scale PSS-78; Fofonoff, 1985), and water depth by
using a Conductivity Temperature Depth (CTD) probe (Sea
and Sun Technology CTD75M memory probe) with a sampling
interval of 0.1 s; (3) under-ice water chl a concentrations using
a fluorometer (Cyclops, Turner Designs, USA) incorporated into
the CTD; (4) distance from the ice surface by using an altimeter
(Tritech PA500/6-E) incorporated into the CTD; (5) under-ice
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TABLE 1 | Table with listed, for each expedition, the number of profiles considered in the analysis (Nhauls), the total profile length, the mean ice concentration (Ā), mean

total ice thickness (H̄i ) and mean snow depth (H̄s), under-ice water chl a (chl aw ) multiplied by the vertical section of the SUIT (2m) to obtain integrated values,

temperature and salinity.

Expedition Sampling Nhauls Profile length Ā H̄i H̄s chl aw T S

dates (m) (%) (m) (cm) (mg m−2) (◦C)

PS80 05.08–29.09.2012 14 27,347 64.1 1.09 0–2 1.32 -1.20 31.36

PS81 22.08–22.10.2013 11 17,743 94.8 0.85 5–60 2.02 -1.85 33.95

PS89 14.12.2014–20.01.2015 8 14,661 83.7 1.07 5–100 0.80 -1.65 33.69

PS92 27.05–23.06.2015 13 21,256 72.2 1.77 5–40 6.90 -1.60 33.85

PS106 29.06–13.07.2017 21 36,188 94.2 1.91 5–20 2.74 -1.66 33.17

Expeditions in the Southern Ocean are highlighted in gray.

light levels using Ramses spectral radiometers (Trios GmbH,
Rastede, Germany) with a wavelength range from 350 to 920
nm and a resolution of 3.3 nm. Incident solar radiation and
under-ice irradiance were measured using an irradiance sensor
(RAMSES-ACC) containing a cosine receptor with a 180◦ field-
of-view. Under-ice radiance measurements were acquired using
a radiance sensor (RAMSES-ARC) with a 9◦ field of view. As
explained in detail in Lange (2017), the combined information
from these different sensors allow also the retrieval of: (1) sea-
ice draft derived by combining the CTD depth measurements
with the distance from the ice (altimeter), and then corrected
with pitch and roll measurements from the ADCP, as described
in section 2.2; (2) ice-algal chl a derived from the Ramses spectral
radiometers as described in section 2.4 (see also Table S1). Snow
depth was recorded by visual observation of the ice under which
the SUIT was traveling: A marked stick extending from the
starboard side of the ship helps in quantifying the thickness
of snow on top of the ice floes that are tilted during the ship
passage. Part of these data have been used in previous works
to study the relationship of environmental properties of sea-
ice habitats with the community structure of sympagic fauna
in the Arctic Ocean (PS80 and PS92, David et al., 2015, 2016;
Schaafsma, 2018; Flores et al., 2019; Ehrlich et al., 2020), and in
the Southern Ocean (PS81, Schaafsma et al., 2016, 2017; David
et al., 2017), to develop and test algorithms for estimating in-
ice chl a (PS80, Lange et al., 2016; Lange, 2017), to retrieve
Arctic primary production on large scales in the Arctic summer
(PS80 Lange, 2017; Lange et al., 2017b), and to estimate Arctic
under-ice primary production based on under-ice irradiance
measurements (PS92, Massicotte et al., 2019). All data collected
during PS89 and PS106 are so far unpublished. Although data
were collected during different years, this data set allows the
investigation of differences between seasons in both the Arctic
and the Antarctic, assuming that the sampling is representative of
the season.

The profile lengths used for calculation of mean quantities
(e.g., ice and snow thickness, water temperature and salinity,
chl a in water and sea ice) correspond to the distance
between the start and end trawl points, excluding parts of
the profiles where the sensors data were unreliable due, for
example, to sensors failure or damage. Thus, the profile
length does not always correspond to the trawled distance,
i.e., the total distance during which the net was towed in

water by the ship, used to calculate the density of animals
(e.g., David et al., 2017).

The sampled regions were different between expeditions:
during Arctic spring (PS92 and PS106) data were collected north
of Svalbard (Figure 1), in the latitudinal band between 80◦N and
85◦N. PS92 stations were located on the Yermak Plateau (lon <

10◦ E, later referred to as Yermak stations), in the Sophia Basin
and along the Svalbard shelf/slope (lon > 10◦ E, later referred to
as basin & shelf stations). Some PS106 stations were also located
in the Basin & shelf area (10◦ E < lon < 20◦ E), the others were
located between 20◦ E and 30◦ E. During Arctic summer (PS80),
the sampling region extended toward the North Pole and to
130◦ E, thus covering the Nansen Basin and the Amundsen Basin.
The two Southern Ocean expeditions (Figure 2) took place in
the Weddell Sea, but at different latitudinal locations. During
winter (PS81), data were collected between 52◦ S and 61.5◦ S.
During summer (PS89), theMarginal Ice Zone (MIZ) had already
retreated, forming a belt relatively close to the continent, and
facilitating the sampling of southern areas (between 66◦ S and
69◦ S). During the southward trip in December 2014, the MIZ
extended to ∼66◦ S, during the return trip northward in January
theMIZ had retreated to∼68◦ S.Wewill refer to the two different
MIZs as Dec-MIZ and Jan-MIZ. In the period in-between the
sampling of the two MIZs, the ship traveled through the inner
pack-ice area that we will refer to as the pack-ice area.

2.2. Draft Calculation
Retrieval of the sea-ice draft makes use of the combination of
depth hw given by the pressure sensor of the CTD, distance from
the ice ha computed from the altimeter, and pitch β and roll φ

movement of the SUIT:

d = hw −
(

ha × cosβ × cosφ
)

− hCTD × sin (α + β) . (1)

The CTD and the altimeter are connected but mounted in
different parts of the SUIT, thus they are located at different
depths. hCTD is the distance between CTD and altimeter, α is the
angle formed between the CTD probe, the CTD sensor, and the
altimeter (see Figure 3 in Lange, 2017). In some cases, due to the
failure of one instrument, the entire set of information was not
available. In this case, we used the simplified version of equation
(1) that does not include the pitch and roll correction:

d = hw −
(

ha − hCTD
)

. (2)
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FIGURE 3 | Correlation surfaces (A) of normalized difference indices for integrated chl a for PS92 and PS106. λ1 and λ2 are wavelengths pairs. Relationship (B)

between observed normalized difference indices and integrated chl a (dots). The green line represents the fitted relationship given by the algorithmc in Table 2.

This is equivalent of assuming that the SUIT is towed perfectly
parallel to the ice and, even if only an approximation, it has been
proven reliable (R2 = 0.78) in determining draft when the entire
set of information was not available (Lange, 2017; Lange et al.,
2017b). Handling of data gaps due to sensors malfunctioning
or failure is explained in the Supplementary Material. Ice
concentration for each profile was computed as the percentage
of data points where ice thickness Hi was larger than zero. Ice
thickness was computed by using a fixed density value (ρ =
0.917 g cm−3) for the sea ice. By doing this, final ice thickness
values include both sea ice and snow, and we will refer to it as
total thickness in the following (Lange et al., 2019). Mean and
median thicknesses were computed for Hi > 0 and they include
ridges. Keels of ridges were detected along each profile by using
the Rayleigh criterion (Rabenstein et al., 2010; Castellani et al.,
2014, 2015). A detailed analysis of the distribution and properties
of ridges detected along each SUIT profile will be provided in a
separate study.

During all expeditions, a helicopter-borne frequency-domain
electromagnetic induction sounding system (EM-Bird) was used
tomeasure the total sea-ice thickness (sea-ice thickness plus snow
depth, Haas et al., 2009). The 4-m long EM-Bird was towed
at a height of 10–15 m above the surface under a helicopter
along mainly triangular flight tracks. With this method, the
larger scale sea-ice thickness distribution can be observed also
away from the ship track, which usually follows the easier sea-
ice conditions in a region. Each triangle leg covered 15–30
nautical miles.

2.3. Under-Ice Light
Irradiance and radiance values were integrated over the
Photosynthetically Active Radiation wavelength range (PAR;
400–700 nm). Since the SUIT does not always travel parallel to the
ice but can encounter obstacles that make it swing, we included
in the analysis only data with an inclination angle lower than
15◦ (Lange et al., 2017b). In order to reduce the effect of under-
ice water between the actual position of the sensors mounted in
the SUIT frame and the underneath side of the ice, we excluded
all measurements associated with an altimeter value larger than
1.5m following works by Katlein et al. (2015, 2016, 2017), Lange
et al. (2016, 2017b).

Transmittance was calculated as the ratio between under-
ice and incoming radiation, the latter measured with a Ramses
sensor mounted on the ship’s crows nest. Due to a sensor failure
during summer 2012 (PS80) we used incoming global radiation
data, which are obtained with a pyanometer, also placed in the
same region as the above described sensor. For comparison,
a regression between the two sensors was calculated for the
simultaneous measuring period and gave excellent agreement.
Thus, data from this were used to calculate transmittance
values in September 2012. A detailed method used to obtain
radiation values to cover this period can be found in the
Supplementary Material.

The quantity of light reaching the underside of the ice layer
is important for sea-ice algae and phytoplankton, as well as
for sympagic fauna. In order to compare the amount of light
between expeditions and sampling stations independently from
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the time of the day when we sampled, we calculated the insolation
parameter as:

Si =

∫ 24

0
IhTRidh , (3)

where Si is the insolation value (mol photons m−2 d−1) at
position i along each profile, TRi is the transmittance value at
position i, and Ih is the modeled hourly incoming solar radiation
(µmol photons m−2 s−1) above the surface (1◦x1◦spatial
resolution, daily temporal resolution, interpolated hourly) based
on the radiative transfer model SBDART (Ricchiazzi et al., 1998)
as described in Laliberté et al. (2016). These data do not consider
atmospheric parameters, such as cloudiness, which can affect
the amount of radiation reaching the ship, where the incoming
irradiance sensor is usually mounted. So defined, the insolation
Si is the amount of light passing through the bottom of the
sea ice (i.e., PAR available for ice algae), at a specific position
along the profile over an entire day. It is important to notice
that the absence of information on cloud cover, or any other
atmospheric parameter that could dampen the amount of light
reaching the ice surface, potentially lead to overestimating the
actual insolation values.

2.4. Retrieval of In-Ice Chlorophyll a
Since the retrieval of extensive spatial and temporal observations
of sea-ice algae is limited in large part due to destructive
techniques (i.e., based on the collection of sea ice from the field
and subsequent melting and filtering of the ice), many studies
in the past decades focused on estimating sea-ice algae based on
under-ice hyperspectral measurements (Perovich, 1996; Mundy
et al., 2007; Melbourne-Thomas et al., 2015; Lange et al., 2016;
Meiners et al., 2017; Wongpan et al., 2018). In the present
study, we employed normalized difference indices (NDIs) and
Empirical Orthogonal Functions (EOFs) of under-ice spectra
to estimate the concentration of chl a present in the ice. The
heterogeneity of the environment covered by the present data
set required the development of a specific algorithm for each
expedition. The algorithms applied to the different data sets are
listed in Table 2. For Arctic summer (PS80) data we used the
EOF algorithm developed by Lange et al. (2016) based, amongst
others, on the PS80 data set. Lange et al. (2016) recommended
the EOF algorithm, instead of NDI, because it proved to be
most reliable in catching the variability of in-ice chl a in the
PS80 data set. For the Southern Ocean (PS81 and PS89) we
used the NDI algorithm derived by Melbourne-Thomas et al.
(2015) for the Weddell Sea. This algorithm was found to provide
the most robust predictions of integrated chl a in comparison
to others tested by Melbourne-Thomas et al. (2015). The NDI
algorithm was developed based on summer data, and it is thus
applicable to Antarctic summer (PS89). Meiners et al. (2017)
applied the same algorithm to under-ice hyperspectral data
collected with an ROV deployed during the Antarctic winter
(PS81). Results showed that the algorithm provides a good fit
with ice-core data collected during ice stations, we thus applied
the same algorithm to the SUIT winter data (PS81). The NDI
algorithm for Arctic spring (PS92 and PS106) was developed
by comparison between coincident under-ice hyperspectral and

TABLE 2 | Normalized Difference Indices and Empirical Orthogonal Functions

algorithms used to retrieve in-ice chl a for the different expeditions.

Expedition NDI algorithm

PS80 0.7–3.0 s2 + 1.1 s4 + 2.4 s6 − 6.5 s27 + 3.9 s29
a

PS81 0.39 + 31.7NDI(479:468)b

PS89 0.39 + 31.7NDI(479:468)b

PS92 3.98–197.93NDI(427:434)c

PS106 3.98–197.93NDI(427:434)c

aFrom Lange et al. (2016) where si are the EOF modes.
bFrom Melbourne-Thomas et al.

(2015). cRetrieved as explained in section 2.4.

in-ice chl a measurements of in total 8 ice stations carried
out during the same campaigns. The accordance in sampling
time (May-June-July), sampling region (Figure 1), and similarity
of sea-ice properties (see section 3.2.1) justifies merging the
data from these two spring expeditions. We used a total of 19
coincident measurements of under-ice irradiance and integrated
chl a retrieved by measuring autotrophic pigments with High-
Performance Liquid Chromatography (HPLC, for more details,
see Tran et al., 2013). The NDIs for each wavelength pair were
correlated with the integrated chl a values. Values lower than
0.1mgm−2 were excluded from the analysis. Correlation surfaces
of normalized difference indices are shown in Figure 3A. We
then used a linear model to explore the relationship between
predicted chl a from the NDI algorithm and integrated chl a
from the ice cores (Figure 3B). The NDI algorithm developed
explains 60% of the variability (R2 = 0.60).

An example of a SUIT profile including CTD data, retrieved
ice draft, and retrieved in-ice chl a is shown in Figure 4.
The sampling frequency of the RAMSES radiometers was
lower than the one of the CTD and ADCP. In order
to match ice thickness/draft with under-ice hyperspectral
measurements, we computed averages of thickness and draft
values falling between the beginning and the end of each
light measurement.

2.5. Statistical Analysis
We applied Principal Component Analysis (PCA) to assess
spatial and seasonal patterns in the variability of physical
properties of the sea ice and the underlying water sampled
by the SUIT separately for each hemisphere. We included
in this analysis the parameters water temperature, salinity,
total ice thickness from the present study, and ridge depth
and ridge density (Rabenstein et al., 2010; Castellani et al.,
2014, 2015, G. Castellani, unpublished data). Near-normal
distribution of data, as assumed by PCA, was checked by
visual inspection of histograms. In order to achieve near-normal
distribution of the data, total ice thickness and ridge density were
square-root transformed.

To test for significant differences between the frequency
distributions of total ice thickness data from the EM-bird and the
SUIT, we applied the Kolmogorov–Smirnov test. Before applying
the test, the SUIT data were resampled to the footprint of the
EM-bird (40 m) by averaging the data for each 40 m segment
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FIGURE 4 | Example of a SUIT profile (station PS92-47_1). Orange and red lines represent surface salinity and temperature, respectively. The gray line is the draft

obtained with Equation (1). The blue line is the draft resampled at the frequency of the RAMSES radiometers sampling (section 2.4). The green circles represent in-ice

chl a retrieved by applying the NDI algorithmc in Table 2.

of each thickness profile. All statistical analyses were performed
with the software R version 3.5.2 (R-Development-Core-Team,
2018), applying the package vegan (Oksanen et al., 2013).

2.6. Spatial Autocorrelation Analysis
Spatial autocorrelation was used to investigate the horizontal
patchiness of sea-ice draft for 55 stations. Spatial autocorrelation
analyses were also conducted for transmittance and in-ice chl a
biomass. However, the transect nature of the surveys, the large
interval spacing and small sample sizes, in comparison to draft,
limited the spatial analyses of in-ice chl a to only 7 stations
and of transmittance to only 10 stations. Autocorrelation was
estimated using Moran’s I (Moran, 1950; Legendre and Fortin,
1989; Legendre and Legendre, 1998), which was calculated for
each SUIT survey at equally spaced (25m) distance classes.
Individual autocorrelation coefficients (e.g., Moran’s I estimates)
were plotted for each distance class as a spatial correlogram
(Legendre and Fortin, 1989; Legendre and Legendre, 1998)
using the R software function correlog from the pgirmess
package (Giraudoux, 2018). Autocorrelation coefficients for each
distance class were assigned a two-sided p-value according to
Legendre and Fortin (1989) and Legendre and Legendre (1998).
The presence of spatial autocorrelation (i.e., patchiness) was
determined if the correlogramwas considered globally significant
at p < 0.05. We used the first x-intercept of globally significant
correlogram lines as an indicator of the patch size for sea ice draft,
Pd (Legendre and Fortin, 1989; Legendre and Legendre, 1998).
This methodology is consistent with spatial autocorrelation
analyses conducted on ROV gridded data from one of the same
cruises (PS80, Lange et al., 2017b) and in other snow and sea ice
studies (e.g., Gosselin et al., 1986; Rysgaard et al., 2001; Granskog
et al., 2005; Søgaard et al., 2010).

3. RESULTS

3.1. Arctic Ocean
3.1.1. Sea Ice and Under-Ice Water Properties
Under-ice water properties for the three Arctic expeditions are
presented in detail in Tables 3–5. In spring (PS92 and PS106),
under-ice water temperatures were lower and salinities were
higher compared to summer (PS80). The mean under-ice water
chl a was highest in spring (6.34± 5.94mgm−2 in May 2015,
PS92) and lowest in autumn (1.60± 0.64mgm−2 in September
2012, PS80). Besides seasonal differences, the data also show
a regional pattern. During spring 2015 (PS92) there was a
distinct difference between Yermak stations and the stations
on the Sophia Basin & shelf (Table 3). The latter had higher
under-ice water chl a (with a mean of 12.52± 9.14mgm−2

compared to 1.80± 2.2mgm−2 for the Yermak stations), higher
mean under-ice water temperature (−1.54± 0.13 ◦C compared
to −1.77± 0.05 ◦C) and lower mean salinity (33.70± 0.43
compared to 34.13± 0.23). We could not confirm if this pattern
was repeated on PS106 because the Yermak Plateau was not
reached. However, during this expedition higher temperatures,
lower salinities and very high chl a values (up to 20mgm−2)
in the surface layer were associated with the shelf-slope area
toward the end of the expedition, and were probably related
to the beginning of ice breakup (Table 4). During spring
2017 (PS106), time progression corresponded to a decrease in
temperature and salinity and an increase in under-ice water chl
a (PS106, Table 4). During summer 2012 (PS80), the stations
situated in the Nansen Basin were characterized by higher
salinities (mean 31.85± 0.94) and lower surface chl a (mean
0.66± 0.28mgm−2), whereas stations in the Amundsen Basin
had lower mean salinities (31.02± 1.71) and higher mean chl a
concentrations (1.46± 0.60mgm−2, Table 5, David et al., 2015).
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TABLE 3 | Table for PS92 with, for each station (stn), the total profile length, the mean ice concentration (Ā) along profile, mean snow depth (H̄s) and mean total ice

thickness (H̄i ), under-ice water chl a (chl aw ) multiplied by the vertical section of the SUIT (2m) to obtain integrated values, under-ice water temperature and salinity, ice

concentration retrieved from satellite (ĀSat), median in-ice chl a (interquartile range), mean transmittance TR (± one standard deviation), mean Insolation Si (± one

standard deviation), and the draft patch size (Pd ).

stn Profile length Ā H̄s H̄i chl aw T S ĀSat In-ice chl a TR Si Pd

(m) (%) (cm) (m) (mg m−2) (◦C) (mg m−2) mol photons m−2 d−1 (m)

19_1 2876.5 24.94 5–20 1.05 7.04 −1.26 33.89 80.34 0.26 (0.16–0.40) 0.18 (0.27) 9.23 (14.07) 250

27_1 1912.5 90.80 10–40 1.07 8.86 −1.44 33.39 90.20 - 0.24 (0.26) 12.92 (14.12) 150

28_4 1143 97.07 30–40 1.27 4.60 −1.42 34.08 89.24 0.30 (0.15–0.46) 0.02 (0.10) 1.14 (5.63) -

38_1 1449 94.93 5–40 1.20 17.56 −1.66 33.72 84.82 0.59 (0.37–0.82) - - 50

39_17 1053 70.19 10–40 1.59 0.9 −1.83 33.85 100 0.22 (0.16–0.31) 0.27 (0.24) 15.74 (13.84) 75

43_23 1281 32.93 20–30 1.77 0.54 −1.80 34.05 100 0.12 (0.05–0.19) 0.04 (0.08) 2.48 (4.60) 100

43_24 576 63.83 20–30 1.19 0.5 −1.80 34.24 100 0.14 (0.13–0.28) 0.32 (0.31) 19.08 (18.21) -

44_1 1938 71.65 10–20 3.84 0.78 −1.76 34.16 94.01 0.12 (0.08–0.19) 0.20 (0.22) 12.04 (13.24) 275

45_1 1468 82.12 10–30 1.83 1.04 −1.74 34.32 96.44 0.21 (0.13–0.35) 0.04 (0.10) 2.26 (6.07) 175

47_1 1923.5 89.27 10 1.46 21.16 −1.68 33.38 92.79 0.47 (0.36–0.58) 0.09 (0.16) 5.12 (9.22) 250

48_1 2254.5 69.20 10–20 1.72 5.66 −1.48 33.51 100 0.23 (0.17–0.29) 0.18 (0.20) 10.98 (11.59) 225

49_1 1846.5 94.67 15–25 1.85 11.16 −1.61 33.43 100 0.30 (0.19–0.41) 0.08 (0.14) 5.05 (8.47) 50

56_2 1534.5 81.73 5 2.33 3.94 −1.72 34.02 88.96 0.26 (0.19–0.34) 0.12 (0.22) 7.23 (12.73) 125

In white are the stations located west of 10◦E on the Yermak Plateau, in light gray are the stations located east of 10◦E in the Basin & shelf area.

TABLE 4 | Table for PS106 with, for each station (stn), the total profile length, the mean ice concentration (Ā) along profile, mean snow depth (H̄s) and mean total ice

thickness (H̄i ), under-ice water chl a (chl aw ) multiplied by the vertical section of the SUIT (2m) to obtain integrated values, under-ice water temperature and salinity, ice

concentration retrieved from satellite (ĀSat), and median in-ice chl a (interquartile range), mean transmittance TR (± one standard deviation), mean Insolation Si (± one

standard deviation), and the draft patch size (Pd ).

stn Profile length Ā H̄s H̄i chl aw T S ĀSat In-ice chl a TR Si Pd

(m) (%) (cm) (m) (mg m−2) (◦C) (mg m−2) mol photons m−2 d−1 (m)

50_5 1691 93.11 10–20 1.19 1.76 −1.81 34.07 87.39 0.25 (0.18–0.31) 0.21 (0.23) 12.42 (13.71) 575

63_1 1309 88.70 - 0.97 1.00 −1.63 33.52 92.61 0.19 (0.15–0.23) 0.25 (0.26) 14.55 (15.11) 150

65_4 2213 95.75 5 2.29 - - - 96.61 - 0.12 (0.22) 6.99 (12.68) 150

66_3 97.5 65.82 10–20 0.50 0.40 −1.68 33.66 97.52 - - - -

66_4 1005 97.46 20 1.77 1.64 −1.72 33.59 97.52 0.22 (0.13–0.30) - - 50

67_5 1466.5 94.04 5–10 1.29 2.62 −1.72 33.29 95.41 0.22 (0.15–0.31) 0.20 (0.25) 11.76 (14.23) 75

68_5 1320.5 93.60 15 2.38 1.96 −1.78 33.14 92.19 0.21 (0.16–0.36) 0.09 (0.18) 5.02 (10.27) 150

69_2 1158.5 97.50 - 1.58 1.82 −1.76 33.34 90.57 0.19 (0.16–0.23) 0.11 (0.13) 6.23 (7.66) 100

70_1 2627 98.08 Y 1.97 1.50 −1.74 33.81 90.10 0.14 (0.11–0.18) 0.10 (0.20) 5.94 (11.56) 225

71_5 3304 98.34 20 2.44 1.621 −1.78 32.44 91.10 0.11 (0.07–0.14) 0.10 (0.19) 5.68 (11.02) 225

72_5 2217.5 91.55 5–20 1.01 2.28 −1.77 33.26 91.53 0.23 (0.16–0.29) 0.25 (0.30) 14.43 (17.01) 450

73_7 2947.5 95.59 15–20 2.56 1.02 −1.72 34.10 92.34 0.17 (0.09–0.21) 0.14 (0.24) 7.82 (13.72) 225

74_5 2493.5 99.00 10–20 1.77 0.96 −1.72 34.07 84.10 0.12 (0.07–0.16) 0.15 (0.17) 8.46 (9.81) 225

75_6 2274 95.25 5–20 1.77 0.48 −1.63 33.84 85.02 0.15 (0.10–0.22) 0.24 (0.30) 13.22 (16.91) 550

76_4 2400 98.44 10–15 1.94 1.18 −1.68 33.87 77.68 0.11 (0.06–0.15) 0.19 (0.30) 10.82 (16.48) 325

77_2 2013.5 64.08 20 2.44 0.71 −1.64 33.19 77.21 0.18 (0.14–0.21) 0.33 (0.33) 18.50 (18.48) 725

78_5 1422.5 98.63 - 2.04 1.10 −1.66 33.51 77.06 0.11 (0.08–0.15) 0.08 (0.09) 4.46 (5.02) 100

79_1 1580.5 93.86 5–10 2.94 2.40 −1.68 33.33 77.60 0.19 (0.16–0.26) 0.16 (0.20) 8.80 (11.01) 300

80_3 2020.5 92.38 - 1.82 20.16 −1.06 32.99 77.79 0.39 (0.29–0.47) 0.16 (0.15) 8.50 (8.15) 125

83_7 626 98.56 - 1.90 3.38 −1.40 32.25 90.09 0.26 (0.20–0.28) 0.27 (0.20) 14.74 (11.12) 125

83_8 2103.5 99.33 - 1.75 4.96 −1.39 28.33 88.72 0.25 (0.23–0.28) 0.38 (0.23) 20.71 (12.45) 225

In light gray are the stations located west of 20◦E in the Basin & shelf area.

Frontiers in Marine Science | www.frontiersin.org 9 August 2020 | Volume 7 | Article 536

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Castellani et al. Physical and Biological Sea-Ice Properties

TABLE 5 | Table for PS80 with, for each station (stn), the total profile length, the mean ice concentration (Ā) along profile, mean snow depth (H̄s) and mean total ice

thickness (H̄i ), under-ice water chl a (chl aw ) multiplied by the vertical section of the SUIT (2m) to obtain integrated values, under-ice water temperature and salinity, ice

concentration retrieved from satellite (ĀSat), and median in-ice chl a (interquartile range), mean transmittance TR (± one standard deviation), mean Insolation Si (± one

standard deviation), and the draft patch size (Pd ).

stn Profile length Ā H̄s H̄i chl aw T S ĀSat In-ice chl a TR Si Pd

(m) (%) (cm) (m) (mg m−2) (◦C) (mg m−2) mol photons m−2 d−1 (m)

204_1 2567 31.1 - 0.07 - 0.87 31.81 0 - - -

216_1 2754.5 67.7 - 0.55 - −1.06 30.89 26.88 0.0 (0.0–0.2) 0.38 (0.31) 13.91 (11.21) -

223_1 1118.5 69.6 - 1.35 - −1.53 32.04 72.26 0.2 (0.0–0.7) 0.24 (0.25) 8.40 (8.66) -

233_1 2227 68.9 - 2.62 0.60 −1.60 32.83 100 0.1 (0.0–0.4) 0.36 (0.31) 11.90 (7.61) -

248_1 3590 66.3 - 1.20 - - - 68.83 - - - -

258_1 1679.5 91.2 - 0.65 0.72 −1.61 32.60 86.17 - - - -

276_1 748 100.0 - 0.26 1.29 −1.42 30.21 52.02 - - - -

285_1 1538 91.9 - 0.82 1.64 −1.56 30.65 54.16 0.1 (0.0–0.9) - - -

321_1 1586.5 50.5 - 1.02 1.62 −1.60 29.19 51.46 0.9 (0.0–1.7) 0.16 (0.22) 1.96 (2.83) -

333_1 1833 5.4 - 0.84 0.94 −1.22 30.08 11.05 - 0.56 (0.1) 5.83 (1.85) -

345_1 2143 67.2 - 0.94 1.10 −1.60 30.14 36.55 1.9 (0.0–4.4) 0.28 (0.26) 2.02 (1.85) -

358_1 2203 91.7 2.0 1.39 1.60 −1.81 33.12 100 0.9 (0.4–1.7) 0.10 (0.16) 0.12 (0.18) -

376_1 189.5 87.6 - 2.46 1.38 −1.82 33.07 100 - - - -

397_1 1460 89.8 Y 0.37 1.32 −1.80 32.18 99.90 - 0.02 (0.02) 0.008 (0.008) -

In gray shades are the stations located in the Nansen Basin whereas the white ones are located in the Amundsen Basin.

FIGURE 5 | Violin plots of total thickness (sea ice and snow) computed from the SUIT stations and from the EM-bird measurements in the vicinity of SUIT stations.

The “violins” show density functions of the relative frequency distribution of the data. Superimposed on the violin plots are box plots showing the median (white dot),

the 1st to 3rd quartile range (red boxes), and the lowest and highest data points within approximate 1.5 times the interquartile range (white lines extending from the

boxes). Dashed lines indicate the modes of SUIT (blue) and EM-Bird (gray) data. Data were restricted to the interval 0.1–5.0m total thickness.

Frontiers in Marine Science | www.frontiersin.org 10 August 2020 | Volume 7 | Article 536

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Castellani et al. Physical and Biological Sea-Ice Properties

During the springtime campaigns in 2015 (PS92) and 2017
(PS106), Arctic sea ice was covered with snow, whereas during
summer 2012 (PS80) the ice surface was covered by melt ponds.
Despite the difference in timing, snow depth decreased during
both PS92 and PS106 and melt ponds started to form at the end
of both expeditions (Tables 3, 4). Toward the end of summer
2012 (PS80), refreeze started and snow accumulated over the
ice (Table 5). Modal sea-ice thickness (Figure 5) was the highest
in the Arctic spring, with modes of 1.25m and 1.65m in
2015 (PS92) and 2017 (PS106), respectively, and lowest during
the summer campaign in 2012 (PS80), with a primary mode
for very thin ice (<10 cm). With an explained variability of
81.9% for the first two principal components, the outcome of
the PCA (Figure 6A) confirms a high similarity of the two
springtime data sets (PS92, PS106), and a distinctly different
combination of physical sea-ice and under-ice properties in most
stations sampled during summertime (PS80). Salinity and ridge
properties were the main drivers of the variability in sea-ice
and under-ice properties (Figure 6A). The analysis of regional
patterns shows that total ice thickness decreased eastwards
with a decrease of modal thickness from the Yermak stations
(1.25m) to the Sophia Basin & shelf stations (1.05m) in May-
June 2015 (PS92), and in July 2017 (PS106) from the Sophia
Basin & shelf stations (1.75m) to the stations east of 20◦E
(1.55m).

EM-bird data (Figure 5) show a similar pattern as the SUIT
data, with a decrease in mean total ice thickness between
spring and summer from 1.8 and 1.44m during spring 2015
(PS92) and 2017 (PS106), respectively, to 0.71m in summer
2012 (PS80). The shape of the ice-thickness distributions in
spring was broadly similar between EM-bird data and SUIT
data. However, a statistical comparison of the two data sets
indicated significant differences between the two methods in all
three sampling seasons (Kolmogorov–Smirnov test, p ≪ 0.001),
probably due to differences of several decimeters in the modes
of the thickness distributions. Histograms of total thickness

for both the SUIT and the EM-bird data are presented in the
Supplementary Material.

3.1.2. Under-Ice Light and Light-Derived In-Ice

Chlorophyll a Concentration
Values of transmittance show a mode for TR < 0.05 in both
spring and summer. However, the summer mean value is
larger (0.203 compared to 0.136 and 0.184 in 2015 and 2017,
respectively). During summer 2012, high transmittance values
were more frequent compared to spring 2015 and 2017. The
similarity in the distribution of transmittance data during spring
2015 and 2017, shows that the two campaigns sampled the
same variability in sea-ice and snow conditions (Figure 7). A
monthly comparison shows that there was a change in mean
transmittance from 0.22± 0.03 in May 2015 to 0.33± 0.3 in
August 2012, then a decrease to 0.12± 0.19 in September 2012.
The extinction coefficient kb calculated by non-linear regression
from the May subset of the data showed the largest value with
kb = 8.678m−1. In June and July the extinction coefficients
were lower, with values of 2.209 and 1.679m−1, respectively,
reaching the minimum at 1.576m−1 in August (PS80). The
extinction coefficient increased again in September to 6.552m−1.
Insolation values in the Arctic (Figure 7) ranged from 0.00 to
57.17mol photons m−2 d−1 during spring 2017 (PS106). In
the comparison of May 2015 (PS92) and July (PS106), mean
values ranged from 11.71± 14.17mol photons m−2 d−1 to
10.24± 13.77mol photons m−2 d−1, and maximum values
from 45.12 to 57.17mol photons m−2 d−1. During summer
2012, the shape of the distribution changed with respect to
spring 2015 and 2017 and showed a smaller spread of values
with maximum insolation at Si = 36.35mol photons m−2 d−1

compared to 51.77mol photons m−2 d−1 and 57.17mol photons
m−2 d−1 during 2015 (PS92) and 2017 (PS106), respectively.
Histograms of transmittance and insolation are presented in the
Supplementary Material.

FIGURE 6 | Principal component analysis for the Arctic Ocean and the Southern Ocean. In the Arctic Ocean (A), stations are divided within each expedition between

Nansen and Amundsen basin (PS80), Yermak and Basin & shelf stations (PS92), and Basin & shelf stations vs. Western stations in the Nansen Basin (PS106). In the

Southern Ocean (B), stations are divided between westernmost and eastermost stations (PS81), and between January MIZ, December MIZ, and pack-ice

stations (PS89).

Frontiers in Marine Science | www.frontiersin.org 11 August 2020 | Volume 7 | Article 536

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Castellani et al. Physical and Biological Sea-Ice Properties

FIGURE 7 | Violin plots of (A) transmittance, (B) insolation, and (C) chl a concentration in sea ice. The “violins” show density functions of the relative frequency

distribution of the data. Superimposed on the violin plots are box plots showing the median (white dot), the 1st to 3rd quartile range (red boxes), and the lowest and

highest data points within approximate 1.5 times the interquartile range (white lines extending from the boxes).

During PS92 the stations on the Yermak Plateau had the
lowest in-ice chl a values, whereas the Basin & shelf stations
had the highest (Table 3). High chl a concentrations were
also found in the Basin & shelf area during PS106, but in
this case the spatial variability was less pronounced (Table 4).
During summer 2012 (PS80), the Nansen Basin presented lower
values of in-ice chl a compared to the Amundsen Basin. In
the area of overlap between PS80 and PS106 stations, chl a
values from the two campaigns were very similar, varying around
0.2mg chl am−2. Distributions of in-ice chl a are similar for
the two spring campaigns, whereas the distribution of values
from the summer campaign shows significantly higher values
(Figure 7C). Histograms of in-ice chl a are presented in the
Supplementary Material.

3.2. Antarctic
3.2.1. Sea Ice and Under-Ice Water Properties
During the Antarctic winter in 2013 (PS81), under-ice water
temperatures were always close to the freezing point (Tables 1, 6)
and uniform between sampling stations with a mean temperature
of−1.85± 0.01◦C. During summertime 2014/15 (PS89, Table 7),
mean surface temperatures ranged between −1.67± 0.12 ◦C
in the Dec-MIZ and −1.58± 0.12 ◦C in the Jan-MIZ. Lowest
under-ice water temperatures characterized the pack-ice area
sampled in December, with a mean of −1.86± 0.01◦C. Likewise,
the mean chl a concentration in the under-ice water was
lower in winter 2013 (PS81, mean 0.42± 0.12mgm−2) than
in summer 2014/15 (PS89, mean 0.88± 0.62mgm−2), and
mean salinity was higher (34.22± 0.12 psu) in winter 2013
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TABLE 6 | Table for PS81 with, for each station (stn), the total profile length, the mean ice concentration (Ā) along profile, mean snow depth (H̄s) and mean total ice

thickness (H̄i ), under-ice water chl a (chl aw ) multiplied by the vertical section of the SUIT (2m) to obtain integrated values, under-ice water temperature and salinity, ice

concentration retrieved from satellite (ĀSat), and median in-ice chl a (interquartile range), mean transmittance TR (± one standard deviation), mean Insolation Si (± one

standard deviation), and the draft patch size (Pd ).

stn Profile length Ā H̄s H̄i chl aw T S ĀSat In-ice chl a TR Si Pd

(m) (%) (cm) (m) (mg m−2) (◦C) (mg m−2) mol photons m−2 d−1 (m)

549_1 763.5 96.60 20–50 0.71 0.42 −1.86 34.22 92.36 7.80 (7.47–8.42) 0.01 (0.007) 0.13 (0.08) 50

555_1 298 52.60 20–50 0.30 0.32 −1.85 34.33 87.40 8.71* 0.07 (0.09) 1.14 (1.56) -

557_1 2186 95.86 5–10 0.81 0.50 −1.86 33.86 95.28 - - - 100

560_2 1840 92.12 10 1.11 0.44 −1.68 33.83 98.91 - 0.38 (0.12) 6.66 (2.12) 75

562_5 1502.5 96.61 20–30 0.80 0.52 −1.86 33.77 96.88 - - - 125

565_5 1623 99.17 20–30 1.55 0.36 −1.87 34.22 100 8.13 (6.79–9.35) - - -

567_2 800.5 92.07 60 0.32 0.82 −1.88 33.62 95.53 - - - 75

570_5 2114 95.93 15 0.64 0.92 −1.86 33.86 86.83 - - - -

571_2 2291 94.68 15 0.54 0.62 −1.84 34.14 86.99 - - - -

577_2 3184 95.68 20–50 0.85 0.62 −1.84 33.75 81.54 8.23 (7.50-8.51) 0.17 (0.21) 5.44 (6.65) -

579_2 1140.5 95.70 Y 1.11 1.18 −1.83 34.10 81.54 - - - 100

In gray shades are the westernmost stations, in white are the easternmost stations. *For station 555_1 there is only one value for in-ice chl a and we report it here only to help data

interpretation.

TABLE 7 | Table for PS89 with, for each station (stn), the total profile length, the mean ice concentration (Ā) along profile, mean snow depth (H̄s) and mean total ice

thickness (H̄i ), under-ice water chl a (chl aw ) multiplied by the vertical section of the SUIT (2m) to obtain integrated values, under-ice water temperature and salinity, ice

concentration retrieved from satellite (ĀSat), and median in-ice chl a (interquartile range), mean transmittance TR (± one standard deviation), mean Insolation Si (± one

standard deviation), and the draft patch size (Pd ).

stn Profile length Ā H̄s H̄i chl aw T S ĀSat In-ice chl a TR Si Pd

(m) (%) (cm) (m) (mg m−2) (◦C) (mg m−2) mol photons m−2 d−1 (m)

24_2 1835 81.45 25 0.75 0.90 −1.79 33.42 64.80 0.68 (0.35–1.20) 0.18 (0.23) 10.73 (13.59) -

29_1 2291.5 75.68 5 0.45 1.24 −1.74 33.62 45.23 - 0.18 (0.23) 10.87 (13.74) 400

30_4 3004 54.55 10 0.53 0.60 −1.54 33.76 69.80 0.86 (0.34–1.30) 0.24 (0.29) 14.23 (17.06) 125

37_2 389 71.37 30–40 1.49 0.68 −1.85 33.80 100 1.03 (1.00–1.23) 0.30 (0.22) 17.60 (12.92) 50

38_1 944 97.83 30–80 1.89 1.34 −1.86 34.28 99.90 - 0.01 (0.02) 0.46 (0.89) 150

62_1 2718 83.58 20 1.06 0.54 −1.70 33.65 42.69 1.13 (0.70–1.42) 0.28 (0.30) 15.22 (15.79) 200

70_2 1120.5 100 10–100 1.65 0.68 −1.39 33.70 39.75 0.86 (0.62–1.00)* 0.15 (0.12) 8.07 (6.18) 75

71_1 2359 94.58 20 1.46 0.66 −1.53 33.63 33.46 0.89 (0.67–1.02)* 0.20 (0.20) 10.28 (10.48) 150

In light gray shades are the stations located in the Marginal Ice Zone in December (referred to as Dec-MIZ), in white are the stations in the pack-ice area, whereas in dark gray are the

stations located in the Marginal Ice Zone in January (referred to as Jan-MIZ). *Values for in-ice chl a at stations 70_2 and 71_1 were retrieved even if the altimeter values were missing

(so it was not possible to filter the data) and are given to help the data interpretation in section 4.

(PS81) than in summer 2014/15 (33.63± 0.24 psu). Between
December (PS89, Dec-MIZ) and January (PS89, Jan-MIZ), both
under-ice water temperature and chl a decreased, whereas
salinity did not show any pattern (Table 7). The pack-ice
area had different water properties compared to the MIZs,
and it was characterized by significantly colder temperatures,
more saline waters, and higher surface chl a concentrations
(Table 7).

Sea ice in the Southern Ocean was covered with snow during
both winter 2013 (PS81, Table 6) and summer 2014/15 (PS89,
Table 7). The snow depth ranged from 5 to 60 cm in winter
2013 (PS89) and from 5 and 100 cm in summer 2014/15 (PS89).
Modal ice thickness was lowest in winter 2013 (PS81, 0.45m)
and highest in summer 2014/15 (PS89, 0.75m) in the Jan-MIZ
(Figure 5). During both expeditions, the differences in total ice
thickness varied from thinner ice in the northern latitudes to

thicker ice in southern parts of the sampling areas. In PS89,
the shape of the thickness frequency distribution in the pack-ice
zone was different from the ones of the MIZs with a longer tail
toward larger thickness values (data not shown). Ice thickness
distribution from the EM-bird data (Figure 5) was similar in
shape to those of the SUIT for both expeditions. In EM-bird data,
however, modal ice thicknesses were somewhat higher compared
to SUIT data (Figure 5), with a mode of 0.65m in winter (PS81),
and a mode of 0.85m in summer (PS89). As in the Arctic Ocean,
a statistical comparison of the two data sets indicated significant
differences between the two methods in both sampling seasons
(Kolmogorov–Smirnov test, p < 0.001). Besides the differences
in modal thickness, this difference was also related to greater
variations in the sampling of very thin ice between the two
methods, with a larger proportion of thinner ice in the SUIT data
compared to EM-bird data.
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The PCA biplot of the physical sea-ice and under-ice
properties during the two Southern Ocean expeditions showed
a gradual separation of the two sampling seasons, indicating
that most stations sampled in winter (PS81) were associated
with lower under-ice water temperatures and higher salinities
than most stations sampled in summer (PS89) (Figure 6B).
The cumulative explained variability of the two first principal
components was 95.4%. Within each expedition, the PCA
ordination reflected the differences between sampling regions
(Figure 6B).

3.2.2. Under-Ice Light and Derived Chlorophyll a

Concentration
In the Southern Ocean, distributions for transmittance show
a principal mode at 0.05 during both winter 2013 (PS81) and
summer 2014/15 (PS89) (Figure 7A). The spread of values
was larger during summer, with a maximum transmittance of
0.91 in summer 2014 (PS89) compared to 0.73 in winter 2013
(PS81). A comparison between data from August (PS81) and
January (PS89) did not show a significant difference in mean
transmittance values, but a difference in maximum transmittance
of 0.03 in August (PS81) and 0.9 in January (PS89). Extinction
coefficients showed a large variability, with values ranging from
kb = 1.439m−1 in September 2013 (PS81) to kb = 20.72m−1

in December 2014 (PS89). During both campaigns, insolation
values showed a mode at Si = 0.5mol photons m−2 d−1, but
mean values differed considerably with 3.86± 5.07mol photons
m−2 d−1 in winter 2013 (PS81) and 11.09± 13.08 in summer
2014/15 (PS89) (Figure 7B). The range of variability between
winter and summer was very different, with a maximum at Si
= 22.72mol photons m−2 d−1 in winter 2013 (PS81, Table 6)
compared to Si = 53.51mol photons m−2 d−1 in December 2014
(PS89, Table 7).

During winter 2013, in-ice chl a was significantly higher
than during summer, with a mean of 7.91± 1.07mg chl am−2

in winter compared 0.88± 0.51mg chl am−2 in summer
(Figure 7C). Principal modes were at 8.5 and 1.3mg chl am−2

during winter and summer, respectively. The variability within
expeditions was low in both seasons. During summer 2014/15
higher in-ice chl a values were measured in the Jan-MIZ,
compared to the Dec-MIZ.

3.3. Spatial Autocorrelation Analysis
The summary of the spatial autocorrelation analysis and the
results for the patch size in both the Arctic and the Antarctic
are presented in Table 8. Spatial autocorrelation analysis resulted
in significant sea ice draft patch size estimates for 13 of the 19
SUIT stations in the Southern Ocean and 42 of the 48 SUIT
stations in the Arctic Ocean, with significant results for almost
all cruises. Patch size, which for ice draft can be interpreted as
the size of smooth sea-ice areas, varied from 50 to 750m with
a mean of 221±156m (Table 8) for the Arctic Ocean. In the
Southern Ocean, autocorrelation analysis showed a draft patch
size varying from 50 to 400m (with an average of 129±92m,
Table 8), with larger values for the summer expedition (PS89).
The spatial autocorrelation analysis for transmittance (i.e., patch
sizes) showed statistical significant results for SUIT in 3 of the

TABLE 8 | Summary of the patch size for total thickness, transmittance and in-ice

chl a as result of the spatial autocorrelation analysis (section 2.6).

Patch Southern ocean Arctic ocean

Draft 129 ± 92 m (13) 221 ± 156 m (42)

t = -2.6332

df = 34.687

p = 0.01255

In-ice chl a 200 ± 0 m (1) 242 ± 66 m (6)

t-test = NA

Transmittance 117 ± 29 m (3) 221 ± m 90 (7)

t = -2.75

df = 7.8561

p = 0.02549

Student’s t tests were performed to test for significant differences in patch sizes of draft,

in-ice chl a and transmittance between Southern Ocean and Arctic Ocean SUIT surveys.

19 SUIT stations in Antarctica and in 7 of the 48 SUIT stations
in the Arctic Ocean, with no statistically significant results
during the summer Arctic cruise PS80. Our analysis showed a
significant Pearson’s correlation between the patch size of draft
and transmittance (correlation coefficient = 0.77; N = 9; p =
0.016), indicating that sea-ice draft (i.e., total ice thickness) is the
driver of variability in sea-ice transmittance. Correlograms for
one SUIT haul for each expedition are shown in Figure 8 together
with a comparison in patch size between the two Polar regions for
both ice draft and transmittance.

4. DISCUSSION

4.1. Environmental Properties
This study presents the first characterization of sea ice and under-
ice environments from multiple expeditions and seasons on the
scale of kilometers in both ice-covered polar oceans. In the
Arctic Ocean, ice and snow start to melt with the spring to
summer progression and the increase in atmospheric and oceanic
temperatures. The results showed this seasonal progression with
a decrease of snow cover with subsequent formation of melt
ponds, and a decrease of salinity in the under-ice water, an
indicator of the presence of melt water under the ice. More light
was found to penetrate the ice as time progressed, which can be
attributed to a decrease in both ice thickness and snow cover
(Tables 3–5). Similar patterns were seen in previous studies (e.g.,
Nicolaus et al., 2010). At some sampling stations, increased light
penetration was accompanied by an increase of under-ice water
chl a concentrations. During the two spring campaigns in 2015
and 2017 (PS92 and PS106), sampled locations were situated
closely together with an overlap in the region 10◦E < lon <

20◦E, defined as the Basin & shelf region. When comparing the
two expeditions, the spatial pattern appeared stronger than the
inter-annual one. During the PS92 expedition, the Basin & shelf
region showed a difference in water masses, characterized by
more saline and warmer water, compared to the Yermak Plateau
(Meyer A. et al., 2017). The under-ice water chl a concentration
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FIGURE 8 | Correlograms showing Moran’s I vs. distance classes for selected SUIT surveys as examples in the Arctic (top row): (A) PS80 station 204_1; (B) PS92

station 44_1; (C) PS106 station 83_8; and in Antarctica: (D) PS81 station 567_2; (E) PS89 station 37_2. Red filled circles represent significant values at p < 0.05. (F)

Boxplot summarizing all sea ice draft patch sizes determined from all SUIT surveys grouped by polar region.

was lower over the Yermak Plateau compared to the Basin &
shelf region. In addition to these measurements, Assmy et al.
(2017) found that the Basin & shelf area was characterized by
large leads allowing light to penetrate through the ice which
potentially explains increased chl a concentrations and a higher
primary production compared to the Yermak region (Massicotte
et al., 2019). The two regions also differed in the composition
of under-ice fauna, and zooplankton abundances were generally
very low in the under-ice water over the Yermak Plateau (Ehrlich
et al., 2020). In summer 2012 (PS80), the Nansen vs. Amundsen
Basin separation (Table 5) emerged clearly from the under-ice
water salinity and chl a concentration, pointing to two different
environmental regimes: an Atlantic influenced and nutrient-
rich regime in the Nansen Basin, and a nutrient-poor regime
influenced from the Laptev Sea shelf in the Amundsen Basin
(David et al., 2015; Flores et al., 2019). Surface temperature,
however, showed a seasonal decrease toward winter. Ice thickness
differences between the two basins (not shown here) remained
very small pointing to similar sea-ice conditions in the two basins
(Figure 6A). However, the Amundsen Basin, which was sampled
later in the season, had a principal mode at a thickness value

of 0.65 m (figures not shown) and a secondary mode for very
thin ice (values < 0.1), indicating that refreeze started already.
Additionally, under-ice water parameters differed between the
two basins (Table 5), as well as the zooplankton community
structure, which showed a dominance of copepods in the Nansen
Basin, but a co-dominance of copepods and amphipods in the
Amundsen Basin (David et al., 2015).

The shape of the total sea-ice thickness distributions from the
SUIT data agreed largely with those from the EM-measurements.
In both, the Arctic Ocean and the Southern Ocean, however,
median and modal total thicknesses from the EM-bird and the
SUIT differed by up to several decimeters, causing significant
differences between the two distributions with no systematic
bias toward one instrument (Figure 5). These differences could
be due to differences in the geographical area covered by the
two devices, thus one of the instruments might have collected a
larger amount of data points in a region with thicker/thinner ice
compared to the other instrument. This was particularly the case
in PS89, where the EM-measurements included areas covered
by landfast ice, which were not sampled with the SUIT (data
not shown). Differences between SUIT and EM-measurements
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were probably also a result of a balance between systematic
biases of the two devices: On the one hand, SUIT-based total
thickness estimates could have been negatively biased because
the ship tends to travel in areas where navigation is easier (i.e.,
thinner ice; PS92, PS81, PS89). On the other hand, the lower
spatial resolution of the EM-measurements causes an under-
representation of deep ridges compared to the SUIT, shifting the
distribution of total thicknesses toward the lower end (PS106,
PS80). Moreover, the way snow is treated might introduce bias.
The EM-bird directly measures snow plus ice thickness, on the
other hand, for the SUIT, ice draft is converted into total ice
thickness. Therefore, a change in the actual snow depth will have
different impacts on SUIT and EM-bird ice thickness retrievals.
When comparing with satellite data (column ĀSat in Tables 3–
7), the SUIT can provide representative ice-concentration values.
Only in the marginal ice zone, where the SUIT preferentially
sampled only the ice-covered parts of the grid cell detected by
satellites, greater differences occurred (David et al., 2015).

Transmittance values largely reflected sea ice and snow
conditions. The greater ice thickness during spring 2017 (PS106)
compared to 2015 (PS92) was associated with lower mean
transmittance values (Tables 3, 4), whereas the absence of snow
during summer 2012 (PS80) led to higher transmittance (Table 5
and Figure 7). A larger spread of values during spring 2017
(PS106) compared to spring 2015 (PS92), however, points to
higher variability of sea-ice and snow conditions, which was
confirmed by Katlein et al. (2019), and which could be explained
by the slightly different sampling period extending more toward
summer during PS106. We estimated the insolation parameter
(i.e., the daily integrated sunlight received) in order to obtain
a representative comparison between SUIT hauls even if they
were carried out at different times of the day. Mean insolation
values in summer were higher than in spring, as a result of the
larger transmittance values. However, the spread of values was
wider in spring, which was related to incoming solar radiation
that is maximum in the months of June-July compared to
August-September (Arrigo et al., 2012; Arndt and Nicolaus,
2014). Extinction coefficients calculated from the present data set
include the effect of both snow thickness and ice thickness, thus
they represent bulk coefficients. Our summer values correspond
to the ones generally known for bare ice (Grenfell and Maykut,
1977; Perovich, 1996; Light et al., 2008). The values presented
here are in good agreement with those shown recently by Katlein
et al. (2019), where bulk coefficients varied from ∼5m−1 in May
to ∼1m−1 in August, and then increased again in September
(Katlein et al., 2019, their Figure 8).

In the Southern Ocean, variations within winter 2013 (PS81)
stations in salinity and temperature were rather small due to a
quasi-homogeneous winter layer circulation in the Weddell Sea
(David et al., 2017). The north-eastward sampling performed
during the winter-spring transition led to a gradual decrease in
sea-ice coverage, higher under-ice insolation, and an increase of
under-ice water chl a by the end of the expedition, indicating
that the productive season commenced (David et al., 2017). As
for the Arctic expeditions, disentangling spatial and temporal
patterns is challenging. Despite this difficulty, we can conclude
that larger thickness values in the Jan-MIZ can be explained by

the more southern locations. Total ice thickness distribution for
winter 2013 (PS81) and summer 2014/15 (PS89) were similar,
indicating similar sea-ice conditions. The cyclonic drift pattern
of the Weddell Gyre moves sea ice from the eastern Weddell
Sea/Lazarev Sea northwestward (Kwok et al., 2017) in a regime of
mainly free drift. This decreases the tendency of sea ice to deform
(G. Castellani, unpublished data) and it leads to more uniform
sea-ice conditions in that area.

The similarity in snow cover and ice thickness between winter
2013 (PS81) and summer 2014/15 (PS89) leads to comparable
transmittance values, even though the maximum transmittance
values were lower in winter than in summer. Differently from
the Arctic, Antarctic sea ice remained covered by relatively thick
snow also during summer, explaining why transmittance values
never approached 1.

4.2. In-Ice Chl a
We applied NDI and EOF algorithms to retrieve in-ice chl a
from under-ice irradiance and transmittance spectra. We used
one algorithm for Arctic summer (Lange et al., 2016), one for the
Antarctic regions (Melbourne-Thomas et al., 2015), and one for
the Arctic spring. In all the three cases, the retrieved values of in-
ice chl a were in good agreement with ice-cores data collected
during PS80 (Fernández-Méndez et al., 2015), and during PS92
and PS106 (Ehrlich et al., 2020, I. Peeken, unpublished data), and
with derived in-ice chl a based on ROV measurements during
PS81 (Meiners et al., 2017).

In the Arctic, the progression in snowmelt is visible in
the increase of in-ice chl a with seasonal progression. Spring
campaigns were conducted from late May onward, when
incoming light levels were already high enough to cause an
algal bloom, but snow cover obviously hampered this. Ice-algae
growth was limited by the snow cover and the increase of in-ice
chl a in the last stations during both PS92 and PS106 reflected
the better light conditions after the onset of snowmelt. In-ice
chl a concentrations were higher toward the end of summer
2012 (PS80) than in the two Arctic spring studies. This indicates
that the ice-algae bloom only commenced after the onset of
snowmelt, as expected from modeling studies (Castellani et al.,
2017). During our sampling of PS80, large parts of the ice-algae
bloom had already been released to the sea floor due to basal
melting (Boetius et al., 2013), indicating that the observed in-ice
chl a values had probably been considerably higher during the
peak of the bloom.

In-ice chl a in the Antarctic winter was much higher than on
any other expedition in the Arctic Ocean or the Southern Ocean.
Our winter values agree well with values obtained from ice cores
collected during the same expedition (Meiners et al., 2017). The
presence of high biomass despite very low transmittance and
insolation values indicate that the algae present in winter are the
result of a previous accumulation of high biomass along the entire
core length, more than an active growth at the bottom (Meiners
et al., 2012). Winter in-ice algal assemblages often consist mainly
of diatoms (Garrison andClose, 1993; Ugalde et al., 2016). During
PS81 this was confirmed by sea-ice fatty acid compositions
(Kohlbach et al., 2017b), and algae found in the stomach of larval
krill (Schaafsma et al., 2017). Notably, in-ice chl a mean values in
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the Antarctic in winter were always higher than phytoplankton
chl a values from the under-ice water. This was valid also for
some stations during summer (i.e., stations 30_4, 37_2, 62_1,
70_1, and 71_1). Several Antarctic species are attracted to the
sea ice during both summer and winter, including Antarctic krill
Euphasia superba (Flores et al., 2011, 2012, 2014), showing the
importance of sea ice-derived carbon for the Southern Ocean
food web (Jia et al., 2016; Kohlbach et al., 2017b, 2018, 2019). This
basal role of sea-ice derived carbon has a major impact on the
distribution, abundance, life-cycle and possibly survival of many
organisms residing in ice-covered oceans.

4.3. Physical and Biological Comparison
The present data set agrees with the well-known characteristics
of the two polar regions, thus proves to be representative
of the environment sampled. Variability in sea-ice properties
was higher in the Arctic Ocean compared to the Southern
Ocean. Furthermore, our spatial autocorrelation analysis of total
sea-ice thickness showed smaller patch sizes in the Southern
Ocean than in the Arctic Ocean. Interpreting this as bottom
roughness, we can say that the Antarctic sea ice was characterized
by smaller floes, or smaller patches of level ice compared to
the Arctic, pointing to the different sea-ice drift, growth, and
deformation regimes (Haas, 2008; Massom and Stammerjohn,
2010). Additionally, the correlation between total thickness and
transmittance patch sizes indicates that, at floe-scales of around
120 m for the Southern Ocean and around 220 m for the Arctic
Ocean, total ice thickness is a good predictor for transmittance,
which is in agreement with previous work from the Arctic (e.g.,
Katlein et al., 2015). At smaller spatial scales, typically around
10 m, Katlein et al. (2015) found that surface properties such as
melt ponds (during Arctic summer) were the best predictor for
transmittance, which was not possible to resolve with the present
data set due to the large spacing intervals between subsequent
under-ice irradiance measurements (>10 m). The snow remains
thick in the Antarctic during summer, whereas during Arctic
summer snow melts completely and melt ponds form on the sea
ice surface (Eicken, 2003; Nicolaus et al., 2012; Webster et al.,
2018). Despite higher transmittance, insolation values (i.e., the
amount of daily light that an algae receives at the bottom of the
sea ice) were higher in the Arctic spring than in summer. The
range of transmittance values during PS80 was higher compared
to values collected in the same Arctic region and in the same
season, but one year earlier, with a Remotely Operated Vehicle
(ROV, Nicolaus and Katlein, 2013) diving under the ice (Nicolaus
et al., 2012), and compared to those collected in July 2014 with
an AUV diving under an ice floe (Katlein et al., 2015). The
same holds for the transmittance values for PS81 and PS89: the
range of transmittance variability measured with the SUIT was
higher, and with higher mean values, than those obtained during
the same expeditions with the ROV (PS81 data were published
in Arndt et al., 2017, PS89 are unpublished data). Differences
arise mainly from sampling methodologies. Whereas, with the
ROV data are collected under a single, relatively uniform ice floe,
the SUIT travels through a more heterogeneous environment,
including also very thin ice or brash ice present in between ice
floes. For this reason, the different methods sample differently

and transmittance values can be higher when calculated from
the SUIT data set compared to the ROV data set (Massicotte
et al., 2019). Furthermore, a towed approach such as the SUIT
is more robust compared to robotic platforms (e.g., ROVs and
AUVs) and is thus able to ride directly along the underside of
the sea ice at large distances with minimal concern about damage
and losing the platform. However, the towed SUIT is subject to
minimum speed requirements in order to maintain momentum
while breaking sea ice and to representatively catch under-ice
fauna, which is a main objective of SUIT deployments. Thus,
ROVs and AUVs can survey the under ice environment at a more
controlled and lower speed providing a greater spatial resolution,
however, at the cost of spatial coverage.

As expected, insolation values were very low in winter (PS81).
Despite the highest snow cover and the low transmittance values,
during the Antarctic summer (PS89) the under-ice insolation
was greater than in the Arctic summer (PS80). This difference
reflected the different latitudinal ranges of the two sampling
areas. The difference in maximum latitude (70◦S compared to
85◦N) and the difference in solar inclination lead to stronger
incoming radiation during the Antarctic summer (PS89) than
during the Arctic summer (PS80), leading to stronger under-
ice insolation. Surface chl a values were higher in the Arctic
(particularly in spring) than in the Antarctic. In contrast, in-
ice chl a values were higher in Antarctic sea ice. Moreover,
in the Arctic the amount of in-ice chl a was always lower
than phytoplankton chl a, whereas the opposite is true in the
Southern Ocean. This highlights the importance of sea ice-
derived carbon especially for Antarctic ecosystems, both in
summer and in winter.

Sea-ice represents a permanent or seasonal habitat for many
species in the polar oceans. The SUIT does not only uniquely
cover relatively large areas, but also enables a simultaneous
sampling of environmental data and under-ice fauna (collected
with the two nets attached to the SUIT frame). Collected data
have, therefore, enabled the study of the relationship between
the sea-ice environment and the distribution of zooplankton and
nekton species at the ice-water interface at a scale of kilometers.
The surface zooplankton communities of both the Arctic and
Southern Ocean have been found to respond to the presence
(or absence) of sea ice in all sampled seasons, and variations in
under-ice zooplankton community structure have been related to
sea-ice environmental properties (Flores et al., 2011, 2012, 2014,
2019; David et al., 2015, 2016; Schaafsma et al., 2017; Ehrlich
et al., 2020). In the Arctic Ocean, for example, abrupt changes
were observed from a dominance of ice-associated amphipods
(Apherusa glacialis) at ice-covered stations to a dominance of
pelagic amphipods (Themisto libellula) at nearby ice-free stations
(David et al., 2015). In addition, high numbers of the copepods
Calanus hyperboreus and Calanus glacialis were found in the ice-
water interface layer, in spite of low under-ice water chl a within
the sampling area (David et al., 2015), which indicated that they
were grazing on ice algae (Runge and Ingram, 1991; Kohlbach
et al., 2016). Higher abundances of the polar cod (Boreogadus
saida), which is regarded as a key species in the Arctic Ocean,
were related to relatively low under-ice surface salinity, thick sea-
ice and high sea-ice coverage (David et al., 2016). In the Southern
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Ocean, differences in sea-ice drift pathways were closely related
to the condition of krill larvae and the proportion of ice algae
in their diet, at the beginning of the productive season (PS81) in
the Weddell Sea (Kohlbach et al., 2017b; Schaafsma et al., 2017).
The community structure of under-ice fauna was associated to
changes in under-ice water parameters (David et al., 2017).

The presented data set and the environmental information
from this study allow for further research on the relationship
between large scale distributional patterns of under-ice fauna
and sea-ice structures, such as the abundance and size of
pressure ridges and hummocks, which have been suggested
as structures where organisms, including both algae and
zooplankton, accumulate (Gradinger et al., 2010; Lange et al.,
2017a,b). Studies of Gradinger (1999) and Nozais et al.
(2001) analyzed the potential role of sympagic fauna in
controlling algal production due to grazing, but both drew
contradictory conclusions. Whereas, Nozais et al. (2001) strongly
suggest that the grazing impact of sea-ice meiofauna on
ice algae was negligible, Gradinger (1999) found significant
positive correlations between the integrated ice-algae and
sympagic fauna biomass, and potential ingestion rates. Also
other studies, often using data collected by divers, found
evidence that abundance and distribution of certain species
were related to the structure of the sea ice (Gruzov et al.,
1967; Carey, 1985; Grainger and Hsiao, 1990; Garrison,
2015; Meyer B. et al., 2017), examples being the amphipods
Gammarus wilkitzkii (Beuchel and Lønne, 2002) and Apherusa
glaciali (Poltermann, 1998; Gradinger et al., 2010) in the
Arctic Ocean. Gaining knowledge on the relationship between
structure and faunal biomass on a larger scale, potentially will
allow for prediction of an oceanwide distribution based on
sea-ice parameters.

5. CONCLUSIONS

In this study, we presented and analyzed a large data set collected
during five expeditions covering different years, seasons, and
regions in both the Arctic Ocean and the Southern Ocean.
Data were collected with a Surface and Under-Ice Trawl (SUIT),
which allows the characterization of the sympagic environment
on the kilometer scale. The data proved to be representative
in characterizing the physical environment, and highlighted
regional and seasonal differences in both hemispheres. Analysis
of spatial variability showed a significant difference in the spatial
scale of the variability of sea-ice properties between the Arctic
and Antarctic, and showed that the total ice thickness was a
driver for variability in sea-ice transmittance. The introduction
of a new parameter, the insolation (i.e., daily integrated under-
ice PAR) showed that more light for photosynthesis is available
for biological production in the Antarctic summer compared
to the Arctic summer, despite the large snow cover in the
Antarctic and the higher transmittance in the Arctic. For the first
time, we could provide in-ice chl a estimates over large spatial
scales derived with the same methodology, for both the Arctic
and the Antarctic. Our results showed that ice algae biomass
was generally at comparable levels in both hemispheres during

summertime, it was low in Arctic spring and particularly high in
the Antarctic winter. In a future study, the present data set will
be used to compare results and to improve parameters of sea-ice
biogeochemical models.
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