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Sources of uncertainty in a marine biogeochemical model include input from

physical processes and the choice of functional forms representing the strength

and dependencies of biogeochemical processes. This study explores characteristic

signatures from these uncertainties by generating ensembles from perturbing

the biogeochemistry equations and perturbing physical input using a 1-D

intermediately-complex model run at five oceanographic stations. Perturbed

biogeochemistry ensemble (PBE) produces larger spreads than perturbed physics

ensemble (PPE), and distinctly different ensemble variations. Fractions of nitrogen

in phytoplankton pool from observations show a larger variability than in any single

model-ensemble member, but the PBE spread generally captures this variability, whereas

the PPE spread does not. The results show that the PBE method gives a more realistic

representation of uncertainty than PPE in our 1D-model setup. Our method needs to be

tested in more complex models in order to understand its significance on larger scales.

Keywords: perturbed biogeochemistry ensemble, ocean biogeochemical model, ensemble modeling, structural

uncertainty, perturbed physics ensemble

1. INTRODUCTION

Ocean biogeochemical (OBGC) models have been developed to understand how the ocean
ecosystem responds to the changes in both the physics and the biogeochemistry (Doney et al.,
2012; Yool et al., 2013; Butenschon et al., 2016). Key uncertainties that affect OBGC models
include physical processes, with vertical mixing and upwelling of nutrients often poorly known
(Doney, 1999; Friedrichs et al., 2006; Sinha et al., 2010), and the various choices for formulating
the biological processes such as nutrient uptake, zooplankton grazing, and plankton mortality
(Gentleman et al., 2003; Anderson et al., 2010; Adamson and Morozov, 2013). These biological
processes are described by functional forms relating them to concentrations of plankton and
nutrients, as well as ambient temperature and light availability. Different physical environments
can strongly affect simulations of chlorophyll distribution through the water column (Friedrichs
et al., 2006), as well as regional distributions of phytoplankton functional types at the surface ocean
(Sinha et al., 2010). Spurious vertical velocities that can occur when assimilating physical ocean
data into models can also raise nutrient concentrations in the upper water column (Subramanian
and Palmer, 2017). Furthermore, when using different physical models, anthropogenic CO2 uptake
can vary between 25 and 30% (Doney et al., 2004). The structure of an OBGC model, especially
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the choice of the functional representation of biogeochemical
processes, strongly determine the model dynamics (Edwards
and Yool, 2000; Fussmann and Blasius, 2005). For example,
when the grazing function alone is altered from hyperbolic to
sigmoidal (both of which are common in the literature) three
times higher phytoplankton concentrations can been produced
(Anderson et al., 2010). Impacts of altering mortality are shown
in both uncoupled Nutrient-Phytoplankton-Zooplankton (NPZ)
models (Steele and Henderson, 1992; Edwards and Yool, 2000)
and coupled OBGC models (Yool et al., 2011). Choosing a
linear mortality, can double the diatom biomass at high latitudes,
compared to using other functions (Yool et al., 2011). So the
uncertainties arising from both physical and biogeochemical
formulations may contribute to discrepancies between the
models and observations (Allen et al., 2010; Anderson, 2010).

One way of accounting for these multiple sources of
uncertainty is to move away from deterministic simulations
toward ensemble results which can be designed to deliver
a probability distribution of outcomes. Perturbed physics
ensembles have, for example been used to estimate the
uncertainties of climate projections (Tinker et al., 2015;
Subramanian and Palmer, 2017) or to forecast the climate
probabilistically (Murphy et al., 2007; Tebaldi and Knutti, 2007).
Ensembles are also regularly used to quantify uncertainties in
data assimilation applications (Anderson, 2001; Moradkhani and
Meskele, 2010; Roy et al., 2012) to allow weighting of model
results compared with new observations.

Recently, Anugerahanti et al. (2018) has introduced an
approach for generating an ensemble of an OBGC model by
perturbing its core biogeochemistry processes. Here we extend
the study of Anugerahanti et al. (2018), to decouple and
compare the variability that may arise in an intermediately
complex 1-D OBGC model from both biology and physics
uncertainties, by generating three sets of ensembles perturbing:
(i) the biogeochemistry, by altering the choice of functional
forms (perturbed biogeochemistry ensemble, PBE), (ii) the
physics, by adding noise to the vertical velocity, mixed layer
depth (MLD) and therefore the vertical diffusivity coefficient,
supplying nutrients to the surface layers (perturbed physics
ensemble, PPE), and (iii) both the biogeochemistry and physics
together (perturbed biogeochemistry and physics ensemble,
PBPE). Since the OBGC model behavior varies across different
biogeographical provinces (Kriest et al., 2012), the ensemble
is run at five monitored ocean sites ranging from coastal
to oligotrophic regions. We quantify the variability generated
by the perturbed ensembles, identifying and distinguishing
the characteristics from the different biological and physical
perturbations based on several biogeochemical property metrics.
From these characteristics we can explore how the different
perturbations may affect the model dynamics.

This paper is organized as follows: Brief description of the 1-
D OBGC model, generating the ensembles, and the description
of metrics are explained in section 2. The basic diagnostics
of the ensembles which relate to the bulk properties of the
model states, followed by the effect of perturbations in vertical
distribution of chlorophyll are discussed in section 3.1. The
different characteristic signatures of the PBE and PPE are

described and discussed in section 3.2. Finally the conclusions of
the study are in section 4.

2. METHODS

We use the Model of Ecosystem Dynamics, nutrient Utilization,
Sequestration, and Acidification (MEDUSA 1.0) (Yool et al.,
2011). MEDUSA is an intermediately complex biogeochemical
model that has two phytoplankton types (diatoms and non-
diatoms), two zooplankton types (mesozooplankton and
microzooplankton), and three nutrients (dissolved inorganic
nitrogen, silica, and iron), and uses nitrogen as the model
currency. The 1-D version of this model is run in the Marine
Model Optimization Testbed (MarMOT-1.1) (Hemmings et al.,
2015). The physical forcings, such as vertical velocity and solar
radiation, are taken from the NEMO-FOAM output (Storkey
et al., 2010), with output frequency every 5-days for all of the
stations. NEMO-FOAM is a data assimilation product and
therefore biases in well observed quantities are small, however
for temperature and mixed layer depth (MLD) we introduce an
additional bias correction to match the mean seasonal physical
conditions observed at the stations. The vertical diffusivity
coefficient is matched to the bias corrected MLD. Bias correction
is done for all of the stations apart from station PAP where
observational data are insufficient, so at PAP we use unadjusted
NEMO-FOAM output. The MEDUSA ensembles are run from
1 January 1998 to 31 December 2007, with output produced
everyday, at five different oceanographic stations; oligotrophic
[represented by stations BATS (32◦50’N, 64◦10’W) and ALOHA
(22◦45’N, 158◦00’W)], coastal [represented by stations Cariaco
(10◦30’N, 64◦40’W) and L4 (50◦15’N, 4◦12.3’W)], and abyssal
plain [represented by station PAP (49◦N, 16.5◦W)]. Further
information about running MEDUSA and a map of the station
locations can be found in the Supplementary Section 1.

2.1. Generating the Ensembles
We generate the PBE by altering the equivalent functional
forms for key biogeochemical processes. In the previous study
(Anugerahanti et al., 2018) we used all possible functional
form combinations, generally used in literature to describe four
key processes; nutrient uptake, phytoplankton, and zooplankton
mortalities, and zooplankton grazing. The functional forms
for phytoplankton nutrient uptake are Monod (Uh), which
is the default function, exponential (Ue), sigmoidal (Us),
and trigonometric (Ut). For plankton mortalities, the default
function is hyperbolic (denoted ζh for zooplankton and ρh

for phytoplankton). Other functions available in MEDUSA are:
linear (ζl,ρl), quadratic (ζq,ρq), and sigmoidal (ζs,ρs). Finally,
for zooplankton grazing, we use Holling type III (G1), which
is the default function, and Holling type II (G2). The shape
defining parameters for these functional forms are tuned to
each other so that over a wide range of conditions the key
processes remains similar (see Anugerahanti et al., 2018). Rate
maxima are also similar to the original MEDUSA-1.0 run, apart
from linear and quadratic mortalities, as these functions have
no shape defining parameters. These process formulations with
respective alternative functions made 128 combinations, which
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was the size of the original ensemble reported in Anugerahanti
et al. (2018). But to reduce the computational cost while keeping
the ensemble properties mostly unchanged, here we limit the
biogeochemical ensemble to 12 members chosen using principal
component analysis (PCA) and k-means cluster, to span a similar
range of variability for measurable metrics of chlorophyll and
nutrients as the larger ensemble (see Supplementary Section 2,
for further details).

At each of the stations the PPE is generated by adding
“noise” to the vertical velocity, temperature, MLD, and vertical
diffusivity, in a regionally dependent and covarying way (as
these fields are related) in order to increase variability (see
Supplementary Section 3 for details). The vertical diffusivity
profile is then matched to the perturbed MLD. The perturbations
for vertical velocity at all stations are done by first subtracting
the monthly average vertical velocity. The anomalies are
multiplied by a random number between −2 and 2 and
added to each 5 day average field. These anomalies are
generated randomly for each ensemble member. For station
PAP, the perturbations to MLD are similar to perturbing the
vertical velocity, and the vertical diffusivity profile is matched
with the perturbed MLD. Further explanation of the PPE
generation is in the Supplementary Section 3, Figures S4, S5.
We use a PPE ensemble size of 12 members to match the
PBE ensembles discussed above. Finally the combination of
perturbing physics and biogeochemistry together is generated
by running the PBE using the physical inputs from the PPE, to
produce a PBPE.

2.2. Ensemble Metrics
We are interested in key properties of the model ensembles
which we use to compare with observations at the five
oceanographic stations. The spread of the annual means of
dissolved inorganic nitrogen (DIN mmol m−3), chlorophyll
(mg m−3), and zooplankton (mmol m −3) concentrations are
the basic diagnostics throughout the water column. At the
oligotrophic stations a deep chlorophyll maximum (DCM) is
a common feature that occurs below the mixed layer when
surface chlorophyll concentration is low (Fennel and Boss,
2003; Letelier et al., 2004). The DCM evolution is explored
phenologically by its maximum depth and concentration
over the winter (December–January–February), spring (March–
April–May), summer (June–July–August), and fall (September–
October–November). The range of DCM depth, timing of
maximum depth, and concentration are examined for both the
PPE, PBE, and the observational data.

We also examine the fractions of total nitrogen in the
phytoplankton pool to reveal a signature of the processes
which have been varied within the ensembles, in particular this
distinguishes PPE from PBE induced variations. This fraction is
calculated by using the chlorophyll to nitrogen ratios, taken from
Yool et al. (2011), for both the in situ and model ensemble. This
metric can give an indication of the processes involved in the
temporal changes seen from the in situ observations, suggesting it
may be possible to infer which processes (physical, biological, or
both) may be responsible for model-observational discrepancies
at different times.

3. RESULTS

3.1. Chlorophyll Range and Distributions
Perturbations to the vertical velocity and MLD used for the PPE,
produce relatively little spread in the bulk properties, especially
for phytoplankton and zooplankton Figure 2. The PPE DIN
concentrations vary little in the top 75 m (in all stations except
PAP), however the DIN range increases below, suggesting that
the physical variations impact more below the euphotic layers.
These deeper variations however do not have much impact
on bulk properties near the surface such as the total DIN,
chlorophyll (phytoplankton), or zooplankton concentrations (as
seen in Figure 2). At the oligotrophic stations, the PPE range is
clearly insufficient to cover the in situ concentrations. However,
at all five stations, from surface to deep water, the observed
chlorophyll values mostly lie within the much larger PBE range
(Figures 2A–D), suggesting that the full range of biological
production through a strong nutrient gradient can be obtained
by perturbing the biological processes. Only at the oligotrophic
stations, below ∼100 m, are in situ chlorophyll concentrations
still outside the PBE range. The combined PBPE ensemble has a
slightly wider range than PBE but is otherwise similar.

The PBE and PPE members also differ in DCM generation
at the oligotrophic stations. Figure 3 shows chlorophyll
distributions from four different members at BATS and ALOHA,
(see monthly profiles of PPE in Supplementary Section 5,
Figures S8–S11). The DCM is always present for part of each
year but with considerable variability in maximum chlorophyll
concentration and depth. In observations the deepest DCM
always occurs in the summer and the shallowest in winter
(Mignot et al., 2014). The range of DCM depths from the PBE
is larger than that from the PPE, with observed deepest DCM
depths generally within the PBE range [e.g., the deepest DCM
depths at ALOHA, are 51–115 m (PBE), 82–95 m (PPE), and
depth = 114 m from observations]. Similarly, for the minimum
DCM depth, the PBE produces a larger range, although this still
underestimates that in the observations (PPE DCM range =

21–37 m, PBE = 3–51 m, observation = 92 m). Additionally all
PPEmembers have the deepest DCM later in the autumn, instead
of in summer, but not all PBE members show this discrepancy.
There are some differences in chlorophyll distributions between
PPE members and the default run, especially the thickness of
the chlorophyll layer during winter/spring at BATS, although
differences are not as distinct as for the PBE, as seen in Figure 3.
The PBPE follows the pattern and timings of PBE, although the
DCM depth range is slightly wider (e.g., at ALOHA, PBPE range
69–118 m for maximum DCM depth).

These results suggest that perturbing the biogeochemistry can
result in considerably greater variability in the evolution of the
DCM, compared to perturbing the physics alone. Furthermore,
when perturbing both physics and biogeochemistry, the effect
of perturbing the latter predominantly determines the ensemble
spread and chlorophyll distribution.

3.2. Characteristics of the Different
Ensembles
The phytoplankton nitrogen fraction shows how much nitrogen
resides in the phytoplankton pool, relative to the total DIN and
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phytoplankton nitrogen. The size of the phytoplankton nitrogen
fraction can also indicate the concentration of nutrients (DIN)
in the water column. For example, at ALOHA and BATS, the
observed phytoplankton nitrogen fractions are always close to 1,
indicating that most of the time, this region is nutrient limited.
At stations such as L4, the phytoplankton nitrogen fraction
can change drastically over the course of a season in both the
observations and the model (Figures 4C,G).

From Figures 4A,B, the proportion of nitrogen in
phytoplankton is seen to vary strongly across the PBE members.
In contrast the PPE shows very little spread in nitrogen fractions
across the whole ensemble (Figures 4E,F). However, at the
coastal stations L4 and Cariaco, there is more variability
between PPE ensemble members (Figures 4G,H), and the timing
of maximum phytoplankton nitrogen fraction varies across
the ensemble.

The contrast between PBE and PPE is more distinct in the
phytoplankton nitrogen fractions than in the spread differences
in chlorophyll, for example seen in Figure 2, where the PPE
chlorophyll range is seen to show more spread than the
phytoplankton nitrogen fraction, especially in the oligotrophic
regions. The small changes in the functional representation of
uptake, grazing, and mortality curves in the PBE, represented
by the exchange arrows in the upper part of Figure 1, can
strongly alter the mean nitrogen distributions because they
directly alter the cycling between biological pools. In contrast
the PPE variability really only alters the supply of nutrients
from deeper layers, represented by the lower part of Figure 1,
and not the fluxes between the biological compartments and
biological fractional distributions, hence the smaller PPE spreads
in Figures 4E–H. The larger PBE spreads mostly capture the
observed seasonal variations in nitrogen fractions e.g., at L4,
where the PPE ensemble cannot, and thus PBE provides a better
representation of uncertainty.

4. DISCUSSION

Previous studies such as Najjar et al. (2007), show that a simple
biogeochemical model forced by different GCMs can produce
large variability in dissolved organic matter both in the surface
and at depth. Another study by Séférian et al. (2013) shows
that atmosphere-ocean models differing in ocean subgrid physics
and resolution can also produce varying biogeochemical tracers,
such as nutrients and chlorophyll. In this study, we found that
the uncertainty arising from biogeochemistry processes gives
a larger range, especially in chlorophyll and zooplankton, as
shown in Figures 2, 4. In terms of bulk properties, the fact
that a PPE generates a small range, is consistent with studies
where different ocean general circulation models are coupled
with the same OBGC model (e.g., Sinha et al., 2010). However,
below the depths of ∼75 m the PPE DIN shows a larger range,
due to the absence of activities between nutrient phytoplankton
and zooplankton, and physics perturbations therefore have more
effect on DIN. At PAP the larger PPE DIN range, at depths of
active phytoplankton growth may occur due to the restricted
sampling to winter months, when biological activity is low

even at the surface, and the physical perturbations are the only
control on DIN.

Physically perturbing the vertical velocity, MLD, vertical
diffusivity, and temperature in the PPE can alter the chlorophyll
distributions in the water column and the depth of DCMs
because these physical variables control the nutrients (vertical
velocity and MLD) and light (MLD) availability (Siegel
et al., 2002). The variations in nutrient and light availability
then alter the timing of peak phytoplankton concentrations
(Henson et al., 2013). Perturbing the MLD using the described
method in Supplementary Section 3, changes the magnitude of
vertical diffusivity leading to an increase/decrease in nutrient
concentrations at euphotic depths (Huisman et al., 2006). From
Figure 4 the PPE range depends on the model temperature
bias; at stations where the model bias is small, such as
BATS and ALOHA (mean temperature bias are −0.24 and
−0.44, respectively), the range of phytoplankton nitrogen
fraction is low, and the seasonality is similar across members.
However, at stations where model temperature bias is high,
such as L4 and Cariaco (mean temperature bias are 0.90
and −1.58, respectively), the PPE range is larger, with more
variable seasonality.

Perturbing the biogeochemistry produces a larger range
of DCM depths, as the DCM depends on nutrient uptake,
zooplankton grazing, and plankton mortality from surface to
deep water. This makes the depth of the DCM vary across all
ensemble members when the grazing or mortality functions are
altered (e.g., Figures 3B,G). The DCMs occur at depths where
the phytoplankton growth rate is in balance with the loss rate
(Fennel and Boss, 2003; Cullen, 2014). Variations inDCMdepths,
pattern, and continuity across the PBE are therefore due to
different loss and growth rates throughout euphotic depths. In
oligotrophic regions, the nutrient concentration is low in the
top ∼150 m (see Figures 2E,F). Some PBE members produce
higher phytoplankton loss rates compared to growth rate in the
top 75 m due to the nutrient scarcity (e.g., members which use
G2, ρh, and ρl). At deeper depths, nutrient is plentiful allowing
phytoplankton growth to exceed the loss rate, giving a deeper
DCM for these PBE members. When the mixed layer becomes
deeper, a balance cannot be achieved as light becomes a limiting
factor and chlorophyll concentrations reduce (see Figures 3B,G).
The slightly larger maximum DCM depth range in PBPE may
be caused by the additional net upwelling and the change in
mixed layer depth from perturbing the physics, which gives
the maximum depth for members with more downwelling and
deeper MLD, and therefore a deeper DCM.

PBE and PPE ranges are also shown and compared for
nitrogen fractions in Figure 4, because nitrogen is the model
currency and we can examine its distribution to phytoplankton
across different ensemble members, and these variables are
available from observations. Variations in phytoplankton
nitrogen proportions, both temporal and between the PPE
members, may result from perturbing the MLD, as this can also
controls the timing of maximum phytoplankton concentrations,
by controlling the light and nutrient availability, as well as
distribution of phytoplankton in the water column (Behrenfeld
et al., 2013; Henson et al., 2013).
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FIGURE 1 | Schematic diagram showing how the ensembles are generated. The colored and curved arrows in the top part represent the different functional forms

which describe the key biogeochemical processes which generate the PBE. The straight vertical arrows at the bottom represent varying vertical velocities and the

curved lines represent climatology of mixed-layer depths which generate the PPE. The PBPE is the combination of the two.

At station BATS, only three PBE members produce a nitrogen
fraction comparable to that seen in the observations; the default
function, UhG2ρsζl, and UsG1ρsζl. This is because the hyperbolic
uptake function has higher nutrient uptake at low nutrient
concentrations, compared to other functional forms, and both
sigmoidal phytoplankton mortalities and linear zooplankton
mortality produce lower phytoplankton loss. Note that the uptake
functions in the default MEDUSA and the ensemble do not

permit acclimatization in nutrient uptake, such as described in
Smith et al. (2009). The underestimation at the oligotrophic
stations may also be caused by the bias introduced when
reducing the ensemble members from 128 to 12 (see details
in Supplementary Section 2), which considers observations and
model outputs at all stations across different oceanographic
regions, in which there are 10 other PBE members that produce
higher phytoplankton nitrogen fractions than the default run.
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FIGURE 2 | Ensemble range of mean chlorophyll (A–D), DIN (E–H), and zooplankton (I–L) profiles calculated from 1 January 1998 to 31 December 2007 at BATS

(A,E,I), ALOHA (B,F,J), PAP (C,G,K), and Cariaco (D,H,L). Blue crosses show the mean concentrations from the default run, red dots show the mean concentration

from in situ, the violet bars denote the mean concentration from PPE, the green bars show the mean concentrations from the PBPE, and the black bars show the

mean concentrations from the PBE. For station PAP the annual mean is taken between 2002 and 2004 for DIN and between 2003 and 2005 for chlorophyll (see

Supplementary Section 4, Figures S6, S7, for the in situ monthly averages for DIN and chlorophyll at PAP). The model calculations for the annual means matched

with the timing of observational sampling. Station L4 profiles are not shown because in situ data are only available at the surface.

Apart from the possibility of inefficient uptake in the
MEDUSA 1-D model, some physical parameters, such as
horizontal advection and eddies, are not represented at all. In
the subtropical gyre 3-D advection is thought to be essential
in controlling primary productivity (Palter et al., 2005; Dave
and Lozier, 2010), which may explain the discrepancies between
the in situ and ensemble phytoplankton nitrogen fractions
shown in Figure 4. In order to fully address the physical model
bias, the impact of 3-D advection should be represented, and
any errors in that circulation would need to be accounted
for through ensemble spread, possibly by using multi-model
ensembles, although even these may contain shared biases
(Abramowitz et al., 2019).

Both PBE and PPE spreads are better at capturing the nitrogen
fraction at light limited stations such as L4. The ensembles
generally follow the observations, even when nutrients become
limiting in the summer, because light also controls the nutrient
uptake rate. The observed phytoplankton nitrogen fraction
generally falls within the PBE range throughout the year, for
example from October-March, the in situ phytoplankton fraction

generally matches ensemble members with lower phytoplankton
growth rates at low concentrations (such as UtG2ρlζs and
UhG2ρhζh), and from April to September it matches members
with higher phytoplankton growth rates and high zooplankton
mortality (such as UhG1ρsζl and UhG2ρqζl). This is consistent
with North Atlantic bloom studies, where the phytoplankton
nitrogen proportions and growth rates change over the year (Roy
et al., 2012; Behrenfeld et al., 2013; Behrenfeld and Boss, 2014),
being controlled by nutrients, light, and mixed layer conditions.
For example in the summer, the growth rate of phytoplankton is
in equilibrium with loss rate as nutrient is depleted and grazing
rates are high (Behrenfeld et al., 2013; Behrenfeld and Boss, 2014).

These results suggest that in a 1-D biogeochemical model
the PBE generates enough spread to encompass the uncertainty
within the observed phytoplankton fraction even if the region
is seasonally varying, and can explain the variations of growth
and loss rate in phytoplankton. We can also see that none of
the single PBE or PPE members fully capture the observations
throughout the year, therefore using a single set of functional
forms is not sufficient to capture the observed behavior and
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FIGURE 3 | Chlorophyll distribution in the water column from 1st January 2000 to 31st December 2002 at station BATS (A–J) and ALOHA (K–T). White solid lines are

the MLDs. Selected ensemble members, that are the most distinct from default run from PBE, with their functional form combinations are shown in (B–D), for BATS,

and (K–N) for ALOHA, and for PPE are shown in (G–I) for BATS and (Q–S) for ALOHA.

FIGURE 4 | Monthly averaged phytoplankton fraction P/(P+D) in nitrogen units at the surface for four oceanographic stations. (A–D) and (E–H) show the

phytoplankton fraction from PBE and PPE, respectively, with different lines representing ensemble members. The observations are shown in blue. The bars are the

standard deviations of the monthly P/(P+D). The nitrogen within phytoplankton is calculated using the chlorophyll to nitrogen ratio which is calculated using the C:N

conversion fraction, and the calculation is described in Yool et al. (2011). These are calculated from 1 January 1998 to 31 December 2007, apart from station L4,

which are calculated from January 2000, to match the in situ data.

its uncertainty. The PBE ensemble members that best match
the in situ fractions vary through the year as the ensemble
members behave differently depending on the concentrations of
nutrient, phytoplankton, and zooplankton, especially in strongly
seasonally varying regions.

We have further attempted to compare our PBE model
with different biogeochemical model types used previously in
model intercomparison studies (e.g., Kwiatkowski et al., 2014).
Acknowledging that the PBE model presented here was a 1D
model, running only at 5 stations, a rigorous comparison with

Frontiers in Marine Science | www.frontiersin.org 7 July 2020 | Volume 7 | Article 549

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Anugerahanti et al. Perturbed Biology and Physics Signatures

3D models would be difficult. However, when compared to all
surface observations at five stations, the mean of PBE surface
chlorophyll produces a correlation of 0.55, with correlation range
of [0.491, 0.583] produced by model ensemble members. In the
inter-comparison study, Kwiatkowski et al. (2014) reported the
range of [0.15, 0.50] across all models. Similarly, considering all
observed surface DIN at five stations, the mean of PBE produces
a correlation of 0.41, with the ensemble correlation range of
[0.333, 0.595], which are lower than for the models reported
by Kwiatkowski et al. (2014) which has surface DIN within
the range [0.94, 0.79]. However, generality of the results needs
to be tested beyond the five stations, and through comparison
of other models with observations beyond annual average of
surface fields.

When assessing the risks of climate change a structural
ensemble may also be useful for representing model uncertainty.
It has been shown in earlier studies, e.g., by Hawkins and Sutton
(2012) using a CMIP3multimodel ensemble, that the uncertainty
in climate change predictions may be strongly dominated by
model uncertainty in the near term, and the detection time for
anthropogenic impacts is conditioned by these uncertainties.
The PBE ensemble method clearly demonstrates the importance
of structural uncertainties, which should then be relevant in
assessing climate change impacts on ecological indicators such
as phytoplankton phenology.

5. SUMMARY AND CONCLUSION

We have run three different ensembles using 1-D MEDUSA,
generated by perturbing the biology (PBE), the physics (PPE),
and both together (PBPE). The ensemble spreads, chlorophyll
distributions, and characteristics of these ensembles are explored.
The PBE and PBPE generally produce larger spread of the
chlorophyll annual means compared to PPE, and are able to
encompass the in situ concentrations seen at five different
oceanographic stations. Below the active phytoplankton growth
region, the PPE produces larger DIN (nutrient) spread than PBE,
as below this depth there is less biological activity and nutrient
supply is dependent on the PPE. For the chlorophyll distributions
we used the time evolution of the DCM as an ensemble metric
at oligotrophic stations and this shows that across different
ensemble members the PBE and PBPE produce larger spreads
of DCM depth compared to PPE, with different chlorophyll
patterns. This is because the PBE produces more variable loss
and growth rates of phytoplankton with different nutrient supply
rates. This means that perturbing the biogeochemistry produces
a stronger effect than perturbing physics.

To see how nitrogen, the model currency, is distributed to the
phytoplankton compartments, we used phytoplankton nitrogen
fraction as a metric. This metric shows that the PBE produces a
much larger spread than PPE in terms of the monthly variability,
and nearly covers the in situ standard deviations, especially at
the strongly seasonally varying stations. The large spread from
the PBE show that altering the steepness of the uptake, mortality,
and grazing curves changes the way nitrogen is distributed to the
phytoplankton compartments, while in PPE the perturbations

only alter the nutrient supply, both in terms of distribution in
the water column and concentrations.

Our 1D-model experiments suggest that the PBE or PBPE
better represent model uncertainties arising from the model
structural errors, as shown by their ensemble ranges, and
how the model currency is distributed between the different
compartments. A 1D model does however contain many
simplifications when it comes to ocean physics. To understand
the implications of model structural errors on larger scales,
this method should also be tested in 3D coupled physical-
biogeochemical models.
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