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The waters around Taiwan are impacted by the Kuroshio and coastal currents, resulting
in a high productivity and a high diversity of marine life. As a consequence, there are a
multitude of fisheries around Taiwan, conducted by a fleet that has grown enormously
in the last four decades. Here, we investigate the effect of the resulting fishing pressure
on 16 commercial fish stocks including demersal and pelagic species in the coastal
and offshore waters of Taiwan using the Monte Carlo Catch-Maximum Sustainable
Yield (CMSY) and Bayesian Schaefer Model (BSM) methods. Both of these methods
required principally catch time series, with the BSM methods also requiring catch-
per-unit-of-effort data. The results show that of the 16 assessed stocks, 10 stocks
have collapsed, 2 are severely overfished, 2 are overfished, 1 is slightly overfished,
and only 1 stock remains in a healthy status; these troubling results are attributed to
excessive fishing pressure. However, climate-driven environmental variability may be
another factor affecting the fishery resources around Taiwan, as evidenced by chub
mackerel Scomber japonicus, the one stock deemed healthy, which is here attributed
to favorable environmental condition. Using the fisheries reference points provided here,
rebuilding plans could be provided for the other 15 species; however, such plans are
not likely to be successful without reducing the size of the Taiwanese fishing fleet.

Keywords: Chinese coastal fisheries, Taiwan waters, CMSY and BSM, commercial fish, stock assessment

INTRODUCTION

Fisheries are not only an important food source for humans, but also provide livelihood for
local communities (Rice and Garcia, 2011; Liao et al., 2019). However, one-third of globally
assessed stocks are overfished (FAO, 2018), while in Asia, almost half of the exploited stocks are
overexploited or have collapsed (Lam and Pauly, 2019). By this measure, it can be suggested that
the unsustainable exploitation of stocks in Asia is more serious.

The waters around Taiwan are very productive and support of high biodiversity (Hobday and
Pecl, 2014), notably due to the combined effects of the Kuroshio Current, the South China Sea
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Warm Current, and the China Coastal Current (Ho et al., 2016;
Ju et al., 2019; Liao et al., 2019; Figure 1), and this is reflected
in nearly 2,600 species of fish and 500 species of crustaceans
being reported from Taiwan’s waters (Ji et al., 2014; see also
www.fishbase.org and www.sealifebase.org).

Correspondingly, a wide variety of fishing gears are used to
exploit this biodiversity, notably purse seines, bottom and pelagic
trawls, longlines, gill and set nets, and so on (Fisheries Agency,
1949–2019). However, because of overexploitation (Chen et al.,
2018; Liao et al., 2019), fisheries catches, after a long period
of increase since the 1950s, peaked in 1980 and then gradually
decreased (Figure 2). While the status of coastal and offshore
fisheries in Taiwan waters is widely perceived as being highly
problematic (Liu, 2013; Liao et al., 2019), only a few of the
fish stocks have been assessed (Chen, 2006; Shao, 2011). This
contribution assesses 16 of the coastal and offshore exploited fish
stocks in the waters around Taiwan, such as to provide reference
points for the management of their fisheries.

Palomares et al. (2018) listed three reasons for exploited
fish stock to remain unassessed in developing countries and
regions: lack of expertise, scarcity of data, and absence of stock
assessment methods suitable for use in data-sparse situations.
These deficiencies have recently been mitigated, at least in part,
through the recent development of easy-to-learn computer-
intensive stock assessment methods relying primarily on time
series of catch data. Among these, the Monte Carlo Catch-
Maximum Sustainable Yield (CMSY) method of Froese et al.
(2017) figures prominently as a straightforward approach for
estimating fisheries reference points from the time series of catch
data and ancillary information, or “prior.”

Here, we use the CMSY method, and a related method,
a Bayesian state-space implementation of the Schaefer model

FIGURE 1 | Map of the coastal and offshore waters of Taiwan. CCC, China
Coastal Current; SCSWC, South China Sea Warm Current; KC,
Kuroshio Current.

FIGURE 2 | Catches of Taiwan coastal and offshore marine capture fisheries
from 1959 to 2018. Data source: Fisheries Agency (1949–2019).

(BSM; Froese et al., 2017), to estimate biomass (B) and the
current status of 16 commercial fish species in the coastal and
offshore waters of Taiwan. Also, key fisheries reference points
such as intrinsic rate of population increase (r), carrying capacity
(k), maximum sustainable yield (MSY), and the terminal ratio
B/BMSY are estimated.

MATERIALS AND METHODS

Fisheries Data
Catch data of the 16 commercial fish species in Taiwan waters
(Supplementary Table S1) and the number of fishing vessels were
collected from Fisheries Statistical Yearbook Taiwan, Kinmen
and Matsu areas (Fisheries Agency, 1949–2019). The catch-per-
unit-of-effort (CPUE) data were defined by catch/the number
of fishing vessels. The basic fisheries data available for this
study are summarized in Table 1. The species therein include
top predators, benthopelagic fishes, small pelagic fishes, and
demersal fishes (Table 1). The species were selected if they
were separately listed as a commercial species in the Fisheries
Statistical Yearbook, and their catch time series covered at least
20 years. In addition, management regulations may introduce
biases in stock assessments by affecting trends in catch. However,
major managements for Taiwan coastal and offshore fisheries
(Supplementary Table S2) have little effect on the regulations of
these 16 assessed species. Therefore, biases by managements can
be ignored for 16 assessed species.

CMSY and BSM Methods
General Description
The CMSY method was first proposed as a Monte-Carlo method
by Martell and Froese (2013), who were inspired by stock
reduction analysis (Kimura and Tagart, 1982; Kimura et al., 1984);
it was then updated to overcome some shortcomings (Froese
et al., 2017). CMSY is used to estimate biomass, exploitation rate
(F/FMSY ), relative stock size (B/BMSY ), and fisheries reference
points (MSY, r, k) from time series of catch, resilience, and
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TABLE 1 | Basic data information on key species in the coastal and offshore waters of Taiwan, with “resilience” levels from FishBase.

Scientific name (common name) Ecological group Catch and CPUE Resilience (r) Prior r range Bstart/k Bend/k

Scomberomorus guttatus (Indo-Pac. king mackerel) Top predator 1989–2017 Medium 0.37–0.851 0.2–0.4 –

Scomberomorus commerson (narrow-barred Spanish mackerel) Top predator 1989–2017 Medium 0.37–0.851 – –

Scomberomorus niphonius (Japanese Spanish mackerel) Top predator 1950–2017 Medium 0.37–0.851 – –

Muraenesox cinereus (daggertooth pike conger) Top predator 1970–2017 Medium 0.37–0.851 0.4–0.6 –

Clupanodon thrissa (Chinese gizzard shad) Small pelagic 1993–2017 High 0.79–1.791 0.2–0.4 –

Scomber japonicus (chub mackerel) Small pelagic 1980–2017 Medium 0.32–0.731 0.01–0.2 0.2–0.6

Trachurus japonicus (Japanese jack mackerel) Small pelagic 1995–2017 Medium 0.49–1.121 0.1–0.2 0.3–0.4

Decapterus maruadsi (Japanese scad) Small pelagic 1989–2017 High 0.6–1.52 0.01–0.2 0.2–0.4

Mene maculate (moonfish) Small pelagic 1950–2016 High 0.6–1.52 – 0.4–0.8

Atrobucca nibe (blackmouth croaker) Demersal 1950–2017 Medium 0.2–0.82 – –

Acanthopagrus schlegelii (blackhead seabream) Demersal 1989–2017 Medium 0.2–0.82 – 0.01–0.2

Priacanthus macracanthus (red bigeye) Demersal 1974–2017 Medium 0.21–0.481 0.6–0.8 –

Psenopsis anomala (Pacific rudderfish) Benthopelagic 1950–2017 Medium 0.32–0.731 – –

Pampus argenteus (silver pomfret) Benthopelagic 1990–2017 Medium 0.37–0.851 0.4–0.6 –

Pennahia argentata (silver croaker) Benthopelagic 1970–2017 High 0.37–0.851 0.47–0.9 –

Parastromateus niger (black pomfret) Benthopelagic 1966–2017 Medium 0.37–0.851 0.01–0.2 –

1FishBase (www.fishbase.org). 2Froese et al. (2017).

qualitative stock status information at the beginning and the
end of the time series (see Froese et al., 2017, for a complete
description). The predictions of the CMSY method can be
strengthened by the BSM method when relative abundance
data (i.e., CPUE data) are available in addition to catch data.
The basic biomass dynamics of the CMSY and BSM methods
followed Eq. 1:

Bt+1 = Bt + r
(

1−
Bt

k

)
Bt − Ct (1)

where Bt and Bt+1 are the biomass in year t and the subsequent
year, respectively; r is the intrinsic rate of population increase; k
is the carrying capacity (here taken as the unexploited stock size);
and Ct is the catch in year t.

A linear decline of surplus production is incorporated in Eq. 2
when stock size is strongly depleted, that is, its biomass falls less
than 0.25 k:

Bt+1 = Bt + 4
Bt

k
r
(

1−
Bt

k

)
Bt − Ct

∣∣∣∣Bt

k
< 0.25 (2)

Determining the Boundaries of the r-k Space
To determine prior k ranges for the selected species under
assessment, the proxies of resilience and the corresponding r
ranges are provided in Table 1, based on Froese et al. (2017)
and based on FishBase (Froese and Pauly, 20191), respectively.
The prior ranges for k were derived based on three empirical
rules in Froese et al. (2017), represented here by Eq. 3 for stocks
with low prior biomass at the end of the available catch time
series, and Eq. 4 for stocks with high prior biomass at the end of
the time series:

klow =
max (C)

rhigh
, khigh =

4max (C)

rlow
(3)

klow =
2max (C)

rhigh
, khigh =

12max (C)

rlow
(4)

1www.fishbase.org

where klow and khigh are the lower and upper bounds of the prior
range of k, max(C) is the maximum catch in the time series, and
rlow and rhigh are the lower and upper bounds of r range to be
explored by the Monte-Carlo routine of CMSY.

The prior ranges of r values were obtained from the
“resilience” that FishBase estimates for each fish species,
and which are available as follows: high = > r = 0.6–1.5;
medium = >r = 0.2–0.8; low = >r = 0.05–0.5, and very
low = >r = 0.015–0.1 year−1. Note that in general, species that
can get large and have a high potential longevity have a low to
very resilience, and conversely for small, short-lived species.

Setting Prior Biomass Range
The Bstart/k (prior biomass at the beginning of the time series)
and Bend/k (prior biomass at the end of the time series) for
the 16 stocks under assessment are given in Table 1. These
priors were not set by us, but instead were estimated based on
the default rules described in the Supplementary Material of
Froese et al. (2017).

Stock Status Definitions
The definitions of stock status used here, as defined
by Palomares et al. (2018) based on B/BMSY at the
end of the biomass trajectory, are summarized in
Table 2.

TABLE 2 | Definition of stock status (Palomares et al., 2018) based on B/BMSY in
the end of time series.

B/BMSY Stock status

≥1 Healthy

0.8–1.0 Slightly overfished

0.5–0.8 Overfished

0.2–0.5 Severely overfished

<0.2 Collapsed
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TABLE 3 | Fisheries reference points (r, k, and MSY), relevant biomass (Bend/k and B/BMSY) and stock status of 16 commercially exploited stocks estimated
from BSM method.

Species r (year−1) k (103 t) MSY 103 year−1 Bend/k B/BMSY Stock status

Scomberomorus guttatus 0.67 (0.53–0.83) 6.68 (5.36–8.34) 1.11 (0.98–1.26) 0.03 (0.02–0.06) 0.07 (0.04–0.11) Collapsed

Scomberomorus commerson 0.71 (0.57–0.88) 22.5 (18.1–28) 3.98 (3.48–4.57) 0.04 (0.03–0.06) 0.09 (0.06–0.13) Collapsed

Scomberomorus niphonius 0.88 (0.79–0.99) 45.7 (41–50.9) 10.1 (9.68–10.5) 0.01 (0.01–0.02) 0.03 (0.02–0.04) Collapsed

Muraenesox cinereus 0.62 (0.50–0.77) 50.10 (40–62.6) 7.78 (6.73–9) 0.01 (0.01–0.02) 0.02 (0.02–0.03) Collapsed

Clupanodon thrissa 1.21 (0.95–1.54) 0.11 (0.09–0.14) 0.03 (0.03–0.04) 0.15 (0.06–0.31) 0.30 (0.11–0.63) Severely overfished

Scomber japonicus 0.68 (0.55–0.83) 338 (269–426) 57.1 (48.4–67.5) 0.57 (0.42–0.70) 1.13 (0.83–1.4) Healthy

Trachurus japonicus 0.97 (0.82–1.14) 33.3 (26.7–41.4) 8.04 (6.77–9.55) 0.36 (0.28–0.46) 0.73 (0.55–0.92) Overfished

Decapterus maruadsi 0.96 (0.84–1.1) 40.5 (32.9–49.9) 9.72 (7.99–11.8) 0.32 (0.19–0.45) 0.65 (0.37–0.91) Overfished

Mene maculata 0.85 (0.73–0.98) 28.20 (23.2–34.2) 5.97 (4.97–7.19) 0.49 (0.38–0.69) 0.98 (0.71–1.39) Slightly overfished

Atrobucca nibe 0.32 (0.21–0.49) 90.2 (69.7–117) 7.19 (4.75–10.9) 0.03 (0.02–0.04) 0.05 (0.03–0.08) Collapsed

Acanthopagrus schlegelii 0.52 (0.36–0.75) 3.62 (2.72–4.82) 0.47 (0.36–0.65) 0.22 (0.18–0.28) 0.45 (0.36–0.56) Severely overfished

Priacanthus macracanthus 0.33 (0.25–0.44) 63.1 (56.8–92.8) 5.27 (4.88–7.51) 0.02 (0.02–0.03) 0.05 (0.03–0.07) Collapsed

Psenopsis anomala 0.50 (0.38–0.64) 37.9 (30.2–47.7) 4.69 (3.81–5.78) 0.03 (0.02–0.05) 0.06 (0.04–0.09) Collapsed

Pampus argenteus 0.66 (0.50–0.89) 20.4 (15.8–26.3) 3.39 (2.67–4.3) 0.03 (0.02–0.04) 0.05 (0.03–0.08) Collapsed

Pennahia argentata 0.61 (0.49–0.76) 51.6 (42.1–63.3) 7.87 (6.83–9.08) 0.04 (0.03–0.05) 0.08 (0.06–0.10) Collapsed

Parastromateus niger 0.59 (0.47–0.74) 33.6 (26.7–42.1) 4.95 (3.98–6.16) 0.01 (0.01–0.02) 0.02 (0.02–0.03) Collapsed

The number between brackets: 95% confidence intervals; r, maximum intrinsic growth rate of population (resilience); k, carrying capacity; MSY, maximum sustainable yield.

FIGURE 3 | Results of BSM outputs for the collapsed stock Indo-Pacific king mackerel Scomberomorus guttatus (left four panels) and the healthy stock chub
mackerel Scomber japonicus (right four panels). Panel (A) shows the viable r-k pairs found by CMSY method (gray dots) and BSM method (black dots), and the blue
cross is the most probable r-k pair with its 95% confidence interval (CI) found by CMSY, whereas red cross indicates the most probable r-k pair and its 95% CI
found by BSM. Panel (B) shows the biomass trajectories (lines) with the 2.5th and 97.5th percentiles (dotted lines) estimated by CMSY (blue) and BSM (red). Panel
(C) shows catch relative to the BSM estimate of MSY, with indication of 95% CI in gray. Panel (D) shows the development of relative total biomass (B/BMSY), with CI
(gray area) indicating uncertainty.

RESULTS

Table 3 presents the fisheries reference points (r, k, and MSY),
relevant biomass (Bend/k and B/BMSY ), and stock status of 16
commercial fish stocks.

Figure 3 illustrates two examples, Indo-Pacific king
mackerel (Scomberomorus guttatus), which documents a
collapsed stock, and chub mackerel (Scomber japonicus),
which documents a healthy stock. Figure 3A shows the

most probable r-k pair and its 95% confidence interval
as identified by the CMSY method (blue cross) and by
the BSM method (red cross), which incorporated CPUE
data. Figure 3B shows the similar trends of biomass
trajectories estimated by CMSY (blue) and BSM (red). These
similar values and trends from the two methods indicate
that the results are more credible. Finally, Figures 3C,D
show the trajectory of relative biomass (B/BMSY ) and
estimated MSY levels.
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Supplementary Figure S1 similar to Figure 3 are presented
for the other 15 of our stocks in the Supplementary Material.
Jointly, Figure 3 and Supplementary Figure S1 show that, of
our 16 stocks, 10 stocks have collapsed, 2 are severely overfished,
2 stocks overfished, 1 is slightly overfished, and only 1 remains
healthy (Table 3).

DISCUSSION

CMSY and BSM are now well-established methods for the
assessment of data-poor stocks, as they rely mainly only a
time series of catch and ancillary qualitative information
to quantify the biomass and related information on the
stocks under investigation (Froese et al., 2017, 2018).
However, for this study, parameters estimated from stock
assessment may have some uncertainty due to the inherent
limitations in catch (CPUE) data, although these data are
from official statistics. The limitations of these input data
were qualitatively described below. First, a fraction of catch
as discards may be not recorded in official statistics. Second,
some pelagic species are straddling stocks distributed across
more than one exclusive economic zone, whereas catch data
for these species are only collected in Taiwanese Exclusive
Economic Zone and may therefore not fully reflect changes
in stock size. Finally, catch and fishing effort data may be
partly manufactured.

The stocks assessed by the BSM method as “collapsed”
include four top predators (S. guttatus, Scomberomorus
commerson, Scomberomorus niphonius, Muraenesox cinereus),
four benthopelagic species (Psenopsis anomala, Pampus
argenteus, Pennahia argentata, Parastromateus niger), and two
demersal species (Atrobucca nibe, Priacanthus macracanthus).
Their demise can be attributed to the ever-increasing fishing
pressure exerted by a fishing fleet which grew, in the past
40 years, 3.14-folds in terms of vessel number and 35.2
times in term of cumulative engine power (Liu, 2013).
Meanwhile, coastal and offshore catches have decreased
from 408,000 t in 1980 to 198,000 t in 2018 (Fisheries
Agency, 1949–2019; Figure 2). Among the other stocks
affected were P. anomala (Du et al., 2010), P. argentata
(Ju et al., 2016), P. macracanthus (Ju et al., 2016), and
P. niger (Tao et al., 2012), occurring in the western Taiwan
waters (Taiwan Strait), and which became overfished by the
2000s. These fish species belong to Taiwan’s most important
economic species.

Three species of small pelagic fish (Japanese jack
mackerel Trachurus japonicus, Japanese scad Decapterus
maruadsi, and Chinese gizzard shad Clupanodon thrissa)
and blackhead seabream (Acanthopagrus schlegelii) are
also overfished and/or severely overfished. Although
climate-driven environmental variability can affect the
population fluctuations of small pelagic fishes (Yu et al.,
2018; Kanamori et al., 2019; Oozeki et al., 2019; Yatsu,
2019), (over-)exploitation also plays the important role in
the fluctuations (Saraux et al., 2019) or even leads to population
collapses (Essington et al., 2015). Indeed, the biomass of

T. japonicus in Kuroshio Current systems has decreased sharply
in the recent decades (Oozeki et al., 2019), mainly due to
high exploitation.

Moonfish (Mene maculata), a subtropical species abundant in
the eastern and southwestern Taiwan waters (Hwang et al., 2002),
is “slightly overfished” as assessed in this study (Table 3). The
stock status is supported by the study of Hwang et al. (2002),
which reported that the stock in Taiwan waters suffered from an
exploitation, which lead to a decreasing catch in the 1990s.

Chub mackerel (S. japonicus) is the only stock that our
study found to be “healthy” (Table 3). This is confirmed by
the report by Ju (2018) that the biomass of chub mackerel is
increasing in the southern Taiwan Strait and that this species is
recovering from depletion in the Pacific coast of northeastern
Japan (Ichinokawa et al., 2015; Li et al., 2018; Oozeki et al.,
2019; Yatsu, 2019). However, this positive development appears
to be due to favorable environmental conditions (Hiyama
et al., 2002; Li et al., 2014; Yasuda et al., 2014; Yu et al.,
2018; Kanamori et al., 2019), enabling the stock to resist
a threefold increase of fishing effort in the past 40 years
(Liu, 2013).

Thus, with 15 of 16 major fish stocks being overexploited
or collapsed, it can be inferred that the various management
measures for the management of Taiwan’s coastal and offshore
fisheries at least in part for these 16 species fisheries and
which include imposing total allowable catches, individual quota,
area closures, fishing capacity limitations, size, gear, and season
limitations (Huang and Chuang, 2010; Chen, 2012; Huang et al.,
2016) are still insufficient, as assessed by the catches of coastal and
offshore fisheries still decreasing (Fisheries Agency, 1949–2019).

Effective fisheries management is the main driver for recovery
of fish stocks (Zimmermann and Werner, 2019; Hilborn et al.,
2020). Therefore, we believe that the overall size of Taiwan’s
fishing fleet, generated by continuous growth in the last four
decades, is the major reason why the technical measures listed
above are not bearing fruit as expected.
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