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A regional neural network-based method, “CANYON-MED” is developed to estimate
nutrients and carbonate system variables specifically in the Mediterranean Sea over
the water column from pressure, temperature, salinity, and oxygen together with
geolocation and date of sampling. Six neural network ensembles were developed, one
for each variable (i.e., three macronutrients: nitrates (NO−3 ), phosphates (PO3−

4 ) and
silicates (SiOH4), and three carbonate system variables: pH on the total scale (pHT),
total alkalinity (AT), and dissolved inorganic carbon or total carbon (CT), trained using
a specific quality-controlled dataset of reference “bottle” data in the Mediterranean
Sea. This dataset is representative of the peculiar conditions of this semi-enclosed
sea, as opposed to the global ocean. For each variable, the neural networks were
trained on 80% of the data chosen randomly and validated using the remaining 20%.
CANYON-MED retrieved the variables with good accuracies (Root Mean Squared Error):
0.78 µmol.kg−1 for NO−3 , 0.043 µmol.kg−1 for PO3−

4 and 0.71 µmol.kg−1 for Si(OH)4,
0.014 units for pHT, 13 µmol.kg−1 for AT and 12 µmol.kg−1 for CT. A second validation
on the ANTARES independent time series confirmed the method’s applicability in the
Mediterranean Sea. After comparison to other existing methods to estimate nutrients
and carbonate system variables, CANYON-MED stood out as the most robust, using
the aforementioned inputs. The application of CANYON-MED on the Mediterranean
Sea data from autonomous observing systems (integrated network of Biogeochemical-
Argo floats, Eulerian moorings and ocean gliders measuring hydrological properties
together with oxygen concentration) could have a wide range of applications. These
include data quality control or filling gaps in time series, as well as biogeochemical
data assimilation and/or the initialization and validation of regional biogeochemical
models still lacking crucial reference data. Matlab and R code are available at https://
github.com/MarineFou/CANYON-MED/.
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INTRODUCTION

The global ocean currently absorbs around 25% of anthropogenic
carbon dioxide (CO2) from the atmosphere, therefore playing
a crucial role in buffering the effects of climate change (Le
Quéré et al., 2018). This role is likely to be modified by
ocean warming and acidification, having complex impacts on
marine ecosystems and organisms (Gattuso and Hansson, 2011).
To better understand the underlying processes and anticipate
changes, a large number of variables have to be observed in
order to gain a more accurate overall picture. In this context, the
“Framework for Ocean Observing” (FOO, Lindstrom et al., 2012)
was designed to coordinate the ocean observing community’s
efforts and maintain a sustained Global Ocean Observing System
(GOOS) (Tanhua et al., 2019). This framework is organized
around Essential Ocean Variables (EOVs; GOOS, 2018), chosen
to balance the feasibility of their measurement with their societal
and scientific relevances. The sustained measurement of key
EOVs helps fill the gaps in our understanding of the ocean.

Historically, measurements have come from oceanographic
cruises and from continuous measurements at fixed stations
(buoys and moorings) (Chai et al., 2020). However, the low
spatial and temporal resolutions of these sampling platforms have
resulted in chronic under-sampling of biogeochemical variables,
creating “observational gaps” (Tanhua et al., 2019; Weller
et al., 2019; Chai et al., 2020). Today, technological advances
(miniaturization of sensors, automation of measurements) have
made it possible to develop a network of autonomous platforms
such as profiling floats (Riser et al., 2016; Roemmich et al.,
2019; Claustre et al., 2020) and ocean gliders (Testor et al.,
2019). These platforms provide measurements of physical and
biogeochemical variables at much higher spatial and temporal
resolutions in regions or seasons otherwise difficult to access.
These active autonomous networks have thus contributed to the
progressive densification of databases of key variables at global
scale (Abram et al., 2019). Some variables are presently almost
systematically measured regardless of the acquisition platform,
for instance physical data (temperature, salinity, pressure) and
dissolved oxygen concentration (O2). However, measurements
from these autonomous platforms remain limited to a small
type of biogeochemical variables, owing to the high cost of
some sensors and technological limitations (Bittig et al., 2019;
Chai et al., 2020).

Machine learning methods represent a promising way to
fill these “observational gaps”. They have the potential to
predict, from variables systematically measured by autonomous
platforms, variables still difficult to measure accurately and
cost-effectively with these platforms (e.g., Gregor et al., 2019).
Transfer functions such as multiple linear regressions (e.g., Velo
et al., 2013; Carter et al., 2018) have therefore been developed
to estimate biogeochemical variables. Neural network methods,
known to be universal substitutes for any differentiable and
continuous function (Hornik et al., 1989), have been also applied
to complex data sets in oceanography (e.g., estimation of the
variability of the global ocean carbon sink (Landschützer et al.,
2014), detection of phytoplankton groups in open ocean waters
(Ben Mustapha et al., 2014).

O2 is a key EOV in oceanography (GOOS, 2018). It is widely
and increasingly measured on autonomous platforms, with
measurement accuracies close to those obtained by Winkler
titration of discrete samples (Bittig and Körtzinger, 2015). The
O2 concentration results from the balance between exchanges
at the ocean-atmosphere interface, mixing and ventilation
(Körtzinger et al., 2004; Piron et al., 2016, 2017; Coppola et al.,
2018), solubility (dependent on temperature and salinity), and
biological processes such as primary production and respiration
(Robinson, 2019). Furthermore, O2 is linked to nutrients and
inorganic carbon via Redfield’s stoichiometric ratios (Redfield,
1934). Therefore, based on the role of O2 in remineralization
and carbon fixation, Sauzède et al. (2017) have developed
neural network-based methods to retrieve carbon and nutrient
variables in the global ocean. They use O2, temperature, salinity,
pressure, longitude and latitude, day of the year and year as input
variables to predict the concentrations of three macronutrients
[nitrates (NO−3 ), phosphates (PO3−

4 ), silicates (SiOH4)] as well as
carbonate system variables [total alkalinity (AT), total dissolved
inorganic carbon (CT), pH on the total scale (pHT), and CO2
partial pressure (pCO2)]. This method referred to as CANYON
for “CArbonate system and Nutrients concentration from
hYdrological properties and Oxygen using a Neural network”
predicts these key oceanographic variables, which cannot be
measured independently or with sufficient accuracy, with much
improved temporal and spatial resolution (Chai et al., 2020). This
method as well as its subsequent improvement, CANYON-B
(Bittig et al., 2018), were trained on high-quality data collected
over the past thirty years (the GLODAPv2 for Global Ocean
Data Analysis Project version 2 database; Olsen et al., 2016).
One of its potential applications is to generate virtual carbon and
nutrients estimates from the large amount of data acquired by
the Biogeochemical-Argo float array (BGC-Argo; Johnson and
Claustre, 2016; Claustre et al., 2020).

The Mediterranean Sea is a semi-enclosed marginal sea
characterized by high salinities and a rapid overturning
circulation, rendering it capable of absorbing more CO2 than
adjacent oceanic regions (Schneider et al., 2010; Lee et al.,
2011; Touratier and Goyet, 2011; Álvarez et al., 2014). Machine
learning methods produce better results when trained on
datasets representative of the considered case study. Therefore,
both CANYON and CANYON-B approaches may underperform
in this specific oceanic region making a regionalization of this
approach highly desirable. Furthermore, the Mediterranean Sea
is also a low nutrient concentration basin (McGill, 1966; Krom
et al., 1991) with an eastward-increasing oligotrophy gradient.
Nutrients are particularly important as tracers of biological
cycles, biomass production, and natural and anthropogenic
inputs (Béthoux, 1989; Béthoux et al., 1992). Through its
rapid response to external conditions relative to other oceans
(Crispi et al., 2001), the Mediterranean Sea is considered as a
good indicator of global shorter-scale ocean processes and is
therefore defined as a “hot spot” for climate change (Giorgi,
2006; Diffenbaugh et al., 2007). This “miniature ocean” (Millot
and Taupier-Letage, 2005) is particularly relevant for the
study of biogeochemical cycles because of its molar ratios of
nutrients very distinct from those of other oceanic regions
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(Ribera d’Alcalà et al., 2003; Krom et al., 2005; Pujo-Pay et al.,
2011; Pasqueron de Fommervault et al., 2015). Additionally,
the high amount of data from BGC-Argo floats and observing
programs (e.g., MOOSE, NAOS) emphasize the need for a
regionalized approach, specific to the Mediterranean Sea, to
fully take advantage of these observing systems and platforms
(Tintoré et al., 2019).

In this paper, we present the regional downscaling of the
CANYON method for the Mediterranean Sea, CANYON-MED.
A database of in situ measurements has been specifically
assembled to constitute a new quality-controlled dataset used to
train the regional neural networks. Neural network ensembles
were trained and their results are compared to single neural
network architectures. The resulting optimized CANYON-
MED networks are validated with an independent dataset
and compared to existing methods available for nutrients and
carbonate system variables prediction in the Mediterranean Sea.

MATERIALS AND METHODS

Available Datasets
Training and Validation Datasets
The CARIMED (CARbon in the MEDiterranean Sea) data
synthesis initiative (Sanleón-Bartolomé et al., 2017) aims to
produce a consistent quality-controlled database for carbon
relevant variables from hydrographic cruises covering the whole
water column and the different basins of the Mediterranean
Sea. As the validation of CARIMED data is still in progress, we
performed secondary quality control through visual inspection of
the profiles and by comparison with literature values, to remove
outliers. After applying similar quality control, the data from
ten other cruises were added to the database (i.e., CARBOGIB,
CASCADE, DEWEX, GIFT, MOOSE_GE 2011, MOOSE_GE
2013, MOOSE_GE 2015, PACIFIC-CELEBES, SOMBA, MSM72;
Table 1). The spatial coverage of the complete dataset is shown
in Figure 1.

The DYFAMED site (Coppola et al., 2019a) is located in the
Ligurian Sea (43◦25′N, 7◦52′E, water depth of 2350 m; red star
in Figure 1). It is surrounded by the permanent geostrophic
Ligurian frontal jet flow caused by the Northern Current’s
cyclonic circulation, separating the sampling area from coastal
inputs by a density gradient (Millot, 1999; Niewiadomska et al.,
2008). Monthly cruises are performed over the whole water
column since 1991 and included in the MOOSE network since
2010 (Marty et al., 2002; Coppola et al., 2019b). This is the
longest open sea time series in the Mediterranean Sea in terms
of O2, nutrients and carbonate system measurements that led
to a homogeneous and calibrated data set with well-described
seasonality of these variables (Copin-Montégut and Bégovic,
2002; Marty et al., 2002; Pasqueron de Fommervault et al., 2015;
Coppola et al., 2018).

The dataset gathered for this study (Table 1) therefore includes
35 oceanic cruises and a time series, from 1976 to 2018 with
samples from the surface to 4600 m depth of core variables such
as O2, temperature, salinity as well as macronutrients [nitrates:

NO−3 , phosphates: PO3−
4 , silicates: Si(OH)4] and carbonate

system variables (total alkalinity: AT, total carbon or dissolved
inorganic carbon: CT, and pH on the total scale: pHT). When
AT and CT were available, pHT was calculated using CO2SYS-
MATLAB (Lewis et al., 1998; van Heuven et al., 2011). This
dataset is openly accessible (Fourrier, 2020). Thermodynamic
calculations within the carbonate system used the carbonic
acid dissociation constants of Mehrbach et al. (1973) as refit
by Dickson and Millero (1987), the dissociation constant for
bisulfate of Dickson (1990) and Uppström (1974) for the ratio
of total boron to salinity. These constants were used to ensure
consistency with pHT units in some of the data sets compiled.

Independent Validation Dataset
The ANTARES site is located in the Ligurian Sea (42◦48′N, 06◦
05′E, water depth of 2500 m; yellow square in Figure 1). It
is visited monthly since 2010 and integrated into the MOOSE
network (Lefevre, 2010). This time series extends from 2009 to
2018 for ancillary data, O2, nutrients, and from 2009 to 2017 for
AT and CT. pHT was computed as described in section “Training
and Validation Datasets.” However, O2 measurements are lacking
prior to 2011, restricting the use of the data in this study to the
period 2011–2018.

For the whole dataset and after quality control, the distribution
of observations per year and month (Figure 2) demonstrates
the systematic under-representation of winter months (which are
quite exclusively sampled thanks to the DYFAMED time series),
as well as the difference in coverage according to year and variable
of interest, such as the lower number of CT and pHT data.

Neural Network Development
Artificial Neural Networks (ANNs) are approximate functions
adapted to any dataset (Marzban, 2009). One of the main
advantages of these methods is their ability to recognize and
exploit relationships in data that are not predefined (unlike
regression techniques) and do not need to be made explicit
by equations (Marzban, 2009). This makes them particularly
suitable for mapping non-linear relationships, provided that data
are sufficiently available to “train” the neural network (Lefevre
et al., 2005). Similarly to Sauzède et al. (2017) and Bittig et al.
(2018) for CANYON and CANYON-B, respectively, an iterative
statistical learning-based method, and more specifically an ANN
was developed to predict carbon and nutrient variables.

Separate the learning data into a training dataset for training
the machine learning method and a validation dataset used to
assess the performance of the trained method is a common
practice. It ensures that the model can produce reliable estimates
outside the range of learning data (generalization capabilities)
(Bishop, 1995). In the present paper, the dataset was randomly
split according to the proportions of 80% and 20% for training
and validation sets, respectively. Additionally, an external dataset
was also used to further validate the ANNs.

Multi-Layered Perceptron
Among the different types of ANNs available, Multi-Layered
Perceptron (MLP; Rumelhart et al., 1986; Bishop, 1995) using
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TABLE 1 | List of cruises, principal investigators, references (when available), and the number of data for each variable of interest [NO−3 , PO3−
4 , Si(OH)4, AT, CT, pHT] in our database.

Cruise Number of measurements Leader References

NO−

3 PO3−
4 Si(OH)4 AT CT pHT

ALMOFRONT 807 843 909 425 0 427 L. Prieur Prieur (1991)

BOUM 0 957 620 576 567 561 T. Moutin Moutin (2008)

CARBOGIB 25 25 25 25 20 25 E. Huertas Huertas (2007a,b,c,d,e)

CASCADE 219 220 220 210 210 210 X. Durieu de Madron Durrieu De MadronXavier, 2011

DEWEX 1074 1076 1076 291 297 297 P. Testor, P. Conan Testor (2013), Conan (2013)

DYFAMED 1370 1361 1474 1112 1124 1026 L. Coppola Coppola et al. (2019a)

GEOSECS_LEG_3 31 31 31 22 22 22 AE. Brainbridge Environmental Sciences Division (1988)

GIFT 15 15 14 15 12 15 E. Huertas Huertas (2007f,g)

HOTMIX 0 315 320 311 104 316 J. Arístegui –

MCXXIS 73 191 199 211 0 0 – http://isramar.ocean.org.il/perseus_data/CruiseInfo.aspx?criuseid=1385
http://isramar.ocean.org.il/perseus_data/CruiseInfo.aspx?criuseid=1435
http://isramar.ocean.org.il/perseus_data/CruiseInfo.aspx?criuseid=1436

MEDIPROD IV 0 157 161 90 90 90 H.J. Minas and B. Coste Minas (1981)

MEDSEA_2013 328 332 332 328 328 324 P. Ziveri Ziveri and Grelaud (2015), Goyet et al. (2015)

METEOR_51_2 0 655 662 231 232 228 W. Roether Schneider et al. (2013)

METEOR_84_3 540 569 573 544 557 573 T. Tanhua Tanhua et al. (2013)

MILLERO 0 0 0 0 0 0 F.J. Millero –

MOOSE_GE_2010 0 329 325 79 79 79 P. Testor Testor et al. (2010)

MOOSE_GE_2011 343 358 362 94 94 90 P. Testor Testor et al. (2011)

MOOSE_GE_2012 763 773 780 142 168 139 P. Testor Testor et al. (2012)

MOOSE_GE_2013 621 583 626 124 124 110 P. Testor Testor et al. (2013)

MOOSE_GE_2014 771 675 912 147 143 140 P. Testor Testor et al. (2014)

MOOSE_GE_2015 661 606 742 147 147 147 P. Testor Testor et al. (2015)

MOOSE_GE_2016 1004 948 1012 162 153 153 L. Coppola Coppola (2016)

MSM72 797 749 819 713 343 855 D. Hainbucher –

OTRANTO 0 86 87 0 0 0 E. Krasakopoulou Krasakopoulou and Souvermezoglou (2013)

PACIFIC_CELEBES 0 0 0 22 22 22 D. Hydes Hydes et al. (2011)

POEMXXIS 0 0 107 221 0 0 – http://isramar.ocean.org.il/perseus_data/CruiseInfo.aspx?criuseid=1653
http://isramar.ocean.org.il/perseus_data/CruiseInfo.aspx?criuseid=1585

PROSOPE 252 231 197 185 0 209 H. Claustre Claustre (1999)

SESAME_IT01 0 204 214 214 0 214 G. Catalano –

SEASAME_IT02 0 149 151 160 0 160 M. Azzaro –

SESAME_IT04 0 139 169 152 158 152 C. Santinelli http://isramar.ocean.org.il/perseus_data/CruiseInfo.aspx?criuseid=5188
http://isramar.ocean.org.il/perseus_data/CruiseInfo.aspx?criuseid=5148

SESAME_IT07 205 204 206 164 0 167 G. Catalano http://isramar.ocean.org.il/PERSEUS_Data/CruiseInfo.aspx?criuseid=5503

SESAME_SPI 205 205 205 205 0 204 G. Navarro http://isramar.ocean.org.il/PERSEUS_Data/CruiseInfo.aspx?criuseid=5451

SESAME_SPII 273 274 273 274 0 271 G. Navarro http://isramar.ocean.org.il/PERSEUS_Data/CruiseInfo.aspx?criuseid=5450

SOMBA 0 0 0 184 184 172 L. Mortier Mortier et al. (2014)

TRANSMED_LEGII 78 78 78 44 0 45 M. Azzaro –

TRANSMED_LEG_III 97 91 99 92 0 94 S. Fonda –
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FIGURE 1 | Location of the 35 cruises used in this study, and of the DYFAMED (red star) and ANTARES (yellow square) sites in the Ligurian Sea, Northwestern
Mediterranean, with a schematic representation of the North Current circulation in surface (black arrows). The DYFAMED time series and the 35 cruises constitute
the training dataset whereas the ANTARES time series is used for validation.

a backpropagation algorithm (Bishop, 1995; Hagan et al., 2014)
has been chosen for its properties as universal approximator
of any continuous and derivable function (Hornik et al., 1989).
A MLP is an ANN organized in several layers (i.e., input, hidden
and output layers) containing neurons that are connected to
each other and able to exchange information through their
connections (Figure 3). These connections are directional, and
each connection is associated with a real number, called the
“weight”. The information is transmitted from one neuron to
another through the weights that are readjusted iteratively during
the training phase to minimize the difference between MLP
outputs and observations.

MLPs use an activation function between the neurons (here
the sigmoid function f (Figure 3), with A and α equal to 4/3 and
1.7159, respectively) to ensure a quasi-linear behavior between
−1 and 1 (Jamet, 2004; Sauzède et al., 2017):

f (x) = A ∗
expαx

− 1
expαx + 1

(1)

The backpropagation algorithm used for the MLP (Bishop, 1995)
can be divided into two steps. First, the forward propagation of a

stimulus (from the inputs) through the MLP generates an output.
Second, the errors are propagated backward from the output
through the MLP to change the weights in the opposite direction
to the error gradient.

The input data were normalized to have an average of
zero and a standard deviation of one using the mean and
standard deviation of the training data to improve convergence
(Goodfellow et al., 2016) and to prevent neural networks
saturation (caused by the difference in the range of the different
input variables) according to:

x =
2
3
∗

x− x̄
σ

(2)

Where x, x̄, and σ are, respectively, the input data, their mean and
their standard deviation. The factor 2/3 brings at least 80% of the
data in the range [−1;1] (Jamet et al., 2012).

In order to improve the generalization capabilities of the
ANNs, Bayesian regularization (Bishop, 1995) was used. This
method minimizes over-fitting by considering the goodness of fit
as well as the network architecture. The training algorithm used
was a supervised iterative training method updating weights
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FIGURE 2 | Distribution of sample numbers (A) per month and (B,C) per year provided by the scientific cruises, after quality control. Note the difference in the y-axis
for the early distributions.

according to Levenberg-Marquardt optimization (Linares-
Rodriguez et al., 2013). This algorithm was chosen because
it is better suited for function fitting and does not require
excessive computing time and power, while still appropriately

generalizing (Beale et al., 2018). To avoid falling to a local
minimum, a linear combination of weights and quadratic
errors was minimized through gradient descent, and multiple
initializations with random weights were performed. Then,
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FIGURE 3 | Schematic representation of the signal-flow of a perceptron (A) and a Multi-Layered Perceptron (B). The inputs are connected to a neuron and each
connection is associated with a weight “w.” The output is produced by combining the inputs and weights and adding the neuron’s bias “bj” before going through a
sigmoid activation function “f.” A Multi-Layered Perceptron is composed of multiple neurons in hidden layers combined in the same manner to produce a single
output.

to determine the appropriate combination of weights and
errors, Bayesian regularization was used. This allowed the
generalization of the neural network through the optimization of
the linear combination of weights and errors (MacKay, 1992a,b;
Foresee and Hagan, 1997; Hagan et al., 2014). The Matlab
Neural Network Toolbox, and more specifically the algorithm
“trainbr,” has been chosen for the ANN implementation. The
ANN optimal architecture or topology (number of inputs,
outputs, number of hidden layers and neurons in each hidden
layer) hinges on the complexity of the relations between inputs
and outputs. After testing several different configurations
through a trial-and-error process, the topologies for neural
networks producing the best results were determined with
2 hidden layers and a number varying between 15 and 50
neurons for the first layer and between 8 and 30 for the second
hidden layer.

ANN Ensemble Model
The robustness and reliability of an ANN can be significantly
improved by combining several ANNs into an ANN ensemble
model (Sharkey, 1999; Linares-Rodriguez et al., 2013). The
construction of an ANN ensemble is done in two main steps.
First, the individual members of the model are created (as
described above in section “Multi-Layered Perceptron”). Second,
the combination of the outputs of these members is averaged
to obtain the unique ensemble output. Thus, for each neural
network [NO−3 , PO3−

4 , Si(OH)4, AT, CT, pHT], the ten best
topologies were chosen according to their statistics (as defined
in section “Validation Statistics Metrics”). The final output of
each neural network ensemble model (ANN-E) corresponds to
the mean of the outputs of these ten best ANNs (if falling
less than a standard deviation from the mean). Additionally,
the best topology (ANN-1) among the ten best was also

selected to compare between a one ANN structure and a neural
network ensemble.

CANYON-MED
Based on the CANYON networks (Sauzède et al., 2017)
principle, the CANYON-MED neural networks corresponding
to neural-network ensemble models (ANN-E) (as described
in “ANN Ensemble Model”) were developed. Similarly to the
work by Sauzède et al. (2017), the chosen input variables
for the networks are in situ measurements of pressure,
temperature, salinity (water mass characteristics), and oxygen
together with geolocation (latitude and longitude) and date
of sampling. Compared to the CANYON networks, where
the year is an input only for pHT and CT, the decimal
year has been chosen as an input for the six CANYON-
MED networks [i.e., NO−3 , PO3−

4 , Si(OH)4, AT, CT, and
pHT]. This change, namely the transformation from day of
year and year to decimal year for each network, was based
on the long-term increases in deep nutrients observed in
the western basin by Béthoux et al. (1998, 2002), as well
as the increases in temperature and salinity in the deep
Mediterranean Sea over the past 40 years (Borghini et al.,
2014) which demonstrate the need of a temporal component in
CANYON-MED networks.

According to the work by Sauzède et al. (2017), the
pressure input was transformed according to the combination
of a linear and a logistic curve to limit the degrees of
freedom of the ANN in deep waters and to account for the
large range of pressure values (from the surface to 4000 m
depth) and a non-homogeneous distribution of data within
this range:

P =
P

20000dbar
+

1(
1+ exp

(
−

P
300dbar

))3 (3)
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Furthermore, similarly to the aforementioned method, and due to
the nature of the transfer function (a sigmoid varying in the range
[−1;1]), the inputs and outputs of the neural networks have been
centered and reduced to also fall into the range [−1;1] (Sauzède
et al., 2016, 2017).

Moreover, also building on the CANYON networks, Bittig
et al. (2018) developed CANYON-B, a Bayesian neural network
improvement of CANYON. CANYON-B is constructed as a
committee of neural networks and provides estimates of nutrients
and carbonate system variables with a local uncertainty (whereas
CANYON provides global uncertainties). Neural networks
committees are composed of several neural networks and use
the spread of predictions between individual members of the
committee to improve the estimation of uncertainty of the
committee output (Bishop, 1995). This other neural network
method was also used for comparative purposes.

The Matlab and R code are available at https://github.com/
MarineFou/CANYON-MED/.

Validation Statistics Metrics
Results were validated using four statistical metrics chosen to
evaluate the performance of the CANYON-MED algorithms
on the validation datasets: the MAE (Mean Absolute Error,
Equation 4), the RMSE (Root Mean Squared Error, Equation 5),
the coefficient of determination (r2, Equation 6) as well as
the slope (Equation 7) of the linear regression between the
CANYON-MED-retrieved values and the corresponding in situ
measured values. The absolute uncertainties are expressed as
concentrations for NO−3 , PO3−

4 , Si(OH)4, AT, and CT (in
µmol.kg−1) and pHT (pH unit) parameters.

MAE =
1
N
∗

N∑
i=1

|XCANYON−MEDi − XDATAi| (4)

RMSE =

√√√√ 1
N
∗

N∑
i=1

(XCANYON−MEDi − XDATAi)2 (5)

r2
=

(
1
N

N∑
i=1

(
XDATAi − XDATAi

) (
XCANYON−MEDi − XCANYON−MEDi

)
σXDATA ∗ σXCANYON−MED

)2

(6)

Slope =
XCANYON−MED − CANYON −MEDintercept

XDATA
(7)

RESULTS AND DISCUSSION

Neural Network Ensemble Improvement
and Overall CANYON-MED Performance
For each studied variable [i.e., NO−3 , PO3−

4 , Si(OH)4, AT, CT, and
pHT], a CANYON-MED ensemble neural network was created

as described in section “ANN Ensemble Model.” Comparing the
statistics for the case using a single neural network (ANN-1) and
the ensemble neural network model (ANN-E, corresponding to
CANYON-MED), the ANN-E model provides the most accurate
nutrient and carbonate system estimates (Table 2). For most
variables, an increase in the determination coefficient is shown
(i.e., from 0.94 to 0.95, 0.90 to 0.92, 0.93 to 0.96, 0.91 to 0.94,
0.84 to 0.86 for NO−3 , PO3−

4 , AT, CT, and pHT, respectively)
as well as a decrease in MAE and RMSE (up to 20% and
30% of the errors, respectively). The low MAE values suggest
that the ANN-E model is not biased, although the slopes are
slightly less than 1, resulting in an underestimation of neural
network outputs.

Using the validation dataset, the performance of the
CANYON-MED method was evaluated by comparing
CANYON-MED’s results with the corresponding in situ
values. Figure 4 shows these results as a function of pressure
while the corresponding statistics are in Table 2. The
accuracies obtained are very satisfactory with, for example,
an accuracy of NO3− extracted from the neural network
method (0.73 µmol.kg−1) comparable to that obtained with
optical sensors such as those mounted on BGC-Argo floats
(1 µmol.kg−1; Johnson et al., 2017). Owing to the lower
number of data presently available in our training dataset
for CT and pHT, the ability of the corresponding neural
networks to generalize correctly is lowered, explaining
the less robust statistics for CT and pHT with slopes
around 0.9, and determination coefficients of 0.91 and 0.84,
respectively (Table 2).

In Figure 4, two different deep value ranges (i.e., two
“patches” of dark blue points) can be distinguished for NO3−
and PO3−

4 corresponding to the deep values of the Western and
Eastern Basins. The Eastern Mediterranean Sea is known to be
more oligotrophic than its western counterpart (Ribera d’Alcalà
et al., 2003; Pujo-Pay et al., 2011). Indeed, deep NO−3 and PO3−

4
values (Figures 4A,B) are lower in the ultraoligotrophic eastern
Mediterranean than in the oligotrophic western Mediterranean,
as evidenced by the differences in concentrations of the
deep values (5 and 10 µmol.kg−1 for eastern and western
NO−3 , respectively and 0.2 and 0.4 µmol.kg−1 for PO3−

4 ,
respectively). The deep Si(OH)4 values are quite similar between
the two Mediterranean basins as it is not a limiting nutrient
(Krom et al., 1991). A larger dispersion is observed for low
concentrations of PO3−

4 and NO−3 (Figures 4A,B) recovered
by CANYON-MED, coinciding with the low concentrations of
surface nutrients in the Eastern Basin (Tanhua et al., 2013;
Kress et al., 2014).

Furthermore, deep AT ranges between 2590 and
2610 µmol.kg−1 (Figure 4D) corresponding to the deep
waters of the Western and Eastern Mediterranean Sea
respectively. The difference between the two basins stems
from an eastward increasing trend for AT mirroring the increase
in salinity and an eastward increase in pHT (Hassoun et al.,
2015). However, this difference is not very visible owing
to the large range of AT. For CT, the difference between
the two Mediterranean basins is lower (Figure 4E). CT
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TABLE 2 | Number of points in the training and validation datasets and statistics between in situ measurements from the validation database and the values predicted by
CANYON-MED’s “best topology” (ANN-1) and CANYON-MED (ANN-E) for NO−3 , PO3−

4 , Si(OH)4, AT, CT and pHT.

CANYON-MED

N r2 Slope MAE RMSE

Training Validation ANN-1 ANN-E ANN-1 ANN-E ANN-1 ANN-E ANN-1 ANN-E

NO−3 (µmol kg−1) 8439 2113 0.94 0.95 0.96 0.96 0.50 0.47 0.79 0.73

PO3−
4 (µmol kg−1) 10785 2644 0.90 0.92 0.95 0.95 0.030 0.026 0.050 0.045

Si(OH)4 (µmol kg−1) 11071 2909 0.96 0.96 0.95 0.95 0.45 0.40 0.66 0.70

AT (µmol kg−1) 6406 1516 0.93 0.96 0.97 0.98 8.0 6.5 12.1 11.1

CT (µmol kg−1) 4154 1024 0.91 0.94 0.92 0.92 8.9 7.0 13.6 10.0

pHT 6090 1447 0.84 0.86 0.93 0.93 0.011 0.010 0.017 0.016

Bold values highlight the best statistic result.

variability is controlled by salinity, biological processes
(such as photosynthesis, oxidation of organic matter,
dissolution and precipitation of CaCO3), as well as air-sea
CO2 exchange (Lovato and Vichi, 2015). Additionally, pHT
(Figure 4F) exhibits a large range below 1500 m (7.98 to
8.1). This also stems from the difference between the two
Mediterranean basins, a pattern similar to that of AT, with
higher surface and deep values in the Eastern Mediterranean Sea
(Rivaro et al., 2010).

Validation on Independent Time Series:
ANTARES
The ANTARES time series was chosen as an additional
independent validation dataset because, among the few time
series in the deep offshore Mediterranean, it is one of the
few where measurements of nutrients and carbonate system
variables are performed semi-regularly and over the entire
water column (Lefevre, 2010). The vertical profiles of the
differences between in situ measurements of the ANTARES
dataset and the values predicted by CANYON-MED are
represented (Figure 5) along with their mean value and
associated standard deviation. In general, the accuracies (Table 3)
of each variable are comparable, albeit slightly worse, to those
determined on the CANYON-MED validation dataset (Table 2).
These accuracies are even lower for AT and CT probably
due to the smaller ranges covered by the ANTARES site.
The errors seem quite homogeneous over the whole water
column (Figure 5), with higher errors when lacking data at
specific depths [e.g., NO−3 and Si(OH)4 at around 1250 dbar].
In addition, we can also note the clear overestimation of
PO3−

4 at the ANTARES time series, evident from the slope
of 1.06 (Table 3) as well as from the observation of a clear
shift in Figure 5B.

However, it is important to note that the ANTARES
dataset, although subject to quality control, still exhibits a high
nutrient dispersion along the water column. This variability
may result from natural phenomena or potential issues in the
measurement accuracy (e.g., measurement uncertainty, sampling
procedure, change of operator, evolution of techniques). In the

latter case, it can explain the dispersion of errors found for
nutrients in Figure 5.

Comparison to Other Methods Available
CANYON Methods
The performance of the CANYON, CANYON-B, and CANYON-
MED methods were compared using the validation dataset (the
remaining 20% of the database not used for training). The
performances were computed by comparing the neural network
outputs for nutrients and carbonate system parameters with
the in situ measurements according to the metrics defined in
section “Validation Statistics Metrics.” Scatterplots of neural
network-retrieved variables against their corresponding in situ
measurements (Figure 6) reveal that the CANYON-MED
method gives much better results than its global counterparts
(i.e., CANYON and CANYON-B). The accuracies (RMSE) have
been reduced, for each variable, by more than half between
CANYON-B and CANYON-MED and by a third for nutrients
and AT between CANYON and CANYON-MED, as shown
by statistics in Table 4. The differences are primarily due
to the under-representation of Mediterranean Sea cruises in
CANYON and CANYON-B’s training dataset (Mediterranean
data poorly represented in the GLODAPv2), as opposed to
the training dataset specifically designed for the Mediterranean
Sea in CANYON-MED.

Specifically, for the CANYON and CANYON-B networks, a
higher scatter is observed for NO−3 and PO3−

4 near-zero values
(Figures 6A,B). CANYON-MED’s MAE and RMSE are halved
compared to CANYON and CANYON-B’s (Table 4). In addition,
a significant number of values are predicted to be negative
(around −0.1 µmol.kg−1). This feature is mainly caused by the
difference in the nutrient concentrations for the oligotrophic
to ultra-oligotrophic Mediterranean Sea which are close to the
detection limits of the nutrients analysis method (Krom et al.,
1991) compared to the higher concentrations found in the global
ocean (high concentrations present in GLODAPv2, CANYON,
and CANYON-B training data).

A very high scatter is also present for Si(OH)4 CANYON
and CANYON-B-retrieved values, especially for the lower values
(i.e., <4 µmol.kg−1) (Figure 6C). In the global ocean, Si(OH)4
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FIGURE 4 | Comparison of the CANYON-MED-retrieved values with the corresponding in situ measurements according to pressure for (A) NO−3 , (B) PO3−
4 ,

(C) Si(OH)4, (D) AT, (E) CT, and (F) pHT. The darker blue points correspond to the deeper points whereas the lighter ones correspond to values closer to the
surface. The 1:1 line is shown in black. The corresponding statistics are shown in Table 2.
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FIGURE 5 | Vertical profiles of the differences between in situ measurements from the ANTARES time series and the values predicted by CANYON-MED for
(A) NO−3 , (B) PO3−

4 , (C) Si(OH)4, (D) AT, (E) CT, and (F) pHT. The black line represents the mean value and the shaded area represents the standard deviation
around this mean value. The statistics of the corresponding regression are presented in Table 3.
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TABLE 3 | Statistics between in situ measurements from the ANTARES time series and the values predicted by CANYON-MED for NO−3 , PO3−
4 , Si(OH)4, AT, CT and pHT.

N r2 Slope MAE RMSE

NO−3 (µmol kg−1) 411 0.89 0.97 0.70 1.09

PO3−
4 (µmol kg−1) 390 0.85 1.06 0.064 0.079

Si(OH)4 (µmol kg−1) 410 0.86 0.95 0.8 1.1

AT (µmol kg−1) 294 0.80 0.86 5.2 6.8

CT (µmol kg−1) 295 0.94 0.90 5.2 7.4

pHT 293 0.85 0.85 0.0099 0.0142

concentrations range from low concentrations (<10 µmol.kg−1)
similar to those found in the Mediterranean Sea to very
high concentrations (up to 200 µmol.kg−1) at high latitudes
(Ragueneau et al., 2000; Pujo-Pay et al., 2011), thus explaining
the difference in scatter between the Si(OH)4 values obtained by
CANYON and CANYON-MED.

AT and CT retrieval performance appears to be relatively
similar using the three methods (Figures 6D,E) due to the wide
range of values of these two variables, which reduces differences
between approaches. However, for AT a large spread is present
in CANYON estimates. Indeed, the MAE and RMSE range to a
third less than CANYON and CANYON-B (Table 4). Moreover,
a larger dispersion remains perceptible in the values predicted by
CANYON and CANYON-B with predicted values lower by up to
100 µmol.kg−1 than their in situ measurements.

Likewise, pHT values are comparable between the three
neural network-based methods (Figure 6F), with CANYON-
MED projecting pHT with the lowest spread. Compared to the
global average surface ocean, the Mediterranean Sea will be
subject to amplified acidification (Touratier and Goyet, 2009,
2011; Palmiéri et al., 2015). The Mediterranean Sea is known to
absorb more anthropogenic CO2 per unit area (Palmiéri et al.,
2015). Essentially, the Mediterranean’s high AT increases its
capacity to absorb anthropogenic CO2 and the short timescales
at which its deep waters are ventilated (Schneider et al., 2014)
allow for deeper penetration of this CO2, thus resulting in a
lower pHT.

Other Methods
A key advantage of CANYON-MED lies in the few inputs
required to use it, but other methodologies exist to predict
nutrients and carbonate system variables. CANYON-MED and
the methods described in this section were applied to our
validation dataset and their results evaluated by the MAE and
RMSE (as defined in section “Validation Statistics Metrics”) are
presented in Table 5.

First of all, Carter et al. (2018) developed methods for
locally interpolated estimations of NO−3 , PO3−

4 , Si(OH)4,
AT, and pHT (LINR, LIPR, LISIR, LIARv2, and LIPHR,
respectively). These methods base their computations on
equations requiring salinity, Apparent Oxygen Utilization
(derived from O2), depth, temperature, as well as nutrients
concentrations. For comparability to our method and its
possible application on BGC-Argo floats, these regressions were
applied on our validation dataset using only the equations
with similar inputs as our neural networks (i.e., temperature,

depth or pressure for CANYON-MED, salinity, and O2). The
computations with Locally Interpolated Regressions (LIRs) were
performed using their functionality that selects, using the given
inputs, the lowest-uncertainty estimate among possible estimates
(Carter et al., 2018).

Furthermore, also building on the CANYON networks, and
in addition to CANYON-B presented in section “CANYON-
MED,” Bittig et al. (2018) developed another neural network-
based method: CONTENT. This method predicts carbonate
system variables. In CONTENT, CANYON-B estimates of the
four carbonate system variables (i.e., AT, CT, pHT, pCO2)
are combined through calculations of every pair (as the four
variables can be derived from any pair of them). CONTENT
therefore provides better estimates through the use of all
four parameters of the carbonate system, whereas CANYON-
B provides a unique direct estimate. These methods have
the same inputs as CANYON-MED, except for the year
which is only an input for the CT, pHT and pCO2 neural
networks in CANYON-B.

In addition, specifically for the Mediterranean Sea, Hassoun
et al. (2015) derived equations to calculate AT and CT from
salinity hereafter referred to as AT-S and CT-S. Equations are
available for the entire Mediterranean Sea as well as specific
equations for each sub-basin and several depth layers. For our
comparison, the global equations were used since some equations
for specific depth layers and locations had low performance.
Furthermore, it is possible to use a single equation over the whole
Mediterranean Sea, to derive AT from salinity, if marginal seas
and regions of important freshwater influence are not considered
(Cossarini et al., 2015), which is relevant because CANYON-
MED is not suited for coastal areas.

As shown in Table 5, CANYON-MED has lower errors
for all predicted variables than the methods presented above.
CONTENT has very similar errors in the prediction of carbonate
system parameters compared to CANYON-B. The equations
from Hassoun et al. (2015), predict AT and CT with errors
up to four times the errors of CANYON-MED. Moreover, the
LIRs clearly stand out, with errors up to ten times higher than
the other methods. However, it should be stressed that the
results from the LIRs would have been more robust (errors
10% lower but still higher than the other methods, data not
shown) if they had been applied using all inputs, that is including
nutrients as predictors, but as mentioned before, for aims of
comparability, they were not.

Generally, CANYON-MED neural networks are more
accurate than other methods with the same inputs. This is not
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FIGURE 6 | Comparison of the CANYON (brown dots), CANYON-B (green dots) and CANYON-MED (blue dots) -retrieved values with the corresponding in situ
measurements for (A) NO−3 , (B) PO3−

4 , (C) Si(OH)4, (D) AT, (E) CT, and (F) pHT. The 1:1 line is shown in black.
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TABLE 4 | Statistics between the CANYON, CANYON-B, and CANYON-MED -retrieved values with the corresponding in situ measurements applied on the entire
database for NO−3 , PO3−

4 , Si(OH)4, AT, CT and pHT.

CANYON CANYON-B CANYON-MED

r2 Slope MAE RMSE r2 Slope MAE RMSE r2 Slope MAE RMSE

NO−3 (µmol kg−1) 0.71 0.69 1.37 1.81 0.84 0.82 0.95 1.34 0.95 0.96 0.47 0.73

PO3−
4 (µmol kg−1) 0.60 0.81 0.075 0.107 0.78 0.85 0.049 0.074 0.92 0.95 0.026 0.045

Si(OH)4 (µmol kg−1) 0.38 0.46 2.28 2.98 0.86 0.92 0.97 1.30 0.96 0.95 0.40 0.70

AT (µmol kg−1) 0.77 0.99 21.5 32.7 0.88 0.99 11.2 20.1 0.96 0.98 6.5 11.1

CT (µmol kg−1) 0.79 0.91 13.6 19.9 0.83 0.84 12.3 17.8 0.94 0.92 7.0 10.0

pHT 0.68 0.83 0.018 0.025 0.78 0.83 0.014 0.020 0.86 0.93 0.010 0.016

TABLE 5 | Performance indicators on the 20% validation dataset of CANYON
(Sauzède et al., 2017), CANYON-B (Bittig et al., 2018), CANYON-MED (this
paper), CONTENT (Bittig et al., 2018), AT-S and CT-S (Hassoun et al., 2015),
LIARv2, LINR, and LIPHR (Carter et al., 2018) for NO−3 , PO3−

4 , Si(OH)4, AT,
CT, pHT.

Method MAE RMSE

NO−3 (µmol kg−1) CANYON
CANYON-B
CANYON-MED
LINR

1.37
0.95
0.47
4.14

1.81
1.34
0.74
5.90

PO3−
4 (µmol kg−1) CANYON

CANYON-B
CANYON-MED
LIPR

0.076
0.049
0.026
0.228

0.107
0.075
0.045
0.308

Si(OH)4 (µmol kg−1) CANYON
CANYON-B
CANYON-MED
LISIR

2.28
0.97
0.43
4.32

2.98
1.30
0.66
7.93

AT (µmol kg−1) CANYON
CANYON-B
CANYON-MED
CONTENT
LIARv2
AT-S

21.53
11.18
6.51
11.52
47.64
15.59

32.74
20.07
11.09
21.24
67.08
30.21

CT (µmol kg−1) CANYON
CANYON-B
CANYON-MED
CONTENT
CT-S

13.64
12.34
6.98
12.54
45.24

19.88
17.85
10.03
17.58
90.37

pHT CANYON
CANYON-B
CANYON-MED
CONTENT
LIPHR

0.0181
0.0140
0.0102
0.0156
0.0672

0.0254
0.0204
0.0158
0.0216
0.1173

Bold values highlight the best statitstic result.

surprising as it was built specifically for the Mediterranean
Sea whereas CANYON, CANYON-B, CONTENT, and the
LIRs were developed for the global ocean. However, high MAE
and RMSE were obtained using AT-S and CT-S from Hassoun
et al. (2015). This can be explained by the fact that, while
having been developed specifically for the Mediterranean Sea,
these equations were derived using data collected only in May
whereas our validation dataset covers as much as possible the
whole year. Furthermore, we only used the global equations
developed for the entire Mediterranean Sea and for all depths.

It is acknowledged that the equations derived for specific areas
and depth layers would have produced more accurate results in
targeted areas, but the aim was to compare the methods on a
global basin scale. Therefore, it is suggested that, while allowing
for easy computations of carbonate system variables in cases
where they are lacking, the simple approximation from salinity
might not always produce the best results on a varied dataset.

Overall, CANYON-MED stands out as the most robust
method for the prediction of nutrients and carbonate system
parameters in the Mediterranean Sea. The variables required are
limited to systematically measured variables such as temperature,
pressure, and salinity as well as high-quality O2 measurements
as inputs which are also widely measured (Bittig and Körtzinger,
2015). Thus, with the increased densification of high-quality O2
measurements from BGC-Argo floats, as well as ocean gliders and
moorings in the Mediterranean Sea (Testor et al., 2019; Tintoré
et al., 2019; D’Ortenzio et al., 2020), CANYON-MED has a strong
potential to support the development of new applications for
marine biogeochemistry.

As is the case for all neural networks, the combination of the
weights connecting the different hidden layers is not transparent,
contrary to the weights obtained with linear regressions (Cortez
and Embrechts, 2013). Nevertheless, a sensitivity analysis of the
relative contribution showed no significant difference between
the inputs of CANYON-MED, also indicating that no input
parameter stands out over the others in an unrealistic manner.
Thus, confirming the relevance of the chosen inputs and their
balance as none is superfluous nor solely driving the neural
network’s outputs.

It should be underlined that other approaches allow for
the prediction of nutrients and carbonate system variables
with higher accuracies than ours. But these methods are
often developed for the global ocean and might therefore not
be as satisfactory in the semi-enclosed Mediterranean Sea.
Furthermore, they often require a larger amount of inputs to
predict a single variable. For example, Broullón et al. (2019)
developed a neural network method called NNGv2 to derive AT
from geolocation, depth, temperature, salinity, and O2 as well as
nitrate, phosphate and silicate concentrations. NNGv2 predicts
AT, for the global ocean, with a RMSE of 5–6 µmol.kg−1, about
half the RMSE obtained when retrieving AT using CANYON-
MED. However, it is highly likely that those results would worsen
in the Mediterranean Sea as NNGv2 was trained using the
GLODAPv2 database (Olsen et al., 2016), similarly to CANYON,

Frontiers in Marine Science | www.frontiersin.org 14 August 2020 | Volume 7 | Article 620

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-00620 January 22, 2021 Time: 16:15 # 15

Fourrier et al. Mediterranean Estimations of Nutrients and Carbonate System

CANYON-B, and CONTENT, in which the Mediterranean Sea is
poorly described. Furthermore, NNGv2 requires more predictors
than CANYON-MED. The additional variables [Si(OH)4, PO3−

4 ,
NO−3 ] are not systematically measured, which hinders the use
of this method, especially with the long-term objective to be
applied on BGC-Argo, which are only equipped with O2 sensors
(Claustre et al., 2020 and references therein).

Example of Application: Mediterranean
Deep Values
Using our 20% validation dataset, the averages of CANYON-
MED outputs were calculated for each variable [i.e., NO−3 ,
PO3−

4 , Si(OH)4, AT, CT, and pHT] from 1000 m depth to
the bottom of the water column (4000 m) and averaged. The
corresponding in situ measurements were averaged in the same
way. The differences between in situ values and those predicted
by CANYON-MED are presented in Figure 7. The choice of deep
values relies on their seasonal stability.

Overall, the variables provided by CANYON-MED and
the corresponding in situ measurements are in satisfactory
agreement, i.e., the difference is close to zero. No spatial trend is
observed in the differences between the in situ data and neural
network’s outputs indicating that CANYON-MED adequately
predicts without bias values along the known oligotrophy and
acidity gradients between the Eastern and Western basins (Krom
et al., 1991; Flecha et al., 2015). However, a few outlier points
stand out for each parameter. These larger differences may be due
to seasonal imprints (the data presented in Figure 7 refer to the
complete validation dataset, regardless of their date and time).

In the Algero-Provencal basin, a deep AT value stands out
with a high difference (Figure 7D). The same occurs for a
few CT and pHT values in the Gulf of Lion (Figures 7E,F).
These extreme values could be explained by local phenomena
also impacting temperature, salinity and/or O2, the neural
network’s inputs, consequently impacting the retrieved
values. Indeed, these areas are known to be dynamic with
an eddy-driven mesoscale circulation, where the anomalous
biogeochemical profiles could originate from (Pessini et al.,
2018). We therefore hypothesize that discrete data may
not sufficiently reflect the vertical distribution of these
variables in a dynamic region such as the Gulf of Lion,
owing to the lack of adequate observational resolution.
High differences can also stem from erroneous stations not
detected by the quality controls but being highlighted in
CANYON-MED’s outputs, causing the differences to deviate
from zero values.

Additionally, some points standing out as high differences
(exceptionally low values) for CT (and AT) in the Alboran Sea,
Gulf of Lion and Algero-Provencal basin appear, after further
investigation, to correspond to the first sampling campaign of the
carbonate system in our database (i.e., in 1981). We, therefore,
hypothesize that a difference in the quality of the measurements
could explain some of the extreme deviations. Furthermore, for
all variables, a larger variability can be found in the Alboran Sea
than in the rest of the Mediterranean Sea. This variability can be a
result of the influence of the Atlantic Ocean through the Gibraltar

TABLE 6 | Statistics between the CANYON-MED retrieved values and the
corresponding in situ measurements on the validation database according to
Basin (West and East) for NO−3 , PO3−

4 , Si(OH)4, AT, CT, pHT.

CANYON-MED

r2 MAE RMSE

NO−3 (µmol kg−1) West
East

0.95
0.89

0.48
0.45

0.79
0.67

PO3−
4 (µmol kg−1) West

East
0.89
0.87

0.031
0.021

0.052
0.029

Si(OH)4 (µmol kg−1) West
East

0.96
0.96

0.43
0.43

0.63
0.70

AT (µmol kg−1) West
East

0.95
0.87

6.73
7.88

10.57
11.81

CT (µmol kg−1) West
East

0.92
0.73

8.56
9.19

12.35
17.60

pHT West
East

0.85
0.83

0.0098
0.0112

0.0156
0.0165

Strait and the strong associated mesoscale activity (Viúdez et al.,
1998; Baldacci et al., 2001).

Given the disparate spatial coverage of the training data
available, we expected CANYON-MED to predict nutrients and
carbonate system variables with higher errors in the Eastern Basin
compared to the Western Basin. As shown by the statistics for
each basin, gathered in Table 6, carbonate system parameters are
indeed predicted with less accuracy in the Eastern Basin. As for
nutrients, the difference between Eastern and Western Basin is
less marked: a slightly lower MAE and RMSE for NO−3 and PO3−

4
in the East are linked to a lower r2. The difference between basins
is mainly caused by the disparity in spatial and temporal coverage
in our training database, stemming from a lack of cruises in the
Eastern part of the Mediterranean Sea.

CANYON-MED remains unsatisfactory in areas where
training data are too scarce (e.g., South Ionian Sea, off the Libyan
coasts) and results accuracy might be lowered during anomalous
events (extreme meteorological conditions impacting physical
variables, such as deep convection). It should also be recalled that
CANYON-MED is not suited for coastal areas.

CONCLUSION AND PERSPECTIVES

We have demonstrated the limited performance of the CANYON
and CANYON-B methods to retrieve nutrients and carbonate
system variables in the Mediterranean Sea. A new approach,
CANYON-MED, was subsequently created and trained using an
artificial neural network ensemble model. The approach takes
advantage of the accuracy of EOVs systematically measured
today (Wang et al., 2019), whether during scientific cruises or
by autonomous platforms. The model was built as an ensemble
of 10 optimized multi-layered perceptron feed-forward neural
networks. CANYON-MED inputs were in situ measurements of
pressure, temperature, salinity, and O2 as well as geolocation
(latitude and longitude) and sampling date (day of year and year).

The resulting ensemble model produces accurate estimates
of nutrients and carbonate system variables [0.73, 0.045, and
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FIGURE 7 | Difference between in situ measurements and the corresponding values predicted by CANYON-MED averaged from 1000 m to the bottom for (A) NO−3 ,
(B) PO3−

4 , (C) Si(OH)4, (D) AT, (E) CT, and (F) pHT.

0.70 µmol.kg−1 for NO−3 , PO3−
4 and Si(OH)4, respectively, and

0.016 units, 11 µmol.kg−1 and 10 µmol.kg−1 for pHT, AT,
and CT, respectively]. With such accuracy, CANYON-MED can
produce estimates of variables that are not currently measured
by autonomous platforms, as is the case for PO3−

4 , Si(OH)4,
AT, and CT. CANYON-MED can also help identify periods and
areas in the Mediterranean Sea where the data density remains
too low in space and/or time, which limits the understanding
of some processes and the assessment of long-term variability.
Indeed, the spatial and temporal domains where the method
provides the least satisfactory results are related to weaknesses in
the training database that does not sufficiently capture variability
in space and time. Furthermore, more dynamic regions such as
deep convection zones and mesoscale eddies may be less well
reproduced by CANYON-MED.

Ship-based sampling remains imperfect either because of
limited ship-time or human resources or because of weather
conditions that prevent sampling in specific areas or at certain
times of the year such as winter. CANYON-MED has the
capability to fill gaps in observations in a cost-effective way,
for example by filling the gaps in time series (subject to the

absence of exceptional events). It can also be applied to a large
network of BGC-Argo profiling floats and underwater gliders
equipped with CTD and oxygen sensors, thus increasing the
flow of biogeochemical data from systematically measured basic
variables. CANYON-MED can also contribute to the quality
control of NO−3 and pHT obtained from these autonomous
platforms by providing data to correct for sensor drift during
deployments and adjust deep values (e.g., Johnson et al.,
2016, 2015; Sauzède et al., 2020). In line with this, multiple
Eulerian moorings acquire and provide high-quality and
high-frequency measurements of temperature, salinity, and O2
over the water column at fixed locations in the Mediterranean
Sea (e.g., HYDROCHANGES, EMSO, and OceanSITES
networks). CANYON-MED can be applied to data collected
at these sites, complementing the measured core variables,
and generating high-frequency biogeochemical datasets, hence
supplementing temporally limited oceanographic cruises.

Finally, since the accuracy of the virtual data obtained for
NO−3 by this approach is comparable to that obtained with
autonomous platforms, their use in oceanography would be
beneficial, in particular by increasing the datasets used for
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the assimilation of some regional models that still lack crucial
reference data (Doney et al., 2009; Cossarini et al., 2019).
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