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Anthropogenic contaminants in the marine environment often biodegrade slowly,
bioaccumulate in organisms, and can have deleterious effects on wildlife immunity,
health, reproduction, and development. In this study, we evaluated tissue toxicant
concentrations and pathology data from 83 odontocetes that stranded in the
southeastern United States during 2012–2018. Mass spectrometry was used to
analyze blubber samples for five organic toxicants (atrazine, bisphenol-A, diethyl
phthalates, nonylphenol monoethoxylate [NPE], triclosan), and liver samples were
analyzed for five non-essential elements (arsenic, cadmium, lead, mercury, thallium),
six essential elements (cobalt, copper, manganese, iron, selenium, zinc) and one
toxicant mixture class (Aroclor1268). Resultant data considerably improve upon the
existing knowledge base regarding toxicant concentrations in stranded odontocetes.
Toxicant and element concentrations varied based on animal demographic factors
including species, sex, age, and location. Samples from bottlenose dolphins had
significantly higher average concentrations of lead, manganese, mercury, selenium,
thallium, and zinc, and lower average concentrations of NPE, arsenic, cadmium, cobalt,
and iron than samples from pygmy sperm whales. In adult female bottlenose dolphins,
average arsenic concentrations were significantly higher and iron concentrations were
significantly lower than in adult males. Adult bottlenose dolphins had significantly higher
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average concentrations of lead, mercury, and selenium, and significantly lower average
manganese concentrations compared to juveniles. Dolphins that stranded in Florida had
significantly higher average concentrations of lead, mercury, and selenium, and lower
concentrations of iron than dolphins that stranded in North Carolina. Histopathological
data are presented for 72 animals, including microscopic evidence of Campula spp.
and Sarcocystis spp. infections, and results of Morbillivirus and Brucella spp. molecular
diagnostic testing. Sublethal cellular changes related to toxicant exposure in free-ranging
odontocetes may lead to health declines and, in combination with other factors, may
contribute to stranding.

Keywords: dolphins, endocrine disrupting contaminants, EDCs, heavy metals, mercury, odontocete, pathology,
toxicity

INTRODUCTION

Anthropogenic toxicants are released into marine ecosystems
through a number of different sources, biodegrade at variable
rates, and many can persist for decades or even centuries
(Godfray et al., 2019). The amount of manufactured waste
released into the environment has grown exponentially over time,
in line with the rampant mass production of consumer products
catering to a rapidly growing human population (Cole et al.,
2011). Plastics are a particularly harmful form of marine debris,
because they are durable, slow to biodegrade, and susceptible
to indiscriminate disposal, making environmental accumulation
a major concern (Barnes et al., 2009; Cole et al., 2011). In
addition to the sheer physical accumulation of plastics in the
oceans and the ingestion of plastic materials by all kinds of
organisms, plastics and other waste contain and attract harmful
contaminants that can bioaccumulate in organisms and may pose
a threat to their health, including reproduction, development,
and immunity (Mato et al., 2001; Gregory, 2009; Worm et al.,
2017). Many plastic components and plasticizers (substances
added to synthetic resins to produce or promote plasticity)
include phthalates, bisphenol-A, nonylphenol ethoxylates, and
polychlorinated biphenyls (PCBs); although typically associated
with their use as electrical insulators in capacitators and
transformers, PCBs were also used as plasticizers and were shown
by early researchers to be associated with plastic ingestion in
marine animals (Gregory, 1978; Ryan et al., 1998). Plasticizers
are known or suspected endocrine disrupting chemicals (EDCs),
a structurally and functionally active group of xenobiotics that
can have adverse effects on multiple organ systems of wildlife
species (Staples et al., 1997; Barnes et al., 2009; Oehlmann et al.,
2009; Muncke, 2011; Frouin et al., 2012; Mathieu-Denoncourt
et al., 2015). Previously demonstrated adverse effects of EDCs in
live animals include malformed reproductive organs, disruption
of spermatogenesis, gonadal dysgenesis, reduced metamorphosis,
apoptosis in liver and gonads, hormonal imbalances, and renal

Abbreviations: Arorclor1268, polychlorinated biphenyl isomer 1268; BPA,
bisphenol A; DEP, diethyl phthalate; EDCs, endocrine-disrupting contaminants;
FAU-HBOI, Florida Atlantic University, Harbor Branch Oceanographic
Institute; GC-MS/MS, gas chromatography-tandem mass spectrometry; ICP-
MS, inductively-coupled plasma mass spectrometry; IRL, Indian River Lagoon;
NPE, nonylphenol ethoxylate.

dysfunction (Bustamante et al., 2003; Hayes et al., 2010; Park
et al., 2010; Muncke, 2011; Canesi and Fabbri, 2015; Mathieu-
Denoncourt et al., 2015; Li et al., 2017).

Many other toxic chemicals including heavy metals can be
sourced to anthropogenic products, tend to biomagnify within
the marine food web, and bioaccumulate within bodily tissues
of higher trophic organisms, including cetaceans (Bryan et al.,
2007; Stavros et al., 2007; Bryan et al., 2012; Aubail et al.,
2013; Monteiro et al., 2016a). Elements are grouped as essential
(cobalt [Co], copper [Cu], iron [Fe], manganese [Mn], selenium
[Se], zinc [Zn]) – those that have a biological function in
organisms but can become toxic at high concentrations – and
non-essential (arsenic [As], cadmium [Cd], mercury [Hg], lead
[Pb], thallium [Tl]), those with no known biological function
(Chang et al., 1996). Previous studies have shown that exposure
to certain elements can have adverse effects in marine animals
including renal damage, immunosuppression, and neurological,
developmental, and reproductive impairments (Stavros et al.,
2007; Jakimska et al., 2011; Frouin et al., 2012). Inorganic
element concentrations in odontocetes have been documented
in many tissues including blubber, liver, kidney, skin, and blood
(Bustamante et al., 2003; Santos et al., 2006; Stavros et al., 2007;
Kunito et al., 2008; Schaefer et al., 2011, 2015; Stavros et al.,
2011; Bryan et al., 2012; Aubail et al., 2013; Monteiro et al.,
2016a,b; Titcomb et al., 2017). As apex predators with relatively
long lifespans, odontocetes are sentinel species that can readily
reflect anthropogenic threats through their health (Wells et al.,
2004, 2005; Bossart, 2011).

In addition to the numerous pollutants already present in
the biosphere, hundreds of new compounds with incomplete
toxicity testing enter the consumer market and therefore the
oceans every year; as a result a considerable information lag
arises between the initial creation and use of these chemicals
and the time at which researchers and advocates understand
the extent to which they affect the health of individuals,
populations, and ecosystems (Weijs and Zaccaroni, 2016).
Exposure to multiple toxicants and/or EDCs often happens
simultaneously and can severely impact organismal homeostasis
and function, since these substances can exert additive or
synergistic effects which could lead to decreased growth rates and
deleterious effects on long-term functional population viability
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(Crews et al., 2003; Beck et al., 2013; Worm et al., 2017).
Due to a paucity of data on how EDCs and lesser-studied
essential and non-essential elements affect marine mammals,
inferences regarding the biological effects of potentially toxic
compounds are primarily based on studies that used laboratory-
reared animals in controlled experiments (Ferzand et al.,
2008; Posnack et al., 2012; Gear and Belcher, 2017). Thus, as
part of ongoing efforts to catch up with the output of the
chemical industry and to provide more information on existing
anthropogenic contaminants in free-ranging odontocetes, the
objectives of this study were to: (1) establish concentrations of
specific toxicants and elements (atrazine, bisphenol-A [BPA],
diethyl phthalate [DEP], polychlorinated biphenyl mixture
1268 [Aroclor1268], nonylphenol monoethoxylate [NPE, as a
representative of the class of nonylphenol ethoxylates], triclosan,
arsenic, cadmium, cobalt, copper, iron, lead, manganese,
mercury, selenium, thallium, and zinc) in liver and blubber of
stranded odontocetes from the southeastern United States, (2)
evaluate relationships between contaminants and demographic
parameters (species, sex, age class, and stranding location), and
(3) describe histopathologic lesions observed in these cases.
This study provides baseline concentrations of several widely
used and dispersed anthropogenic contaminants in biological
samples taken from cetaceans that stranded in the southeastern
United States during 2012–2018. Relating these concentrations
to animal demographic and histopathology data allows us to
gain insight into secondary (biotic or abiotic) factors that may
influence exposure to and biological effects of certain toxicants.

MATERIALS AND METHODS

Sample and Data Collection
Blubber and liver samples were collected at necropsy from
odontocetes that stranded along the Atlantic coast of Florida
(northern extent: Sebastian Inlet; southern extent: Biscayne
Bay) and North Carolina (Albemarle, central coast, Pamlico
Sound, northern and southern coasts) during 2012–2018.
Stranding response and necropsies were conducted by regional
marine mammal stranding network partners including Florida
Atlantic University Harbor Branch Oceanographic Institute’s
(FAU-HBOI) Stranding, Health, and Rehabilitation Program,
and the Marine Mammal Stranding Network of the North
Carolina Central Coast. Euthanasia decisions were made by
attending veterinarians based on prognosis and in accordance
with protocols issued by the National Marine Fisheries Service
for cetacean stranding response and euthanasia (Whaley and
Borkowski, 2009). One blubber sample was collected from a
live dolphin during dorsal fin tagging following live capture for
disentanglement, using local anesthesia and aseptic technique.
Body condition was determined subjectively just prior to
necropsy/sampling, based on gross visibility of the ribs, scapulae,
degree of indentation lateral to the dorsal fin, and degree of
post-nuchal indentation. Each animal’s body condition was thus
categorized as either emaciated, thin, good, or robust.

For all animals, post-mortem external and internal
examinations were performed and tissue samples were

collected according to standard protocols for cetacean necropsy
(Pugliares et al., 2007). Representative tissue samples of
all major organs and any grossly observed lesions were
collected and placed into 10% neutral buffered formalin.
Depending on the circumstances of the necropsy, variable
tissues were available for histological review and included
brain, skin, heart, lung, liver, kidney, spleen, lymph nodes,
adrenal, stomach, intestines, thyroid, thymus, and pancreas.
Formalin-fixed tissues were embedded in paraffin, sectioned at
4–7 µm, stained with hematoxylin and eosin, and examined
microscopically by a board-certified veterinary pathologist.
Depending on the circumstances, tissue samples were submitted
for infectious disease testing using polymerase chain reaction
(PCR) assays. Specifically, Morbillivirus testing was performed
using the universal Morbillivirus primers directed against the
phosphoprotein gene (after Barrett et al., 1993); and testing
for Brucella spp. was performed using a real-time PCR assay
for Brucella spp. DNA (after Wu et al., 2014). Representative
blubber (2–5 g each) and liver (0.25–0.5 g each) samples
were collected from each animal, stored in unlined tinfoil or
cryogenic vials, and frozen at –80◦C for up to 5 years prior to
further analysis.

Some of the bottlenose dolphin (Tursiops truncatus) cases
from Florida were known inhabitants of the Indian River
Lagoon (IRL), representing a well-studied coastal population
with historically high body toxicant concentrations (Fair et al.,
2009; Schaefer et al., 2011, 2015). For the majority of these
IRL dolphins, extensive photographic documentation exists,
often encompassing individual dolphin identification based on
dorsal fin characteristics, preferred geographic location(s) and
behaviors, family lineage, and approximate age. The FAU-HBOI
Dolphin Photo ID Program has been systematically collecting
these data on IRL-resident dolphins since 1996.

Case Review
Case data analyzed included: species, date and location
stranded, morphometric measurements including total body
length (cm) and weight (kg, when available), and necropsy
results including histopathologic and ancillary diagnostics
data. Data were reviewed for the frequency and severity of
histopathologic lesions, with particular attention paid to lesions
in the hepatobiliary, lymphoreticular, cardiovascular, nervous,
endocrine, and genitourinary systems, as these organ systems
may be more likely to be affected by acute and/or chronic
exposure to toxicants (Haschek et al., 2010).

Organic Toxicant Analyses
Twenty-seven liver samples and 36 blubber samples were shipped
overnight on dry ice to the University of Georgia Center
for Applied Isotope Studies in Athens, GA, United States,
where they were analyzed for concentrations of Aroclor1268

(liver), and atrazine, BPA, DEP, NPE, and triclosan (blubber)
using gas chromatography-tandem mass spectrometry (GC-
MS/MS). The majority of these samples were stored in foil;
to circumvent plastic contamination of any samples that were
stored in cryovials, the central portion of the tissue sample
that did not touch the cryovial was used. Furthermore, ‘blank’
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extracts from cryovials were used to determine the detection
limit for that GC-MS/MS run. All samples were analyzed dry
and extracted using HPLC-grade solvents. Lipid content was
not analyzed in the samples, therefore toxicant and nutritional
element concentrations were not normalized to lipid content.
To prepare the samples, about 2 g of each dried tissue was
weighed in a 50 mL centrifuge tube and then treated with 20 mL
of a 1:1 mixture containing acetone/dichloromethane (DCM)
(Fisher Scientific, Hampton, NH, United States). The samples
were then placed in an ultrasonic bath for 30 min, followed by
centrifugation for 15 min at ∼1,900 g (3,000 rpm). The clear
supernatant layers were then transferred into evaporation tubes
while the residues were re-extracted with another 20 mL of
the acetone/DCM mixture, centrifuged and their supernatant
layers were combined with the previous extracts in the relevant
evaporation tubes. The combined extracts were evaporated
under nitrogen at 55◦C. The residues left were dissolved
by adding 2 separate aliquots each of 0.5 mL of methanol
and vortex shaken for 1 min. Both methanol aliquots were
combined in 1 mL volumetric tubes and made up to volume
with methanol. Internal standard solution (50 µl of 40 µg
mL−1 Pd10) was added and the contents of the volumetric
tubes were mixed thoroughly then transferred into 2 mL gas
chromatography vials, capped and store refrigerated (4◦C) until
analysis. Standards for atrazine, BPA, DEP, and triclosan were
acquired as 1,000 µg/mL ampoules from Absolute Standards,
Inc. (Hamden, CT, United States). The standard for NPE was
acquired from Fisher Scientific Co. (Suwanee, GA, United States).
The Aroclor standard was obtained as 1,000 µg/mL in iso-
octane from Supelco (Bellefonte, PA, United States). Organic
contaminants were analyzed using GC-MS/MS with a CP-3800
oven, CP-8400 autosampler with CP-8410 auto-injector, and the
4000 Ion Trap Mass Spectrometer (Agilent Technologies, Santa
Clara, CA, United States). Electronic ionization was run under
the MS Workstation software version 6.9 SP1. Separation of
target compounds was accomplished using a capillary column
VF-5 ms 30 m× 0.25 mm ID and 0.25 µm internal coat thickness
from Agilent Technologies, and a helium mobile phase with a
flow rate of 1 mL min−1. The oven temperature for analysis
of the four contaminants was held at 80◦C for 1 min and
increased at a rate of 6◦C min−1 until it reached 280◦C and
held at this temperature for 10 min. For Aroclor1268, the oven
temperature was held at 80◦C for 2 min, then increased to 200◦C
at 20◦C min−1, then increased again at 10◦C min−1 to 300◦C
and held for 5 min.

Supplementary Table S1 shows the chromatographic time
segments of mass spectrometer acquisition parameters of the
four toxicants in blubber extracts as optimized using the
Selected Ion Storage (SIS) technique pertinent to Ion Trap mass
spectrometers, and the SIS parameters for the Aroclor1268 extract
in the liver samples. All concentrations are reported in µg g−1 dry
weight (dw). Detection limits in µg g−1 were as follows: atrazine,
BPA, DEP, NPE: 0.01; triclosan: 0.02; Aroclor1268: 0.1. Laboratory
blanks were analyzed during each analytical run to ensure
that there was minimal laboratory contamination. Two blubber
samples were analyzed in duplicate to ensure reproducibility of
results. The average coefficients of variation (CV) for the blubber

duplicate samples were as follows: atrazine, 2.88%; BPA, 0%; DEP,
0.53%; NPE, 7.75%; triclosan, 3.79%.

Essential and Non-essential Element
Analyses
Fifty-four liver samples were shipped overnight on dry ice to
Michigan State University’s Veterinary Diagnostic Laboratory
(MSU VDL) in Lansing, MI, United States, where they were
analyzed for essential and non-essential elements (arsenic,
cadmium, cobalt, copper, iron, manganese, lead, mercury,
selenium, thallium, zinc) using inductively coupled plasma
mass spectrometry (ICP-MS, Agilent 7900 ICP-MS, Agilent
Technologies, Santa Clara, CA, United States) in accordance
with manufacturer’s instructions. Samples were weighed and
wet liver samples (∼2 g) were dried at 75◦C overnight in a
drying oven to generate a dry weight fraction. Dried samples
(∼1 g) were weighed and digested with 1–2 mL concentrated
69–70% nitric acid (Avantor Performance Materials, Center
Valley, PA, United States, type J. T. Baker ACS reagent grade)
in 15 mL PFA digestion vessels (Savillex, Eden Prairie, MN,
United States) in a 95◦C oven overnight. The amount of acid to
be added was made relative to the weight of sample. Overnight
digests were then diluted 1:100 in Millipore Filter (Burlington,
MA, United States) deionized water prior to analysis. Standard
reference materials (SRMs) that were used as quality control
(QC) for this process included National Institute of Standards
and Technology (NIST; Gaithersburg, MD, United States) SRM
1577c Bovine Liver, NIST SRM 2976 Mussel and an in-house
maintained QC-160 tissue spike control as well as a digest blank.
Details for average QC results (average result [ng g−1]/expected
result [ng g−1]/standard deviation) and average digest blanks (ng
g−1) during the month are shown in Supplementary Table S2.
Average coefficient of variation (CV) for the individual elements
over the various QC materials were as follows: arsenic, 4.69%;
cadmium, 6.64%; cobalt, 3.42%; copper, 5.27%; iron, 4.65%;
lead, 6.08%; manganese, 4.29%; mercury, 4.10% selenium, 4.37%,
thallium, 5.80%; and zinc, 5.18%. The limits of quantitation
(LOQ) in µg g−1 were as follows: arsenic, lead, thallium,
cadmium, cobalt, 0.1; mercury, 0.5; selenium, 0.02; iron, zinc, 5.0;
copper, 2.0; manganese, 0.05.

A subset of 28 liver samples were analyzed at the University
of Georgia Infectious Diseases Laboratory in Athens, GA,
United States. Using a comparable protocol to that of MSU
VDL, liver samples were analyzed for concentrations of 11
essential and non-essential elements (arsenic, cadmium, cobalt,
copper, manganese, mercury, lead, selenium, thallium, zinc) with
ICP-MS. All solutions were prepared with analytical reagent-
grade chemicals and ultra-pure (18M�) water. Commercially
available trace-metal grade HNO3 (67% v v−1; Thermo Fisher
Scientific, Waltham, MA, United States) and standard stock
solutions (SPEX CertiPrep, Metuchen, NJ, United States) were
used. Multi-element and individual standard solutions (SPEX
CertiPrep) were used to prepare a tuning solution containing
cobalt, indium, lithium, thallium, cesium, barium, and uranium.
Quality control standards and internal standards were purchased
from Inorganic Ventures (Christiansburg, VA, United States).
Liver samples were freeze-dried overnight. The dried samples
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were then predigested for 24 h with trace-metal grade HNO3.
After pre-digestion, the samples were treated with trace-metal
grade H2O2 and digested for 2 h at 90◦C. Samples were
diluted with 18 M� water and analyzed by ICP-MS. Procedural
blanks were performed following the same protocol. Bovine liver
1577c (NIST) SRM was used as the QC for digestions. ICP-
MS measurements were performed at the Plasma Chemistry
Lab, Center for Applied Isotope Studies on a Thermo Scientific
X Series II instrument equipped with hexapole Collision Cell
Technology. The sample solutions were pumped by peristaltic
pump using a Cetac ASX 520 auto-sampler (Cetac, Omaha,
NE, United States). The internal standard was added in-line
using a Trident Internal Standard Kit (Glass Expansion, Pocasset,
MA, United States). Sample introduction into the plasma was
performed using a MicroMist EzyFit nebulizer (Glass Expansion,
Pocasset, MA, United States), which reduces oxide formation, has
a high total dissolved solids tolerance, and has reduced sample
uptake rates. The cyclonic spray chamber was maintained at 3◦C
to further minimize oxide formation. Ion lens voltages, nebulizer
flow, and stage positioning were optimized using tuning solution
to maximize ion signal and stability while minimizing oxide levels
(CeO+/Ce+) and doubly charged ions (Ba2+/Ba+). A multi-
elemental analysis was performed in standard mode for all
elements. Calibration check standards were analyzed following
initial calibration at the end of the sample run, and, at most, after
every 12 samples. Quality control check standards were accepted
as passing if the measured concentration of each element was
found to be within ±10% of the certified concentration. Detailed
instrument settings are shown in Supplementary Table S3.

Statistical Analyses
Descriptive statistics (average ± standard deviation (SD)
and/or median, minimum, maximum) were calculated for each
toxicant analyzed. Median concentrations were calculated for all
parameters that included samples that tested below the detection
limit (BDL) for that assay. For all other statistical analyses,
BDL toxicant concentrations were assigned values one-half their
respective detection limit (Helsel, 2006). Atrazine, Aroclor1268,
and thallium concentrations were not used in statistical analyses
because most samples were BDL and therefore only median,
minimum, and maximum were calculated for these variables.

Based on stranding data, cases were grouped into categories
according to several selected demographic parameters: genus,
age class (fetus/neonate, juvenile, adult, assigned based on total
body length and morphologic features such as tooth eruption,
fetal folds, etc.), sex, and location stranded (Florida versus North
Carolina). Bottlenose dolphins and pygmy sperm whales (Kogia
breviceps) were chosen for further statistical analysis because they
had the greatest number of samples of the species examined.
Spearman rank correlation coefficients (rs) were calculated to
evaluate the strength and direction of correlations between
toxicant and essential and non-essential element analytes. All
data were tested for normality using the Shapiro–Wilk test and
variables found to have non-Gaussian distribution were log-
transformed to meet the assumptions of normality. Student’s
t-tests were then used to compare the average toxicant, essential
element, and non-essential element concentrations between adult

bottlenose dolphins and adult pygmy sperm whales. Essential
and non-essential element data from bottlenose dolphin liver
samples were analyzed in more detail, since the relatively larger
sample size (N = 46) for this species allowed us to compare
various groups with adequate statistical power. Data were tested
for normality using the Shapiro–Wilk test and variables found
to have non-Gaussian distribution were log-transformed to
meet the assumptions of normality. Student’s t-tests were used
to compare the average essential and non-essential element
concentrations between adult male and female dolphins, adult
and juvenile dolphins, dolphins that stranded in Florida versus
those that stranded in North Carolina, dolphins infected with
Morbillivirus and uninfected dolphins, and dolphins that were
known IRL inhabitants (based on dolphin photo identification
data) versus Florida-stranded dolphins that were not known
IRL inhabitants (Bossart et al., 1985; Read et al., 1993). All
statistical analyses were conducted using SPSS statistical software
(IBM Corp, 2017).

Ethics Statement
All animal procedures were conducted with approval from the
FAU-HBOI and NCSU animal care and use committees under
protocols #A18-03 and #15-001-O. FAU-HBOI and NCSU handle
cetacean stranding response and recovery under Stranding
Agreements issued by the NOAA-NMFS Southeast Regional
Office (FAU-HBOI: permit #932-1905-01/MA-009526-01). VT
is authorized under Section 109(h) within the North Carolina
Division of Marine Fisheries.

RESULTS

Animals and Samples
Samples were analyzed from 83 odontocetes that stranded
along the Atlantic coast of North Carolina and Florida during
2012–2018, including T. truncatus (common bottlenose dolphin,
N = 46), K. breviceps (pygmy sperm whale, N = 21), Stenella
frontalis (Atlantic spotted dolphin, N = 4), Peponocephala
electra (melon-headed whale, N = 3), Mesoplodon europaeus
(Gervais’ beaked whale, N = 2), Mesoplodon densirostris
(Blainville’s beaked whale, N = 2), Kogia sima (dwarf sperm
whale, N = 1), Stenella attenuata (pantropical spotted dolphin,
N = 1), Lagenorhynchus albirostris (white-beaked dolphin,
N = 1), Grampus griseus (Risso’s dolphin, N = 1), and Ziphius
cavirostris (Cuvier’s beaked whale, N = 1) (Table 1). Thirty-
three of these animals were encountered alive, euthanized, and
necropsied shortly afterward; 23 were freshly dead/minimally
decomposed at necropsy, and 26 were moderately decomposed
at necropsy (Geraci and Lounsbury, 2005). Subjective body
condition scoring revealed that 31 animals were emaciated, nine
were thin (but not emaciated), 34 were in good or “normal”
body condition, and nine were robust. From these animals,
we analyzed a total of 111 samples, including 36 blubber
and 75 liver samples. Average (or median, for variables with
samples that tested BDL) concentrations of these analytes are
presented in Table 2 according to species. There were three
adult male S. frontalis that were part of a mass stranding
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event in Hatteras, North Carolina in 2012, and four mother-
fetus/calf pairs (three K. breviceps, one M. europaeus, Figure 1);
all of the other animals included in this study were single
stranding events.

In descending order, the median concentrations of organic
toxicants in blubber samples from bottlenose dolphins were
in the order: BPA > triclosan > DEP > NPE > atrazine,
whereas in pygmy sperm whales the order was
NPE > BPA > DEP > triclosan > atrazine. The highest
median concentrations of essential and non-essential elements in
liver samples from bottlenose dolphins and pygmy sperm whales
were in iron and mercury, and the lowest median concentrations
were in lead and thallium.

Liver samples from 29 adult bottlenose dolphins had
significantly higher average concentrations of lead (0.10 µg g−1,
t = 3.19, P < 0.01), manganese (10.60 µg g−1, t = 4.91, P < 0.01),
mercury (246.67 µg g−1, t = 2.10, P = 0.02), selenium (111.43 µg
g−1, t = 3.94, P < 0.01), thallium (0.03 µg g−1, t = 88, P < 0.01),
and zinc (144.22 µg g−1, t = 5.97, P < 0.01), and significantly
lower average concentrations of NPE (0.15 µg g−1, t = –3.89,
P < 0.01), arsenic (0.94 µg g−1, t = 1.80, P = 0.04), cadmium
(0.35 µg g−1, t = –4.66, P < 0.01), cobalt (0.03 µg g−1, t = –7.66,
P < 0.01), and iron (1,120.40 µg g−1, t = –3.88, P < 0.01) than
liver samples from 12 adult pygmy sperm whales (lead: 0.05 µg
g−1, manganese: 4.62 µg g−1, mercury: 104.85 µg g−1, selenium:
32.87 µg g−1, thallium: 0.01 µg g−1, zinc: 41.79 µg g−1, NPE:
30.09 µg g−1, arsenic: 1.69 µg g−1, cadmium: 10.61 µg g−1,
cobalt: 0.18 µg g−1, iron: 2,922.46 µg g−1).

In bottlenose dolphins, Spearman rank correlation coefficient
tests revealed statistically significant, positive correlations
between mercury and selenium (rs = 0.99, P < 0.001), cadmium
(rs = 0.43, P < 0.001), and iron (rs = 0.37, P < 0.05); selenium
and cadmium (rs = 0.42, P < 0.01), lead (rs = 0.42, P < 0.01),
and iron (rs = 0.35, P < 0.05); arsenic and copper (rs = 0.31,
P < 0.05), cadmium (rs = 0.43, P < 0.001), and manganese
(rs = 0.39, P < 0.01); zinc and thallium (rs = 0.49, P < 0.01),
cobalt (rs = 0.35, P < 0.05), and manganese (rs = 0.54, P < 0.01);
cobalt and thallium (rs = 0.80, P < 0.01); iron and lead (rs = 0.40,
P < 0.05); and BPA and atrazine (rs = 0.71, P < 0.05). Statistically
significant, negative correlations were found between selenium
and zinc (rs = –0.37, P < 0.05); cadmium and NPE (rs = –0.51,
P < 0.05); lead and NPE (rs = –0.51, P < 0.05); and lead and DEP
(rs = –0.51, P < 0.05).

In pygmy sperm whales, Spearman rank correlation coefficient
tests revealed statistically significant, positive correlations
between selenium and mercury (rs = 0.81, P < 0.05), cadmium
(rs = 0.68, P < 0.001), cobalt (rs = 0.71, P < 0.01), and zinc
(rs = 0.53, P < 0.05); cobalt and arsenic (rs = 0.65, P < 0.01);
copper and triclosan (rs = 0.89, P < 0.001); mercury and iron
(rs = 0.76, P < 0.05); cadmium and arsenic (rs = 0.48, P < 0.05);
cadmium and cobalt (rs = 0.80, P < 0.001); zinc and thallium
(rs = 0.74, P < 0.01); zinc and atrazine (rs = 0.80, P < 0.05);
BPA and NPE (rs = 0.78, P < 0.01); BPA and atrazine (rs = 0.71,
P < 0.05); and thallium and manganese (rs = 0.50, P < 0.05).
Statistically significant, negative correlations were found between
mercury and lead (rs = –0.86, P < 0.05); and cadmium and copper
(rs = –0.52, P < 0.05).

Bottlenose Dolphins
The results of the t-tests showed that in 11 adult bottlenose
dolphin females, arsenic concentrations were significantly higher
(1.35 µg g−1, t = –1.82, P = 0.04) and iron concentrations were
significantly lower (862.46 µg g−1, t = 2.13, P = 0.02) than in
18 adult males (arsenic: 0.75 µg g−1, iron: 1,559.83 µg g−1).
Thirty-one adult bottlenose dolphins had significantly higher
concentrations of lead (0.10 µg g−1, t = 2.67, P = 0.01), mercury
(244.39 µg g−1, t = 4.67, P < 0.01), and selenium (111.43 µg
g−1, t = 6.09, P < 0.01), and significantly lower concentrations
of manganese (10.60 µg g−1, t = –3.05, P < 0.01) compared to
12 juvenile dolphins (lead: 0.05 µg g−1, mercury: 34.82 µg g−1,
selenium: 14.25 µg g−1, manganese: 15.22 µg g−1).

Eighteen adult bottlenose dolphins that stranded in North
Carolina had significantly higher concentrations of iron
(1,489.43 µg g−1, t = 1.81, P = 0.04), and significantly lower
concentrations of lead (0.08 µg g−1, t = –2.29, P = 0.02), mercury
(191.19 µg g−1, t = –2.32, P = 0.02), and selenium (73.47 µg g−1,
t = –3.67, P < 0.01) compared to 12 adult dolphins that stranded
in Florida (iron: 829.49 µg g−1, lead: 0.14 µg g−1, mercury:
490.02 µg g−1, selenium: 201.03 µg g−1). Eleven dolphins that
stranded in Florida were identified as known IRL inhabitants
based on dorsal fin photo identification data. Average essential
and non-essential element concentrations in liver samples were
compared between these 11 IRL dolphins and six non-IRL
dolphins that stranded elsewhere in Florida. Non-IRL Florida
dolphins had significantly higher average liver concentrations
of arsenic (1.85 µg g−1, t = 2.99, P = 0.01), cadmium (3.52 µg
g−1, t = 3.56, P < 0.01), and selenium (260.54 µg g−1, t = 1.92,
P = 0.04) than IRL dolphins (arsenic: 0.44 µg g−1, cadmium:
0.10 µg g−1, selenium: 123.37 µg g−1). No other analytes
significantly differed between sexes, age classes, or locations
based on the t-test results.

Mercury, Cadmium, and Selenium
There were two bottlenose dolphins – an adult male that stranded
in Waves, North Carolina in 2012, and an adult female that
stranded in North Palm Beach, Florida in 2018 – that had
liver mercury concentrations of 1,402 µg g−1 and 1,416 µg
g−1, respectively – an order of magnitude higher than liver
mercury concentrations observed in other bottlenose dolphins
in this study. These two dolphins also had relatively high
concentrations of cadmium, iron, lead, and selenium, likely
indicating chronic or repeated exposures to these elements. The
average mercury:selenium molar ratios for bottlenose dolphin
neonates (N = 3), juveniles (N = 12), and adults (N = 23)
were 0.41, 0.67, and 1.01, respectively, and differed significantly
between juveniles and adults (t = 4.60, P < 0.01).

Relevant Histopathological Data
Overall, histopathological data were available for 72 individual
animals, including 41 bottlenose dolphins, 15 pygmy sperm
whales, four Atlantic spotted dolphins, three melon-headed
whales, two Blainville’s beaked whales, two Gervais’ beaked
whales, one dwarf sperm whale, one pantropical spotted dolphin,
one white-beaked dolphin, one Risso’s dolphin, and one Cuvier’s
beaked whale (detailed in Supplementary Table S5). Table 3
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TABLE 1 | Demographic data for 83 odontocetes included in this study.

Sex Age class Stranding location

Male Female Not determined Fetus/ Neonate Juvenile Adult Florida North Carolina

Bottlenose dolphin (T. truncatus, N = 46) 29 16 1 3 12 31 17 29

Pygmy sperm whale (K. breviceps, N = 21) 13 6 2 4 4 13 3 18

Atlantic spotted dolphin (S. frontalis, N = 4) 3 1 0 0 1 3 1 3

Melon-headed whale (P. electra, N = 3) 2 1 0 0 1 2 3 0

Gervais’ beaked whale (M. europaeus, N = 2) 1 1 0 0 0 2 1 1

Blainville’s beaked whale (M. densirostris, N = 2) 0 1 1 1 0 1 2 0

Dwarf sperm whale (K. sima, N = 1) 1 0 0 0 0 1 1 0

White beaked dolphin (L. albirostris, N = 1) 1 0 0 0 0 1 0 1

Pantropical spotted dolphin (S. attenuata, N = 1) 0 1 0 0 1 0 1 0

Risso’s dolphin (G. griseus, N = 1) 1 0 0 0 0 1 0 1

Cuvier’s beaked whale (Z. cavirostris, N = 1) 0 1 0 0 0 1 0 1

These animals stranded in the southeastern United States, 2012–2018.

FIGURE 1 | Average (±SD) concentrations (µg g−1 dw) of toxicants and essential and non-essential elements for four mother-fetus/neonate pairs of stranded
odontocetes. Includes three pairs of pygmy sperm whales (two fetuses and one neonate) and one pair of Gervais’ beaked whales (fetus) that stranded in the
southeastern United States, 2012–2018. DEP, diethyl phthalate; NPE, nonylphenol ethoxylate. Organic toxicants were measured in blubber samples. Essential and
non-essential elements were measured in liver samples.

presents the number of cases with histopathological changes
per organ system. Of the 72 cases, 59 (82%) had at least
one of the histopathological changes listed in Table 3, while
13 (18%) did not.

Of the 72 cases with histopathology data, 47 (65%) stranded
during the Morbillivirus-related Atlantic bottlenose dolphin
unusual mortality event of 2013–2016. Samples from 18 animals
(25%) were tested for Morbillivirus DNA using polymerase chain
reaction (PCR) analysis of lung, pulmonary lymph node, spinal
cord, and/or brain tissues that were analyzed at the University
of California, Davis Marine Ecosystem Health Diagnostic &
Surveillance Laboratory. In the other cases, ancillary diagnostics

were not used due to lack of clinical signs consistent with
Morbillivirus infection, along with budgetary and/or logistical
constraints. Morbillivirus infections were diagnosed in 12
bottlenose dolphins (17%), including six adults and five subadults
that stranded along the central coast of North Carolina, and
one subadult that stranded in Vero Beach, Florida. Morbillivirus
was diagnosed based on pathology data (i.e., lymphoid depletion,
bronchointerstitial pneumonia, pleural fibrosis, respiratory and
lymphoid syncytia (myelo/meningo)encephalitis, myelin sheath
expansion, demyelination, meningeal fibrosis) (N = 7), or based
on pathology data combined with PCR results (N = 5) (Di
Guardo and Mazzariol, 2016). In 11 of the dolphins that tested
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TABLE 2 | Average (*median) concentrations (µg g−1 dw) and ranges for organic and inorganic toxicants and essential and non-essential elements in blubber and liver samples taken from 10 species of odontocetes
that stranded in the southeastern United States during 2012–2018.

Bottlenose dolphins
(T. truncatus)

Pygmy and dwarf
sperm whales (Kogia

spp.)

Spotted dolphins
(Stenella spp.)

Gervais’ beaked
whale (M. europaeus)

Melon-headed whale
(P. electra)

Cuvier’s beaked
whale (Z. cavirostris)

Risso’s dolphin
(G. griseus)

White-beaked
dolphin (L. albirostris

Organic toxicants

Atrazine 0.26* 0.02* 0.02* N/A 0.01 N/A N/A <0.01

(0.06–0.5) (0.02–0.03) N = 1 N = 1 N = 1

N = 2 N = 4

BPA 50.4* 1.65* <0.01 N/A <0.01 N/A N/A 397.4

(1.4–258.3) (1.10–11.11) N = 2 N = 2 N = 1

N = 4 N = 3

DEP 4.8* 0.17* 0.07 ± 0.04 N/A 0.5 ± 0.7 N/A N/A 13.8

(0.02–46.3) (0.03–8.5) (0.04–0.1) (0.03–0.99) N = 1

N = 17 N = 9 N = 2 N = 2

NPE 1.5* 59.8* <0.01 N/A 0.08 ± 0.08 N/A N/A <0.01

(0.02–31.3) (0.1–95.8) N = 2 (0.02–0.14) N = 1

N = 11 N = 11 N = 2

Aroclor1268 8.4* (0.1–17.3) N = 8 <0.05 N = 5 N/A 3.84 (N = 1) <0.05 N = 1 <0.05 N = 1 N/A N/A

Triclosan 9.62* 0.12* 0.3 ± 0.3 N/A 0.05 ± 0.04 N/A N/A 49.6

(0.03–173.7) (0.02–24.3) (0.1–0.5) (0.02–0.08) N = 1

N = 12 N = 10 N = 2 N = 2

Non-essential elements

Arsenic 1.3 ± 1.0 2.2 ± 1.6 2.3 ± 2.2 3.5 ± 2.9 1.6 ± 1.4 4.3 1.1 0.5

(0.16–5.8) (0.1–6.3) (0.5–6.2) (1.3–7.7) (0.7–2.6) N = 1 N = 1 N = 1

N = 44 N = 18 N = 5 N = 4 N = 2

Cadmium 0.4* 13.4 ± 13.2 22.6 ± 15.7 32.0 ± 31.5 56.6 ± 12.7 384.5 53.8 2.5

(0.04–366.0) (0.01–46.8) (0.01–39.1) (10.4–68.2) (47.6–65.5) N = 1 N = 1 N = 1

N = 31 N = 18 N = 5 N = 3 N = 2

Mercury 247.9 ± 327.9 95.9 ± 87.4 434.2 ± 27.1 111.9 ± 113.3 1102.1 644.6 170.9 173.4

(3.6–1415.5) (1.6–249.7) (412.5–464.6) (8.2–232.8) N = 1 N = 1 N = 1 N = 1

N = 37 N = 8 N = 3 N = 3

Lead 0.14* 0.05* 0.02* 0.04* 0.15 ± 0.03 0.2 <0.1 0.5

(0.03–0.64) (0.02–0.12) (0.01–0.03) N = 1 (0.13–0.17) N = 1 N = 1 N = 1

N = 21 N = 13 N = 2 N = 2

Thallium 0.01 ± 0.01 0.004* 0.01* 0.01 0.01 <0.1 <0.1 <0.1

(0.001–0.02) (0.001–5.07) (0.02–0.01) N = 1 N = 1 N = 1 N = 1 N = 1

N = 8 N = 10 N = 2

(Continued)
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TABLE 2 | Continued

Bottlenose dolphins
(T. truncatus)

Pygmy and dwarf
sperm whales (Kogia

spp.)

Spotted dolphins
(Stenella spp.)

Gervais’ beaked
whale (M. europaeus)

Melon-headed whale
(P. electra)

Cuvier’s beaked
whale (Z. cavirostris)

Risso’s dolphin
(G. griseus)

White-beaked
dolphin (L. albirostris

Essential elements

Cobalt 0.02* 0.35* 0.02* 0.09* 0.07 ± 0.02 0.11 0.05 <0.05

(0.01–0.08) (0.01–0.86) (0.01–0.04) (0.07–0.12) (0.06–0.08) N = 1 N = 1 N = 1

N = 12 N = 17 N = 2 N = 2 N = 2

Copper 34.0 ± 38.4 195.2 ± 312.0 29.4 ± 7.8 427.0 ± 835.3 20.7 ± 5.3 26.5 22.8 30.5

(7.9–213.0) (3.7–1014.1) (17.5–37.0) (6.4–1679.9) (17.0–24.5) N = 1 N = 1 N = 1

N = 45 N = 18 N = 5 N = 4 N = 2

Iron 1128.0 ± 714.3 2458.1 ± 1216.9 572.6 ± 49.8 1698.0 ± 483.0 1003.77 6516.8 1773.7 877.9

(411.2–3674.7) (579.0–4109.1) (539.6–629.8) (1141.3–2006.4) N = 1 N = 1 N = 1 N = 1

N = 37 N = 8 N = 3 N = 3

Manganese 11.6 ± 5.0 4.9 ± 2.3 10.08 ± 4.5 4.81 ± 3.0 12.0 ± 3.0 5.3 7.7 7.6

(2.5–26.0) (0.7–9.4) (3.60–15.4) (1.43–7.5) (9.9–14.0) N = 1 N = 1 N = 1

N = 45 N = 18 N = 5 N = 4 N = 2

Selenium 107.7 ± 122.7 37.89 ± 32.6 104.4 ± 86.0 58.37 ± 42.5 324.3 ± 213.0 268.6 68.8 150.2

(2.9–585.9) (5.62–122.7) (1.90–175.8) (10.75–95.4) (173.7–474.9) N = 1 N = 1 N = 1

N = 45 N = 18 N = 5 N = 4 N = 2

Zinc 188.3 ± 117.3 116.6 ± 305.3 139.4 ± 101.7 161.4 ± 190.6 73.7 ± 52.1 123.3 105.5 58.2

(42.8–702.7) (10.7–1337.7) (14.4–263.8) (33.5–444.8) (36.9–110.5) N = 1 N = 1 N = 1

N = 45 N = 18 N = 5 N = 4 N = 2

BPA, bisphenol-A; DEP, diethyl phthalate; NPE, nonylphenol ethoxylate. Organic toxicants were measured in blubber (atrazine, BPA, DEP, NPE, triclosan) and liver (Aroclor1268) samples, and inorganic toxicants were
measured in liver samples. Sample sizes are shown in parentheses for each analyte and species. “N” gives the number of samples that tested above detection limits for each analyte. “NA” denotes analytes that were
not measured in the annotated species. *Denotes median values.
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TABLE 3 | Histopathological lesions observed and infections diagnosed in 72 cases of stranded odontocetes that had a full suite of microscopic data available for review.

Histopathologic Changes # Cases Lesion Severity (%)

Mild Moderate Severe

Hepatobiliary Pathology (45 cases)

Fibrosis 28 8/28 (29%) 15/28 (54%) 5/28 (18%)

Biliary hyperplasia 17 4/17 (24%) 12/17 (71%) 1/17 (6%)

Hepatitis 20 6/20 (30%) 11/20 (55%) 3/20 (15%)

Hydropic degeneration 10 3/10 (30%) 6/10 (60%) 1/10 (10%)

Necrosis 3 0/3 (%) 1/3 (33%) 2/3 (67%)

Lymphoreticular Pathology (20 cases)

Lymphoid depletion (general) 4 1/4 (25%) 3/4 (75%) 0/4 (0%)

Lymphoid depletion [lymph node(s)] 16 5/16 (31%) 6/16 (38%) 5/16 (31%)

Lymphoid depletion (spleen) 7 4/7 (57%) 3/7 (43%) 0/7 (0%)

Lymphoid depletion (Peyer’s patches) 2 1/2 (50%) 0/2 (0%) 1/2 (50%)

Severe erythrophagocytosis (axillary lymph node) 1 0/1 (0%) 0/1 (0%) 1/1 (100%)

Cardiovascular Pathology (16 cases)

Cardiomyocyte loss 13 6/13 (46%) 6/13 (46%) 1/13 (8%)

Myocardial fibrosis 13 7/13 (54%) 5/13 (38%) 1/13 (8%)

Nervous-Endocrine Pathology (18 cases)

Adrenal cortical hyperplasia 6 1/6 (17%) 5/6 (83%) 0/6 (0%)

Central neuronal axonal degeneration (spinal cord) 6 2/6 (33%) 3/6 (50%) 1/6 (17%)

Central neuronal axonal spheroids (spinal cord) 2 0/2 (0%) 1/2 (50%) 1/2 (50%)

Thyroid fibrosis 2 2/2 (100%) 0/2 (0%) 0/2 (0%)

Thyroid atrophy 2 1/2 (50%) 1/2 (50%) 0/2 (0%)

Thyroid follicular hyperplasia 2 2/2 (100%) 0/2 (0%) 0/2 (0%)

Thyroid follicular cysts 2 0/2 (0%) 2/2 (100%) 0/2 (0%)

Thyroiditis 1 1/1 (100%) 0/1 (0%) 0/1 (0%)

Pituitary periadenitis 2 1/2 (50%) 1/2 (50%) 0/2 (0%)

Genitourinary Pathology (14 cases)

Interstitial nephritis 7 3/7 (43%) 4/7 (57%) 0/7 (0%)

Glomerulosclerosis 4 4/4 (100%) 0/4 (0%) 0/4 (0%)

Interstitial fibrosis 10 7/10 (70%) 3/10 (30%) 0/10 (0%)

Hydropic degeneration of renal tubular epithelium 2 2/2 (100%) 0/2 (0%) 0/2 (0%)

Orchitis 3 2/3 (67%) 1/3 (33%) 0/3 (0%)

Testicular atrophy 1 1/1 (100%) 0/1 (0%) 0/1 (0%)

Endometritis 2 2/2 (100%) 0/2 (0%) 0/2 (0%)

Infections Diagnosed # Cases Diagnostics Performed

Morbillivirus 12 Histopathology, PCR analysis of lung, lymph node, spinal cord, brain

Brucella spp. 1 Histopathology, PCR analysis of spinal cord, lung lymph node

Campula spp. 6 Histopathology

Sarcocystis spp. 2 Histopathology

positive for Morbillivirus, significantly lower concentrations of
lead (0.09 µg g−1, t = –1.97, P = 0.03) and selenium (29.85 µg
g−1, t = –2.36, P = 0.01) were observed compared to average
concentrations in 25 bottlenose dolphins that did not have
Morbillivirus infections (lead: 0.12 µg g−1, selenium: 88.15 µg
g−1) (Supplementary Table S4). None of the other essential
or non-essential element concentrations significantly differed
between dolphins with/without Morbillivirus infections.

There were nine bottlenose dolphins, one Risso’s dolphin,
and one Cuvier’s beaked whale suspected to have Brucella spp.
infection based on histopathology including scapulohumeral
joint arthritis, meningoencephalitis, mastitis, and orchitis.

However, confirmatory PCR analysis of affected tissues was
only performed in one bottlenose dolphin. There were five
bottlenose dolphins and one melon-headed whale diagnosed with
hepatic trematodiasis (e.g., Campula spp.); two of those dolphins
also had Morbillivirus co-infections. Protozoal cysts consistent
with Sarcocystis spp. were observed within the skeletal muscle
of one bottlenose dolphin and within cardiac muscle of one
pygmy sperm whale.

Five different types of neoplasia were observed in 4/72
(6%) cases (Table 4), including a testicular seminoma
and a pheochromocytoma in an adult male white-beaked
dolphin (Thayer et al., 2018). This dolphin had mild to
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TABLE 4 | Five types of neoplasia were observed in 4 of 72 (6%) cases of stranded odontocetes that had a full suite of pathology data available for review.

Species Age class Sex Location stranded Neoplasia type(s) Organ(s) affected

T. truncatus Adult Male Cape Lookout, NC, United States Metastatic immunoblastic
lymphosarcoma

Lungs, pulmonary lymph
node, adrenal gland

T. truncatus Adult Male Atlantic Beach, NC, United States Microadenoma Pituitary gland

T. truncatus Adult Female Oceanana Pier, NC, United States Leiomyoma Cervix

L. albirostris Adult Male Back Sound, NC, United States Pheochromocytoma;
seminoma

Adrenal glands; testis

moderate hepatobiliary fibrosis, mild lymphoid depletion in
the spleen, thymus, and the tracheobronchial, pulmonary,
prescapular, and mesenteric lymph nodes, mild to moderate
cardiomyocyte loss (possibly related to the pheochromocytoma),
nodular thyroid hyperplasia, and mild renal interstitial
fibrosis with glomerulosclerosis. This animal also had
the highest concentration of BPA measured in this study
(397.4 µg g−1), and had relatively high (compared to
other animals in this study) concentrations of DEP
(13.8 µg g−1), lead (0.52 µg g−1), and triclosan (49.6 µg
g−1). The other three animals with neoplastic lesions
did not have relatively high concentrations of any of the
toxicants measured.

DISCUSSION

The toxicant concentration data presented here considerably
improve upon the existing knowledge base regarding toxicant
concentrations in stranded odontocetes. Several previous studies
have focused on the accumulation of more well-known EDCs in
marine mammal tissues including BPA, PCBs, organochlorines,
and triclosan (Tilbury et al., 1999; Fair et al., 2009; Jepson
et al., 2015; Xue and Kannan, 2016; Damseaux et al., 2017).
Additionally, previous studies measuring toxicants and essential
and non-essential elements in free-ranging odontocete species
have been conducted globally, in a variety of tissues including
blood, skin, blubber, kidney, liver, muscle, and brain (Kemper
et al., 1994; Bryan et al., 2007; Durden et al., 2007; Stavros et al.,
2011; Schaefer et al., 2011, 2015; Beck et al., 2013; Monteiro
et al., 2016a,b). To date, however, this is the first published report
examining concentrations of atrazine, DEP, NPE, and triclosan in
blubber tissues of stranded cetaceans. Our study is also the first
to report concentrations of toxicants in a white-beaked dolphin
and in Gervais’ beaked whales, species for which the scientific
literature remains sparse. Documenting toxicants in cetaceans is a
critical step in tracing chemical contaminants within the marine
food web and understanding their effects on biological systems
(Hermabessiere et al., 2017).

Demographic Factors Influence Toxicant
Exposure and Accumulation: Species
Comparisons
Despite geographic and food source overlap between species,
the examined specimens disclosed significant differences in
predominance of organic contaminants and essential and
non-essential elements. Tissue contaminant concentrations are

thought to be influenced by many factors such as an animal’s age,
sex, nutritional status, reproductive status, foraging habitat(s),
and location (Durden et al., 2007; Schaefer et al., 2011; Stavros
et al., 2011; Beck et al., 2013; Hansen et al., 2016; Genov et al.,
2019). The main sources of toxicant exposure in cetaceans are
through their diet and via maternal transfer during gestation
and/or lactation (Kajiwara et al., 2008; Bossart, 2011; Alonso
et al., 2015). Differences in prey selection could explain the
species-specific differences in analyte concentrations seen here,
since previous evidence suggests that animals that primarily
prey on cephalopods, including pygmy sperm whales, can
be exposed to higher levels of certain heavy metals such
as cadmium, which can accumulate in squid, compared to
primarily piscivorous species such as dolphins (Monaci et al.,
1998; Bustamante et al., 2003; Bloodworth and Odell, 2008).
Spearman rank correlation coefficient tests showed statistically
significant correlations between concentrations of multiple
toxicants and nutritional elements in bottlenose dolphins
and pygmy sperm whales. Positive correlations demonstrate
similarities in exposure, transport mechanisms, detoxification
mechanisms, and bodily distribution of certain analytes; while
negative correlations indicate possible antagonistic effects of
certain analytes (Monaci et al., 1998; Hansen et al., 2016).

The organic toxicant concentrations presented here were not
normalized to lipid concentration, since lipid concentrations
were not measured in the samples due to cost constraints.
This presents some challenges to interpreting and comparing
concentrations of lipophilic toxicants, which can fluctuate in
cetacean fatty tissues depending on body condition. For example,
in fasting or emaciated animals, increased lipolysis may be
accompanied by concomitant release of lipophilic toxicants into
circulation, followed by redistribution within remaining lipid
stores (Bengtson Nash et al., 2013). Thus, results of species
comparisons presented here for concentrations of Aroclor1268,
atrazine, BPA, DEP, NPE, and triclosan in bottlenose dolphins
versus pygmy sperm whales were likely influenced by the animals’
body condition at the time of stranding. Specifically, of 46
bottlenose dolphins, half were in ‘good’ (41%) or ‘robust’ (9%)
body condition at the time of stranding, while 6 (13%) were
‘thin,’ and 17 (37%) were ‘emaciated.’ In comparison, of 21 pygmy
sperm whales, none (0%) were considered ‘robust’ at the time of
stranding, 9 (43%) were in ‘good’ body condition, 3 (14%) were
‘thin,’ and 9 (43%) were ‘emaciated’ (Supplementary Table S5).

We also present data on toxicant and essential and non-
essential element concentrations in liver and blubber samples
from four mother-fetus/neonate pairs, including three pygmy
sperm whale pairs and one Gervais’ beaked whale pair (Figure 1).
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Although a low sample size precluded statistical analysis, some
interesting trends were observed. Average concentrations of
certain analytes were consistently higher in all maternal samples
compared to their offspring, including arsenic (4.29 µg g−1 in
mothers versus 1.90 µg g−1 in offspring), cadmium (13.30 µg
g−1 in mothers versus 0.12 µg g−1 in offspring), cobalt (0.28 µg
g−1 in mothers versus 0.04 µg g−1 in offspring), mercury
(113.08 µg g−1 in mothers versus 6.82 µg g−1 in offspring),
and selenium (48.15 µg g−1 in mothers versus 23.67 µg g−1

in offspring). Average concentrations of other analytes were
consistently higher in all offspring samples compared to their
mothers, including copper (1,181.03 µg g−1 in offspring versus
26.28 µg g−1 in mothers), lead (0.07 µg g−1 in offspring versus
0.05 µg g−1 in mothers), thallium (0.07 µg g−1 in offspring
versus 0.04 µg g−1 in mothers), and zinc (615.44 µg g−1 in
offspring versus 57.55 µg g−1 in mothers). These data reflect
patterns of in utero (and in the case of the mother-neonate
pair, also via lactation) maternal transfer of toxicants, and are
presumed to vary depending on whether a toxicant is lipophilic
and whether it tends to bioaccumulate with age, among other
factors (Krahn et al., 2009; Alonso et al., 2015). In mother-fetus
pairs of short-beaked common dolphins (Delphinus delphis) that
stranded along the French coasts, fetal liver tissues exhibited
consistently low concentrations of cadmium and mercury, and
high concentrations of copper (Lahaye et al., 2007). Other
previous studies have focused on maternal transfer of lipophilic
toxicants in odontocetes. For example, in long-finned pilot
whales (Globicephala melas), the average gestational transfer rates
of PCBs and DDTs (calculated as the ratios between newborn
loads and maternal loads) were estimated to be ∼7% and ∼8%,
respectively (Borrell et al., 1995). In harbor porpoises (Phocoena
phocoena), a gestational transfer rate of 15% was observed for
organochlorine compounds (Duinker and Hillebrand, 1979).
Transplacental transfer rates also depend on the ratio of the
body weight of the fetus to that of the pregnant female (Tanabe
et al., 1982). Offloaded amounts of contaminants tend to decrease
with a mother’s age and are consequently much higher in
primiparous females than in those that have already given birth
(Aguilar and Borrell, 1994a,b; Borrell et al., 1995). Maternal
transfer of toxicants during gestation and lactation to rapidly
developing offspring may put young cetaceans at greater risk for
adverse health effects, including immune and endocrine system
dysfunction (Krahn et al., 2009).

Arsenic concentrations from this study can be compared to
data previously reported, including one study that presented
arsenic concentrations in liver tissues of seven cetacean species,
ranging from 0.20 to 5.96 µg g−1 dw and varying widely among
species (Wells et al., 2004; Mazumder, 2005; Kajiwara et al., 2008).
Average arsenic concentrations reported here for all species fell
within a relatively wider range (0.07–7.73 µg g−1), and maximum
values reported here for pygmy and dwarf sperm whales, Stenella
spp. dolphins, and Gervais’ beaked whales were higher than
previously reported maximum arsenic concentrations in similar
species (Tu et al., 2015). One animal in our study, an adult
female Gervais’ beaked whale that stranded in Sebastian, Florida
in 2017, had the highest liver concentration of arsenic (7.73 µg
g−1) reported for any marine mammal to date (to the authors’

knowledge). Arsenic is widespread in the marine environment,
is highly toxic in its inorganic forms, and the liver is the main
site of arsenic storage and metabolism (Kubota et al., 2001; Tu
et al., 2015; Li et al., 2016). Feeding habit strongly influenced
marine mammal liver arsenic concentrations in one study, as
species feeding on cephalopods and crustaceans tended to have
higher arsenic concentrations than those feeding on fish (Kubota
et al., 2001). This was upheld in our study, as pygmy sperm whales
had significantly higher arsenic concentrations than bottlenose
dolphins. Another explanation for high arsenic concentrations
in tissues of animals that strand in Florida may be effluent from
natural phosphate mineral deposits in the area that contain high
levels of arsenic (Neff, 1997; Perry et al., 2015).

Demographic Factors Influence Toxicant
Exposure and Accumulation: Bottlenose
Dolphins
As long-lived, apex predators, dolphins show increased
accumulation of some toxicants with age, particularly in males
(Hickie et al., 2013; Gui et al., 2014). For trace elements, tissue
accumulation patterns vary by element, and differences in
distribution of different analytes between males and females,
and juveniles and adults are often attributable to differences in
metabolism and storage of these elements (Cardellicchio et al.,
2002; Carvalho et al., 2002; Finlayson et al., 2019). Results of
Student’s t-tests showed that in adult male bottlenose dolphins,
average iron concentrations were significantly higher and average
arsenic concentrations were significantly lower than those found
in adult females. We also found that in adult bottlenose dolphins,
average lead, mercury, and selenium concentrations were
significantly higher, and average manganese concentration was
significantly lower than average concentrations of these elements
in juveniles. One possible explanation for these results is that
adults bioaccumulate lead, mercury, and selenium after exposure
through their fish-based diet, and females offload iron stores
during gestation and through lactation (Houde et al., 2006;
Hickie et al., 2013; Fisher and Nemeth, 2017).

Toxicant exposure dynamics also vary by location, depending
on land use, toxicant source, and means by which industrial,
urban, and agricultural chemicals enter coastal habitats. Inshore
dolphins and those inhabiting areas adjacent to human activity
are particularly susceptible to exposure to high concentrations
of these contaminants as they enter the marine ecosystem via
runoff and/or direct discharge (Hansen et al., 2004, 2016; Stavros
et al., 2007; Finlayson et al., 2019). In this study we found that
bottlenose dolphins that stranded in Florida had significantly
higher average concentrations of lead, mercury, and selenium
than dolphins that stranded in North Carolina, and significantly
lower average concentrations of iron. This is similar to findings
from a previous study, which found that liver samples from
dolphins that stranded in Florida were significantly higher in
lead, mercury, and selenium than those found in dolphins that
stranded in South Carolina, United States (Stavros et al., 2011).
Since dolphins are primarily exposed to toxicants via ingestion of
prey items, their patterns of contamination often closely match
those of their preferred prey species (Senthilkumar et al., 1999;
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Yeung et al., 2009). Because many of their prey species are also
preferred food fish by humans, monitoring concentrations of
these and other contaminants in stranded dolphins can provide
a relatively low-cost snapshot of the potential exposure risks in
humans and other organisms that feed at the upper trophic levels
(Bossart, 2011; Reif et al., 2015).

Mercury and Selenium
Compared to data from several other studies, liver mercury
concentrations reported here were high, including some
extremely high concentrations that are comparable to the highest
ever reported (Endo et al., 2002; Bustamante et al., 2003; Stavros
et al., 2011; Bryan et al., 2012; Genov et al., 2019). Specifically,
there were two bottlenose dolphins, an adult male that stranded
in Waves, North Carolina in 2012, and an adult female that
stranded in North Palm Beach, Florida in 2018, that had liver
mercury concentrations that were an order of magnitude higher
than liver mercury concentrations observed in other bottlenose
dolphins in this study. These two dolphins also had relatively high
concentrations of cadmium, iron, lead, and selenium.

Both methylmercury and inorganic mercury tend to
biomagnify in marine mammal species, and bottlenose dolphins
from Florida are known to carry very high mercury burdens
in their tissues (Schaefer et al., 2011, 2015; Gui et al., 2014;
Seixas et al., 2014; Damseaux et al., 2017). Bottlenose dolphins
and pygmy sperm whales, along with some other odontocete
species, seem able to tolerate high levels of mercury, cadmium,
and certain other metals, and detoxify them through several
physiological processes including binding with selenium or
metallothioneins to mitigate the toxic effects of exposure
(Meador et al., 1999; Klaassen et al., 2009; Bryan et al., 2012;
Hansen et al., 2016). These protective mechanisms in odontocetes
likely reduce some of the direct effects that can be seen with
heavy metal toxicity, such as oxidative stress, inhibition of
lysosomal digestive enzymes, damage to subcellular membranes,
and deregulation of apoptotic pathways (Kershaw and Hall,
2019). Here, we found evidence to support this hypothesis,
since liver selenium concentrations were positively correlated
with mercury, cadmium, and lead in adult bottlenose dolphins,
and positively correlated with mercury and cadmium in pygmy
sperm whales. This is in alignment with findings from many
other studies, which confirm mercury:selenium molar ratios
close to 1 in adult cetacean liver and kidney samples (Capelli
et al., 2000; Bustamante et al., 2003; Yang et al., 2007; Caceres-
Saez et al., 2013; Hansen et al., 2016). The detoxifying effects
of selenium on mercury are only thought to occur above a
minimum mercury concentration in the liver (100 µg kg−1),
thus juveniles tend to have a lower mercury:selenium ratio than
adults that have been accumulating mercury over a longer period
of time (Palmisano et al., 1995; Storelli et al., 1998). This trend
was also upheld in our study, as median mercury:selenium
ratios in bottlenose dolphins incrementally increased with age in
fetuses/neonates, juveniles, and adults, and differed significantly
between juveniles and adults. While selenium binding may
effectively function to detoxify mercury and other toxicants, it
can also leave the animal in a selenium-deficient state, leading
to neurotoxic effects and potentially other sequelae such as

nutritional myodegeneration (Cullen, 2007; Kehrig et al., 2013).
Therefore, adequate dietary selenium must be maintained to
prevent indirect effects of selenium detoxification, which can be
a problem for top predators like odontocetes because mercury
biomagnifies up the food chain at a higher rate (5.4 times) than
selenium (2.4 times) (Kunito et al., 2002).

Histopathological and Diagnostic Data
Although infectious disease testing was not performed in all
cases, data resulting from cases examined using molecular
diagnostics provide information on disease status and allow for
comparisons between groups. Because contaminant exposure is
thought to have immunotoxic effects in cetaceans, the potential
synergistic effects of co-exposure to multiple pollutants may
modulate the pathogenic and pathogenetic activity of marine
mammal Morbilliviruses (Desforges et al., 2016, 2017). Previous
studies suggest that high contaminant loads may synergistically
interact to increase Morbillivirus disease severity and favor
transmission between cetacean species (Aguilar and Raga,
1993; Aguilar and Borrell, 1994a; Aznar et al., 2005; Fossi
et al., 2007). This pattern was not observed in this study for
non-essential elements; however low sample sizes precluded
comparisons of lipophilic toxicants for animals with and without
Morbillivirus infections.

Many histological lesions observed in the tissues of
stranded marine mammals are non-specific changes that
can be associated with the acute physiological and physical
derangements that accompany live stranding, including sequelae
of catecholaminergic and neurogenic shock (e.g., pulmonary
edema/hemorrhage, acute venous congestion of shock organs),
trauma (e.g., sunlight-thermal burn, sand impaction/ingestion,
superficial epithelial abrasions, corneal damage), hyperthermia,
acute skeletal and cardiac myodegeneration, and multiorgan
failure (Geraci and Lounsbury, 2005; Bogomolni et al., 2010;
Diaz-Delgado et al., 2018). Other non-specific lesions (e.g.,
fibrotic or hydropic changes of the hepatic, renal, respiratory,
and gastrointestinal systems; lymphoid depletion; inflammation)
are often more chronic in nature and can be attributable to
various causes, including stress, starvation, infection(s), and/or
prolonged or repeated exposure to certain toxicants such
mercury, cadmium, and lead (Goyer, 1989; Johri et al., 2010;
Branco et al., 2012). Neoplasia in free-ranging wildlife can occur
naturally at low prevalence; however, contaminant exposure
should be considered as a differential in wild animals that present
with neoplastic lesions (McAloose and Newton, 2009). While it is
difficult to confirm whether any of the histopathological lesions
observed in these cases were caused or exacerbated by toxicant
exposure, toxicants should not be ruled out or overlooked in
cases with certain life-history characteristics and pathological
findings. Collecting and archiving fatty tissues and organ samples
(e.g., liver, kidney, brain, etc.) from stranded animals is valuable
in that it allows us to conduct retrospective toxicological studies
such as this one. By examining toxicant concentrations alongside
sublethal histopathologic changes in specific tissues, we can
begin to better understand some of the potential health impacts
that exposure to these compounds can have on vulnerable and
understudied species like cetaceans.
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