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The study of marine coastal food webs has a central role in the application of the

integrated ecosystem approach for marine management. Changes in food webs caused

by natural or anthropic drivers can lead to dramatic shifts in the overall structure and

function of coastal marine ecosystems and deterioration of their services. The present

review investigates the methodological approaches employed for the assessment of

coastal shelf food webs at a global scale and highlights existing gaps and limitations.

Out of 1652 published articles that initially met our search criteria, 880 passed the

initial screening and 493 were found relevant and were fully analyzed. The information

extracted included the spatiotemporal coverage of the studies; the main methodological

approaches utilized for the assessment of population state variables (i.e., biomass, size,

abundance) and trophic levels; the biotic components and driving factors considered;

indices used to describe the structure and functioning of coastal food webs; and

main knowledge gaps. Results showed that most studies have been conducted at

a subnational level, mostly in the Temperate Northern Atlantic marine realm. Overall,

54% of the studies provided quantitative information on food web structure. The

most common methodological approach utilized was modeling (40%), followed by

non-experimental-based correlations (30%), and natural or manipulative experiments

(14%). Information on population state variables was provided by 69% of the studies,

while 42% employed some of the following trophic level determination techniques:

stable isotopes, gut contents, fatty acids, and molecular analysis, which were either

combined or used in isolation. Specific natural or human drivers were incorporated in

76% of the studies, with fishing being the most common driver. Modeling approaches

included multiple indices to describe food web attributes and/or the structure and

functioning of coastal shelf ecosystems. Despite the great progress achieved through

the development of new tools and techniques, food web analysis still suffers from

important knowledge gaps and limitations of the methodological approaches, which

are extensively discussed. The present review establishes a useful knowledge base to

provide guidance for future research and assessments on coastal shelf food webs, and

to support ecosystem-based management.

Keywords: food webs, ecosystem approach, methodological approaches, data collection, trophic level, modeling,

human pressures, ecosystem-based management
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INTRODUCTION

In the emerging era of the Anthropocene (Steffen et al., 2015),
growing human pressures on marine ecosystems and their
cumulative effects have caused widespread degradation of marine
habitats (Hughes et al., 2017), substantial biomass declines of
marine communities (Myers and Worm, 2003), local extinctions
(Thibaut et al., 2014), and regime shifts (Rocha et al., 2015;
Wernberg et al., 2016). Compared to the oceanic zone, coastal
shelf environments are subjected to disproportionally higher
cumulative pressures as they concentrate many human activities
and are affected by both sea-based and land-based drivers (Hall,
2002; Micheli et al., 2013). Overfishing (Jackson et al., 2001;
Sala et al., 2012), pollution (Tornero and Hanke, 2016), coastal
development (Meinesz et al., 1991; Bulleri and Chapman, 2010),
invasive species (Katsanevakis et al., 2014), destructive fishing
practices (Saila et al., 1993; Guidetti, 2011), and climate change
(Rilov, 2016) are responsible for high rates of biodiversity loss
in coastal shelf ecosystems (Lotze et al., 2006; Waycott et al.,
2009). Such severe impacts on marine ecosystems have raised
worldwide concerns and prompted a fundamental shift in the
management of marine living resources, toward a holistic and
integrated approach, recognizing the full area of interactions
within ecosystems (Katsanevakis et al., 2011).

The so-called ecosystem approach is globally gaining ground
over conventional approaches that have traditionally focused on
a single species, or ecosystem service. Aiming for sustainable,
resilient populations, habitats and ecosystem functions and
services, it includes a strategy for the integrated management
of coastal and marine ecosystems, in order to ensure the
conservation of marine resources and their sustainable use in
an equitable way (SCBD, 2004; Apitz et al., 2006). To achieve
this, the ecosystem approach is based on the application of
appropriate scientific methodologies focused on all levels of
biological organization, which encompass the essential structure,
processes, functions and interactions among organisms and
their environment (SCBD, 2004). Nevertheless, the complex
and dynamic nature of coastal ecosystems and the absence
of complete knowledge or understanding of their functioning,
poses a major challenge in the successful application of
this approach.

The evolved concept of ecosystem–based management (EBM)
has incorporated the human component in the ecosystem, as
well as the vital processes and functions that are needed to
sustain the ecosystems at a healthy state. The EBM approach
has thus become the primary tool to achieve the objectives
of several regional and international agreements regarding the
conservation of the marine environment and its sustainable use.
For example, the United Nations Strategic Plan for Biodiversity
(2011-2020) proposes an overarching framework based on
20 biodiversity targets (the Aichi Targets) that include both
ecological and social aspects in order to reduce biodiversity loss at
a global scale (Marques et al., 2014), while the European Marine
Strategy Framework Directive (MSFD; Directive 2008/56/EC)
focuses on 11 descriptors related to ecosystem features and
human pressures in order to achieve a good environmental status
in all the European Seas (EU, 2008).

For an integrated view of ecosystems, food webs are
established to have a central ecological role (Odum et al.,
1971). Complex interactions take place in marine ecosystems,
among different food web components (Pomeroy, 1974) and
these interactions can be comprehended with a holistic view
of the food web, rather than separate species assessments
(Cohen et al., 1993). Trophic structure of the ecosystem’s
components and the energy flow among them was highlighted
early by ecologists (Lindeman, 1942; Odum and Odum, 1955),
and various population control mechanisms were considered.
Precisely, top-down control from predation and bottom up
control from resource limitation were considered to affect the
structure and function of coastal rocky ecosystems (Paine, 1966,
1974; Estes, 1996). Later on, it was proposed that ecosystem
structure could be determined from the synergistic effect of
top-down and bottom-up controls (Menge, 1992, 2000). In the
meantime, another “wasp-waist” control mechanism has been
described at the intermediate level, where the minority of species
can transfer most of the energy between primary producers
and predators, specifically in up-welling ecosystems (Rice, 1995;
Bakun, 1996, 2004, 2006; Cury et al., 2000, 2004). Under certain
conditions, a switch between bottom-up and top-down control
can occur (Hunt and McKinnell, 2006).

Series of interactions among a trophic level that can indirectly
control another trophic level have been described as trophic
cascades (Hairston et al., 1960; Menge, 1995). A dynamic
equilibrium takes place among trophic levels, severely affected
by environmental drivers (Menge and Sutherland, 1987; Hunt
and McKinnell, 2006). This is why holistic assessments of food
webs are needed (Lindeman, 1942; Odum et al., 1971; Libralato
et al., 2014) to investigate their dynamics and the potential for
human-induced modifications, or even regime shifts through
trophic cascades (Pace et al., 1999; Polis et al., 2000), due to e.g.,
fisheries (Pauly et al., 1998; Shannon et al., 2014), eutrophication
(Armitage and Fourqurean, 2009), climate change (Ainsworth
et al., 2011), pollution (Young et al., 1982), habitat alteration
(Tallis, 2009; Bishop et al., 2010; Hemraj et al., 2017), and alien
species (Corrales et al., 2017a).

Despite its value, a holistic assessment of the food web
structure and function is not easy (Libralato et al., 2014). Often
data of all trophic levels are not available (Corrales et al., 2017b;
Eddy et al., 2017), cost a lot (Robinson et al., 2010) and/or are
difficult to collect. Food web assessments are often restricted
by knowledge gaps on species biomasses, diets, mortalities
and unreported catches (Barausse et al., 2009). In cases when
commercial fisheries landing data are used for the ecosystem’s
assessment, doubts on the reliability of fisheries statistics and
available data have been expressed (Zeller and Pauly, 2007;
Shannon et al., 2014). Trophic level estimations are notably
difficult for omnivorous species, which are quite common in
the marine environment (Pimm et al., 1991). Overall, food
web studies still suffer from controversies, uncertainties, and
information gaps (Bǎnaru et al., 2013; Libralato et al., 2014).

The principal aim of this study was to assess methodological
approaches to analyze coastal shelf food webs, by reviewing the
global literature. We review and describe the main methods
applied for data collection, analysis of food webs and relevant
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indices. Based on the findings of this review we highlight gaps
and limitations on existing methodological approaches.

METHODS

A systematic, global literature review was conducted, applying
the PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses) methodology (Moher et al., 2010). Elsevier’s
Scopus database (www.scopus.com) was employed for the
bibliographic search on peer-reviewed literature published
between 1960 and 2018. Search criteria included at least one term
between “marine or sea,” and among “benthic or coast/s or shelf
or demersal,” “food web/s or trophic web/s,” and “function/s or
structure/es or relation/s or interaction/s” in the title, abstract or
keywords. Only published articles were considered. The search
was limited to relevant subject areas (Agricultural and Biological
Sciences, Environmental Science, Earth and Planetary Sciences,
Biochemistry, Genetics, and Molecular Biology) and to English-
language publications. The search resulted in 1639 publications.
Additionally, 16 relevant publications that met the above criteria
but did not show up in the search were also included in the review

process. In total, 1652 publications were further analyzed, after
the removal of duplicates (Figure 1). The full publication list was
managed with the open-source reference management software
Zotero (www.zotero.org).

Three reviewers performed two rounds of review. During the
first round, papers were screened based on their titles, keywords
and abstract. Papers that (1) were unrelated to food webs/trophic
webs, (2) assessed only one trophic level, and thus did not
properly account for trophic relations, (3) didn’t study the coastal
shelf, but were restricted in pelagic or bathyal ecosystems, or (4)
were not marine studies, were discarded. In total, 880 articles
out of 1652 remained after the initial screening. During the
second round, the full text of the 880 papers was examined and
387 articles were excluded, based on the same criteria, while
493 articles remained for full analysis (Figure 1). Intercalibration
among the three reviewers was achieved by means of analysis of
ten common papers.

Data collected from the 493 fully reviewed papers (see
Table S1 for the list of full references) included information on
the spatiotemporal and geomorphological characteristics of the
studies, various methodological aspects (e.g., the methodological

FIGURE 1 | Flow diagram of the methodology and selection processes used in this systematic review by applying the PRISMA (Preferred Reporting Items for

Systematic Reviews and MetaAnalyses) methodology (Moher et al., 2010).
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approach followed, the type of data collected, and the analytical
methods applied), the type of biotic information used (e.g.,
number of species, functional groups and trophic levels), the
potential driving factors considered, indices used to describe
the structure and functioning of coastal shelf food webs, and
the highlighted gaps of knowledge mentioned. Specifically, the
following information was retrieved from each paper, with each
number of the following list representing one data sheet column:
(1) Year of publication; (2) Name of reviewer; (3) Food web
focused study: yes, no; (4) Spatial scale: subnational (covering
part of a country’s territorial waters or exclusive economic
zone—EEZ), national (covering all territorial waters or EEZ of
a country), supranational (covering marine areas of more than
one country), global; (5) Continent: Europe, Asia, Africa, North
America, South America, Oceania/Australia, Antarctica, more
than one continents, undefined, global; (6) Country; (7) Marine
biogeographic realm according to Spalding et al. (2007): Arctic,
Temperate Northern Atlantic, Temperate Northern Pacific,
Tropical Atlantic, Western Indo- Pacific, Central Indo-Pacific,
Eastern Indo-Pacific, Tropical Eastern Pacific, Temperate South
America, Temperate Southern Africa, Temperate Australasia,
Southern Ocean, more than one realms, undefined; (8) Specific
location: free text; (9) Bathymetric zone: only coastal shelf:
0–200m, both coastal shelf (0–200m) and offshore (>200m), not
specified (200-m depth was considered as the most appropriate
and widely used coastal shelf boundary; Spalding et al., 2007);
(10) Habitat type: sand/mud, rocky reefs, coral reefs, seagrasses,
mix, undefined; (11) Years of study duration; (12) Number of
seasons considered: no season, one season, two seasons, three
seasons, four seasons, not clear; (13) Fieldwork included: yes,
no; (14) Non-destructive methodologies used, when fieldwork
included: yes (exclusively), no, both (destructive and non-
destructive); (15) Main methodological approach applied to
assess coastal food webs: manipulative experiment, natural
experiment, non-experimental-based correlation, modeling,
qualitative/conceptual, other. Manipulative experiments refer to
field or laboratory experiments that include treatments/control
and random selection of experimental units. In natural
experiments, one of the elements of manipulative experiments
is missing and the experimental units are selected by nature
(i.e., not randomly). Non-experimental-based correlation
refers to inference based on an observed correlation between
ecosystem state variables and a specific driver, but not based
on an experimental design for data collection. Modeling refers
to estimates of state variables/indices derived from ecosystem
models. Qualitative/conceptual studies are based on expert
judgment and/or a qualitative analysis; Other studies, didn’t
match any of the above approaches and consisted mainly of
observational studies that explored food web variables without
any correlation with drivers or further modeling analysis; (16)
Type of model or statistics (Ecopath, Ecopath with Ecosim,
Atlantis, descriptive statistics, other); (17) If other in field
16: free text; (18) Acquisition methods for population state
variables (biomass/size/abundance): literature-based sources,
destructive sampling, non-destructive sampling; (19) Trophic
level and/or trophic relationships determination techniques
applied alone or in combination: stable isotope analysis, fatty

acid analysis, gut content analysis, molecular analysis; (20) Food
web reconstruction (i.e., quantitative information of the energy
or carbon transfer through the food web): yes, no; (21) Scientific
or common names of species studied: free text; (22) Minimum
number of species studied: actual number, not mentioned;
(23) Alien species studied: yes, no; (24) Scientific or common
name of alien species studied: free text; (25) Quantitative food
web assessment (e.g., providing biomass per trophic level): yes,
no; (26) Aggregation of species into biotic functional groups
(i.e., referring to groups of organisms of similar trophic level
(e.g., primary producers, omnivores, piscivores): yes, no; (27)
Number of biotic functional groups used; (28) Names of the
different biotic functional groups used: free text; (29) Trophic
level/s considered: Number, not mentioned, all trophic levels
equally studied; (30) lowest trophic level studied; (31) highest
trophic level studied; (32) Taxa mostly targeted: phytoplankton,
algae, zooplankton, benthic invertebrates, fish, reptiles, birds,
mammals, not applicable (when the study didn’t focus in a
single taxonomic group); (33) Driving factors considered:
yes, no; (34) Categories of driving factors considered: fishing,
temporal variability (mainly seasonal, inter-annual, monthly),
climate change, eutrophication, pollution, habitat complexity,
alien species, grazing, organic matter content/input (e.g.,
pelagic/coastal/terrestrial/riverine), other, more than one
drivers; (35) More than one drivers and/or other drivers: free
text; (36) Indices used to describe food webs: yes, no. As an
“index” we considered any mathematical expression, ratio
or correlation used by the authors in order to quantify key
features and properties of food webs and marine ecosystems,
describing characteristics of energy flow, resilience, structure,
and functioning; (37) Number of indices used; (38) Names of
indices used to describe food webs: free text; (39) Economic
analysis performed: yes, no; (40) Knowledge gaps and future
work highlighted: free text.

Descriptive statistics were used to analyze the review results
using one, or combining more than one, of the aforementioned
data sheet columns, and utilizing the filter option accordingly,
in order to provide respective estimates. The number of studies
regarding different biotic groups, taxonomic groups, and drivers
was estimated separately for the different methodological
approaches considered (i.e., manipulative experiment, natural
experiment, non-experimental-based correlation, modeling,
qualitative/conceptual, and other). Drivers were further
aggregated into two distinct time periods, before and after 2004,
corresponding approximately to the periods before and after
the onset of the wider use of modeling approaches. QGIS was
used to map the reviewed food web studies per marine realm
(sensu Spalding et al., 2007). SankeyMATIC was used to create
the Sankey diagram.

RESULTS

Spatiotemporal Coverage of the Food Web
Studies
The selection criteria were not matched for any study published
before 1973, while only 29 studies matched the search terms
before 2000. The publication rate of food web studies has
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FIGURE 2 | Spatio-temporal identity of the reviewed studies: (A) annual publication rate of coastal shelf food web studies between 1973 and 2018. Blue line: all

studies, red line: studies utilizing a modeling approach; (B) spatial scale of the studies; (C) habitat types studied; (D) number of seasons accounted for.

increased substantially since 2000, reaching a maximum of 44
studies annually during 2014 and above 40 during 2017 and
2018 (Figure 2A). Relevant studies were conducted in all marine
realms (sensu Spalding et al., 2007, Figure 3). However, the
bulk of studies referred to the Temperate Northern Atlantic
(49%), followed by the Temperate Northern Pacific (12%),
and the Arctic (9%), while 5% of the studies cover more
than one marine realms (Figure 3). Spatially, most studies
referred to a subnational (81%) or a supranational level (16%;
Figure 2B). Among all continents, 40% of the studies were
conducted in Europe, 25% in North America, 12% in Asia,
7% in South America, 5% in Africa, 4% in Oceania/Australia,
2% in Antarctica, 4% of the studies were conducted in more
than one continent, and 1% were global. Most studies (71%)
regard ecosystems exclusively on or above the coastal shelf,
20% integrated both coastal shelf and offshore waters, while 9%
referred to coastal marine ecosystems but without clarifying the
studied depth zone. Only 49% of the studies defined the type
of habitat investigated (Figure 2C); many of these investigate a
mixture of habitat types (20%), 16% focused on sandy/muddy
substrates, 9% on rocky reefs, 3% on seagrasses, and 1% on
coral reefs.

With regards to the temporal extent, studies analyzed,
simulated, modeled or predicted the food web structure over
time frames, ranging from a few days to more than 400 years.
Many papers referred to a time frame of <1 year (25%), 41%

considered food webs over 1–10 years, 18% spanned over more
than 10 years, while 17% made no mention of temporal scale.
Information on the number of seasons sampled or considered
in subsequent analyses can be found in half of the studies (50%;
Figure 2D); of these, the majority took into account either four
seasons (23%), or one season (15%). The remaining 50% either
provided no information regarding seasonality (“undefined” in
Figure 2D) or did not incorporate seasonality into relevant
analyses (“no seasons”).

Biotic Components of the Food Web
Studies
With regards to the biotic information provided in the reviewed
493 studies, 75% classified food web components into distinct
biotic groups (e.g., carnivorous fish), while 25% presented
information on selected species only. The number of biotic
groups ranged between 1 and 135 (mean = 14.7, standard
deviation = 16.9). A high number of distinct biotic groups
(ranging from 11 to 135) were mostly used for the description
of coastal shelf food webs in the modeling studies, while the
rest food web study approaches used predominantly fewer
biotic groups (Figure 4A). Specifically, many studies with
experimental approaches (55% of them) and non-experimental-
based correlations (26% of them) used 1–5 biotic groups.
Among all the reviewed studies, 22% focused mostly on fish,
21% on benthic invertebrates and 6% on zooplankton, while
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FIGURE 3 | World map depicting the number of coastal shelf food web studies (N = 493) that have been carried out per marine realm (depicted with different color in

the map; sensu Spalding et al., 2007). Pie charts represent the proportion of studies conducted per bathymetric zone.

FIGURE 4 | (A) Number of biotic groups considered (N = 493); (B) Taxonomic groups that studies focused in (N = 493). NA, Not applicable.

a high percentage of the studies (45%) focused in more than
one taxonomic group (NA in Figure 4B). Many studies with
experimental approaches (45% of all of them) focused mostly
on benthic invertebrates and –to a much lesser extent– on fish
(Figure 4B). Of all the reviewed studies, 263 (53%) used trophic
levels for the description of trophic relationships. The trophic

level ranged between 1 and 5.64 (mean= 2.9, standard deviation
= 0.8), and the range most commonly taken into account was
4.5 (Figure 5). Six studies included trophic levels lower than one.
These are all studies using stable isotope analysis, where trophic
level is calculated based on the isotopic distance of a particular
dietary cluster to a chosen base reference. In these cases, values
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FIGURE 5 | Range of the trophic levels considered (N = 263).

below one refer to certain primary producers and suspended
particulate organic matter (Nilsen et al., 2008; Roy et al., 2015;
Wing et al., 2017, 2018; Xue et al., 2017), or even some species of
pelagic filter feeders or benthic surface and sub-surface deposit
feeders (Bell et al., 2016).

Methodological Aspects
Only 63% of the studies included fieldwork, while the rest
37% exclusively used literature data. The vast majority of
studies that conducted fieldwork obtained data through the
use of destructive data acquisition methods (81%; Figure 6A),
requiring the removal of biological samples from their natural
environment and the killing of marine organisms. Only 5%,
employed exclusively non-destructive data acquisition methods
(i.e., methods that have a minimal impact on the studied
environment and the associated organisms), while only 14% used
a combination of both (Figure 6A). The most common type of
methodological approach employed for the assessment of coastal
shelf food webs wasmodeling (40%; Figure 6B), followed by non-
experimental-based correlation (30%), manipulative experiments
(8%), natural experiments (6%), or a qualitative/conceptual
type of approach (3%). Overall, 54% of the studies provided
quantitative information on food web structure (Figure 6C)
(e.g., biomass per trophic level), while 46% offered a qualitative
description. Modeling, natural and manipulative experiments
predominantly led to quantitative descriptions of food webs,
non-experimental-based correlation almost equally led to both
quantitative and qualitative results, while qualitative/conceptual
and other types of approaches predominantly led to qualitative
descriptions of food webs (Figures 6B,C).

Information on population state variables (i.e., biomass,
size, abundance) was provided by 340 studies (69%), of
which 58% acquired data through the literature, 49% using
destructive sampling techniques, and 14% through non-
destructive surveys. Specifically, literature-based data included
information extracted from the published scientific literature,
project reports, fisheries stock assessments, national or regional
statistics, fisheries landings services, open access databases
(e.g., FAO-GFCM statistics; Fishbase—Froese and Pauly, 2019).

Destructive sampling techniques were mostly fisheries-based,
using various types of benthic and pelagic fisheries tools, such as
beam trawls (Jennings et al., 2002; Brind’Amour et al., 2009; Bell
et al., 2016), otter trawls (Koulouri et al., 2015; Bell et al., 2016),
plankton nets (Blachowiak-Samolyk et al., 2007; Anjusha et al.,
2013; Caron et al., 2017), fyke nets (Thollot et al., 1999; Bergström
et al., 2016), gillnets (Di Beneditto et al., 2012; Prado et al.,
2014; Donadi et al., 2017), seine nets (Faye et al., 2011), bottom
dredges (Jennings et al., 2001), crab traps (Mancinelli et al., 2013),
and eel traps (Heldal et al., 2018). Other particular sampling
techniques included infauna sampling with VanVeen and Smith-
McIntyre grabs (Soto and Escobar-Briones, 1995; Dunton et al.,
2012; Whalen et al., 2013; Lovvorn et al., 2015; Tu et al., 2015;
Misic et al., 2016) and USNEL box corer (Tselepides et al.,
2000), scraping of rocky surfaces with chisel for the collection of
algae and benthic invertebrates (Lin et al., 1999; Kroeker et al.,
2011), manual hand collection of macroinvertebrates bymeans of
SCUBA diving (Tewfik et al., 2005; O’Gorman et al., 2008; Wing
et al., 2018), as well as experimental dynamite fishing (Hansen
et al., 2012). On the other hand, non-destructive survey methods
were much less commonly used. These methods mostly included
underwater visual counts of fish and benthic invertebrates
within strip transects and quadrats (plot sampling) by means
of direct observation while SCUBA diving and snorkeling (e.g.,
Leonard et al., 1998; Albouy et al., 2010; Coll et al., 2011;
Mumby et al., 2012; Sala et al., 2012) or underwater video
recording (Schoenrock et al., 2018), photoquadrat sampling
for the estimation of benthic cover (Edgar et al., 2011, 2017;
Salomidi et al., 2016), as well as visual counts of birds from
land or via aerial surveys (Kvitek and Bretz, 2005; Lassalle et al.,
2011; Luczak et al., 2012) or mark-recapture bird surveys (Paiva
et al., 2013). Deviating from the apparent norm of visual counts
being the most commonly used set of non-destructive methods,
hydroacoustics were also used by seven studies (Ainley et al.,
2009; Chen et al., 2011, 2015; Pálsson et al., 2012; Paiva et al.,
2013; Stauffer et al., 2015; Marsh et al., 2017) for the estimation
of pelagic fish abundance. Biomass and/or abundance data were
often used as basic input for ecological models reconstructing
the food web under study, whereas the organisms collected
via destructive methods were usually further analyzed using
various techniques for the determination of trophic levels and/or
trophic relationships.

Moreover, four types of trophic level and/or trophic
relationship determination techniques (stable isotopes, fatty
acids, gut contents, and molecular analysis) were identified in
the reviewed papers (Figure 7). These techniques were deployed
to define the trophic level of species and biotic groups, the
trophic relationships between different food web compartments,
or both. The different techniques were used either in isolation,
or combined, in order to compare and/or improve the resolution
of trophic relations. Out of the 206 studies (42% of all the 493
studies) that applied one of the aforementioned determination
techniques, 171 (83%) used stable isotopes to trace some key
element (mainly carbon—C and nitrogen—N), 19 studies applied
stable isotopes in combination with lipid or fatty acid analyses,
14 used stable isotopes to validate gut contents, while one study
combined stable isotopes, gut contents and fatty acid analyses.
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FIGURE 6 | Sankey diagram depicting the flow between (A) the different data acquisition methods (B) the main methodological approaches used to assess marine

coastal shelf food webs, (C) the type of information (Quantitative/ Qualitative) provided by the studies (N = 493). Lines and ribbons represent flows between two

consecutive grouping bars only (A–B, B–C). Non-destructive or both: exclusive use of non-destructive methods alone and combined use of both destructive and

non-destructive methods.

Gut contents analyses were applied in isolation in 31 studies
and were combined with molecular analysis in a single study.
Molecular techniques were used in isolation in two studies, while
analysis of fatty acids alone was used in just one study.

Stable isotope analysis is a method commonly used in the
study of trophic relations and energy flow (see Michener and
Lajtha, 2007 for a review). The method is mainly based on the
use of the stable isotopes of C and N, in order to record both
source of nutritional content and trophic level information. In
the reviewed studies, the contribution of different sources of
δ
13C and δ

15N to the diets of representative species or trophic
groups were determined through linear mixing models based
on mass balance equations (e.g., using the Isosource software;
Phillips and Gregg, 2003), stable isotope mixing models (e.g.,

SIAR—stable isotope analysis in R, Parnell et al., 2008, 2010;
IsoWeb, Kadoya et al., 2012; MixSIAR, Stock and Semmens,
2013) or other types of modeling approaches (Boecklen et al.,
2011). Next to determining the number and degree of association
of the different trophic levels, stable isotope analysis of stomach
contents was also used to define habitat preferences, site fidelity,
trophic breadth or overlap of different species (Aurioles-Gamboa
et al., 2013), importance of different food sources in supporting
specific trophic levels (Behringer and Butler, 2006), and describe
and compare the food webs of different marine ecosystems (e.g.,
Cai et al., 2005). In one case, the stable isotope of δ18Owas used to
track freshwater contribution to the marine food webs (Bell et al.,
2016), while the analysis of compound specific stable isotopic
composition of specific amino acids (e.g., glutamic acid and
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FIGURE 7 | Number of studies that used each trophic relationship

determination technique, alone or in combination with others (N = 206).

phenylalanine) was used to define trophic position of different
organisms (Chikaraishi et al., 2014).

Lipids and fatty acids are some of the most commonly used
trophic markers for the study of food web dynamics. Because of
their characteristics and their storage patterns in the tissues of the
organisms, they are very useful tracers of trophic relationships
and are considered as reliable indicators of long-term diet.
Specifically, they do not degrade during digestion like other
dietary nutrients, and they are stored in animal bodies in fat
reservoirs, accumulating over time and representing the dietary
intake over long periods of time (Iverson, 2009). In the studies
of this review, fatty acid analysis has been used in two main ways:
either looking for differences or changes in fatty acid composition
and thus making inferences about differences or changes in diets
of consumers (Koussoroplis et al., 2011; McMeans et al., 2015;
Jankowska et al., 2018), or using fatty acid biomarkers to identify
predator-prey relationships (McLeod and Wing, 2009; Kürten
et al., 2013; McMeans et al., 2013).

The classic analysis of gut contents (including stomach,
regurgitation or feces contents) is utilized to provide information
on the feeding behavior of organisms, their trophic position,
and the predator-prey relationships. It has been traditionally
used in the study of trophic relations, as the number, size, and
quantity of prey items can be assessed through direct visual
observations obtained from alive or dead individuals. Direct
counts and identification of prey items, provide information on
the frequency of occurrence and abundance of different prey
species in the gut contents, whereas, volumetric, gravimetric,
or direct weighing methods give additional information on the
relative contribution of each prey to the diet (Mendonça et al.,
2007; Kopp et al., 2013; Oakley et al., 2014). In the reviewed
studies, prey items were analyzed either individually or were
aggregated into groups according to taxonomic status, functional
characteristics, body size (e.g., Oakley et al., 2014), life history
stage (e.g., Whitehouse et al., 2017), or association with different
habitat types and depth (e.g., Giraldo et al., 2017). Similarly,
the biological traits of the sampled predators, such as body or
gape size, and ontogenetic shifts in feeding (e.g., Abdurahiman

et al., 2010; French et al., 2013; Dunic and Baum, 2017; Hanson,
2018) were taken into account in some studies, to allow a
more detailed assessment of the feeding habits of a species. The
consideration of such biotic traits were sometimes also used
to aggregate species into trophic guilds (non-taxonomic groups
of species which exploit the same resources; Abdurahiman
et al., 2010; Whitehouse et al., 2017; Hanson, 2018), estimate
trophic spectra (e.g., Torruco et al., 2007), and calculate indices
which were used as basic inputs in respective food web models
(e.g., the consumption per biomass ratio; Ullah et al., 2018).
Gut content analysis was also used to verify or complement
dietary information obtained through other types of trophic
level determination techniques, such as stable isotope or fatty
acids analysis (e.g., Rodríguez-Graña et al., 2008; Paiva et al.,
2013), to estimate bioaccumulation levels of heavy metals (e.g.,
McMeans et al., 2015), and to build up complex ecosystem-based
models (e.g., Lassalle et al., 2011). In one study, stomach contents
were subjected to molecular methods in order to obtain a finer
taxonomic resolution of the prey items (Lindeque et al., 2014).

Overall, 149 studies (30% of the reviewed studies) provided
a quantitative analysis through food web reconstruction,
combining various data sources for the acquisition of population
state variables or the determination of trophic levels and
relationships. These studies are mainly based on the concept of
energy or carbon transfer across the food webs, which essentially
refers to the flow of organic matter from one trophic level
to the next. Starting from photoautotrophic primary producers
that convert solar radiation into carbon compounds through
photosynthesis, energy is being transferred as organisms of the
higher trophic levels consume those at the lower trophic levels.
Trophic linkages are therefore assessed through the study of
energy flows (Lindeman, 1942). However, such an approach
requires detailed knowledge of the organisms’ energy budgets,
and/or nutritional composition. In the reviewed studies, this
information was provided by some of the aforementioned trophic
level determination techniques. For example, essential organic
compounds, such as fatty acids, which can only be acquired
through the assimilation of dietary components by heterotrophic
organisms, were tracked down through the use of fatty acid
analysis (Koussoroplis et al., 2011; McMeans et al., 2013),
while protein, lipid and carbohydrate contents were estimated
through several extraction and determination methods, and
were converted into carbon equivalents through the application
of respective conversion factors (e.g., Harriague et al., 2006).
Thereof, energy budgets of individual organisms or the net
energy transfer between sequential compartments within a food
web were estimated using complex models which combined data
on population state variables, trophic level and relationships,
ecological processes (e.g., emigration or immigration), as well as
the abiotic or human factors that affect them (e.g., Jennings and
Collingridge, 2015). Many of these studies (N = 149) generated
food web models using Ecopath with Ecosim (45%), followed
by Ecopath (16%), Atlantis (3%), or various other modeling
approaches (34%).

Indices and food web attributes that describe the structure
and functioning of coastal shelf ecosystems were used in 65
% of the studies (the list of indices descriptions with their
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TABLE 1 | Analytical list of all the drivers considered in the food web studies analyzed in this review.

Driver 1973–2004 2005–2018 Sum Driver 1973–2004 2005–2018 N

Abiotic factors 26 240 266 Anthropogenic activities 22 217 239

Temporal variability (including

inter-annual, seasonal, diurnal)

7 66 73 Fisheries (including different gear and

fisheries restrictions)

11 100 111

Spatial variability (other than bathymetric) 5 43 48 Pollution (including domestic, thermal,

urban pollution, oil spills, and

biomagnification studies)

6 29 35

Hydrographic conditions (including

climatic, oceanographic, and

geochemical)

4 21 25 Eutrophication (including combined

sources)

3 33 36

Organic matter content / input 0 24 24 Alien species 0 18 18

Depth 4 19 23 Mitigation measures 1 9 10

Salinity 1 15 16 Coastal development, Habitat alteration 0 9 9

Temperature 1 14 15 Aquaculture 0 8 8

Morphodynamics 1 10 11 Changes in river flow 1 4 5

Ice cover/persistence, Ice scour/glacial

impact

0 7 7 Tourism, recreation, coastal livelihoods

and local economies

0 2 2

Degree of isolation/distance from sea or

coast

1 4 5 Anchoring, mooring 0 1 1

Oxygen levels/dissolved oxygen 0 5 5 Desalination 0 1 1

Carbon sources and availability 0 4 4 Hunting 0 1 1

Periodic events (e.g., El Niño, centenary

floods)

0 3 3 Logging intensity/deforestation 0 1 1

Sedimentation and physical disturbance

of sediments

2 1 3 Wind farms 0 1 1

Solar radiation/light 0 3 3 Global change 3 64 67

Water transparency 0 1 1 Climate change 2 37 39

Biotic factors 16 89 105 Ocean acidification 0 9 9

Species interactions 6 36 42 Sea surface temperature change 0 6 6

Habitat complexity 1 19 20 Migrations routes, range shifts change 0 3 3

Primary production/Chlorophyll levels 0 10 10 Primary productivity change 0 2 2

Ecosystem productivity/Nutrient

availability

6 4 10 Ocean deoxygenation 0 2 2

Habitat type (including artificial

structures)

1 6 7 Food abundance change 1 0 1

Algal and jellyfish blooms 1 4 5 Sea level rise 0 1 1

Community size and abundance 0 4 4 Community structure change 0 1 1

Producer/Prey/Consumer size 0 3 3 Sea ice persistence 0 1 1

Ontogenetic shifts 0 2 2 Hydrographic/oceanographic change 0 1 1

Taxonomy 0 1 1 Salinity change 0 1 1

Bioturbation 1 0 1

references is available in Table S2). These indices and descriptors
focused on characteristics of energy flow within the food
webs, as well as characteristics of the food web structure
and other functional aspects, giving insights into the state of
ecosystems, their responses to natural and human impacts and
their resilience to current and/or future perturbations. Half
of the studies that used indices were modeling studies. In
these cases, the values of the indices and food web attributes
provided were the direct output of the model used (e.g.,
Ecopath with Ecosim). Such commonly used indices included
the total system throughput (the sum of all trophic flows
in the system), which is indicative of its “ecological size”
(Ulanowicz, 1980); the total primary production to total biomass

ratio, which is related to ecosystem maturity (Christensen
and Pauly, 1992); the system omnivory index (a measure of
trophic specialization, indicating how feeding interactions are
distributed among trophic levels; Christensen and Pauly, 1992);
Finn’s cycling index (the proportion of total system throughput
recycled within the system; Finn, 1976); mean trophic level
of the community (Christensen et al., 2008); mean transfer
efficiency (efficiency of energy transferred from a trophic level to
the next through consumption; Lindeman, 1942); keystoneness
index (used to identify possible keystone species; Libralato
et al., 2006); ascendency, which is a measure of the size
and the organizational status of the network exchanges that
occur in an ecosystem (Ulanowicz, 1980); connectance (the
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FIGURE 8 | (A) Types of drivers most commonly recorded in the 493 published coastal shelf food web studies (B) Types of drivers most commonly used in the

periods 1973–2004 and 2005–2018.

number of connections of any possible links between two living
compartments of the food web; Gardner and Ashby, 1970),
and the number of trophic links between taxa (Cohen and
Briand, 1984). Indices typically used in ecological studies, such
as common biodiversity indices (e.g., species richness, Shannon-
Weaver index H’, Simpson diversity index), were also used by
various studies as descriptors of food web status. Integrated
indices aiming to assess the ecological status or health of marine
ecosystems were also applied in several cases, as e.g., the “ocean
health index” (Halpern et al., 2012) and the “ecosystem-based
quality index” (Thibaut et al., 2017).

Other Type of Information Provided
The majority of studies (76%) also included some natural or
human-related driver against which the food webs were studied.
Out of these studies (N = 376), 61% considered only one
driver, while the remaining 39% took into account more than
one drivers. A total of 53 drivers were recorded, of which 16
refer to abiotic drivers, 11 to biotic drivers, 14 to anthropogenic
drivers and 12 to drivers related to global change (Table 1). The
primary driver recorded in the published literature was fisheries
(Figure 8A, Table 1), which was incorporated in 23% of all
studies (N = 493), followed by temporal variability (15%), spatial
variability (10%), species interactions (9%), climate change (8%),
eutrophication (7%), and pollution (7%). The diversity of drivers
used in the scientific literature has increased from a total of 22
drivers before 2004 to 51 drivers thereafter (Table 1). During
these two time periods (1973–2004 and 2005–2018), fisheries
(16 and 16%, respectively), temporal variability (10 and 11%),
spatial variability (7 and 7%), eutrophication (4 and 5%) and
other abiotic drivers (15 and 14%) have been used with the same
frequency. The use of drivers linked to global change (4 and 10%),

organic matter content/input (0 and 4%), and alien species (0 and
3%), shows a substantial increase during the more recent time
period, while the use of other biotic drivers (15 and 9%), species
interactions (9 and 6%), pollution (9 and 5%), and hydrographic
conditions (6 and 3%) shows a decrease (Figure 8B). Economic
analysis aiming to quantify the economic value of the food web
components, their functions, or their loss, had been performed
in only 2% of the reviewed articles.

DISCUSSION

The first food web was originally depicted by Camerano (1880),
and in the following years ecologists provided different graphical
representations (Pierce et al., 1912; Shelford, 1913; Petersen,
1915). More detailed descriptions of food webs (Summerhayes
and Elton, 1923; Hardy, 1924), led to the development of
the fundamental concepts of food chains, trophic pyramids,
and trophic levels (Elton, 1927). In 1942, Lindeman examined
aquatic ecosystems in an integrated manner, and introduced
the aspect of trophodynamics, i.e., the dynamic processes of
trophic interactions. Lindeman’s approach can be considered as
the cornerstone of food web analysis, and the starting point
for the development of the ecosystem approach in marine
ecology. Hairston et al. (1960) provided a simplified ecosystem
description with the use of only three distinct trophic levels
among plants, herbivores and carnivores, after which additional
trophic levels were identified. Paine (1966) investigated the
intertidal rocky shore community and highlighted the crucial
role of predation in shaping it. By 1970s, the critical role
of food webs in the thorough understanding of ecosystem
processes and the integrated assessment of marine ecosystems
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was well acknowledged (Odum et al., 1971), while the concept
of the linear food chain was gradually substituted by more
complex food web analyses (Pomeroy, 1974). However, given
the complexity of marine systems, the incorporation of the
trophodynamic aspect in the study of marine food webs only
became possible after the emergence of ecological modeling
(e.g., Polovina and Ow, 1983; Baird and Ulanowicz, 1989),
which largely explains the scarcity of studies on coastal food
webs before the 1980s. Moreover, advances in the use of
stable isotope analysis enabled the more precise description of
trophic preferences of various marine species (Schoeninger and
DeNiro, 1984). The fundamental theory of the representation
and analysis of marine food webs progressed (Pimm, 1982), and
the use of specific food web indicators enabled the assessment
of ecosystem complexity in relation to stability (Pimm, 1984)
and health status (Ulanowicz, 1986). It soon became obvious that
changes in the ecosystem can cascade across food webs through
trophic interactions (Carpenter et al., 1985), thus affecting
food web structure and energy flows (Odum, 1985). Menge
and Sutherland (1987) highlighted the role of environmental
moderation and biotic processes (e.g., competition, predation,
recruitment) as the main drivers affecting trophic structure in
marine communities, while Polis et al. (1997) underlined the
significance of spatial processes (e.g., movement of animals and
nutrients among habitats, physical heterogeneity), in the shaping
of food web dynamics.

Soon, the study of trophic relationships was used to investigate
the effects of fishing on marine ecosystems (Pauly et al.,
1998) and, as shown in the present review, the pressure of
fisheries remains the most commonly studied driver of change
in coastal shelf food webs. Over the last 20 years, scientific
research on coastal shelf food webs has greatly increased, as
reflected in the rising rate of relevant published literature.
This is mainly due to the development of new analytical
techniques and modeling tools, which are relatively easy to
access and operate, and which have facilitated the more precise
definition of trophic relationships and the detailed exploration
of coastal shelf webs (Libralato et al., 2014). The development
of the Ecopath modeling software (Christensen and Pauly,
1990) pioneered the multivariate food web analysis options,
and the comparative studies among different food webs and
ecosystem types (Pauly and Christensen, 1995). The development
of Ecopath substantially contributed to the increasing rate of
modeling studies after 2000, and based on the present review, it
is currently the most common ecosystem modeling approach.

According to our analysis, food web studies have been
conducted in all coastal shelf realms and continents. However,
most of the studies that met our search criteria focused in the
Temperate Northern Atlantic, specifically in marine areas of
Europe and North America. This geographic trend can partly be
explained by the provision of higher funds for marine research
in Europe and North America (UNESCO Institute for Statistics,
2020), where the majority of highly ranked universities is situated
(Jöns and Hoyler, 2013). Moreover, our results show that the
majority of studies have investigated food webs at a subnational
level or supranational level, indicating that studies tend to focus
on specific water bodies rather than cover vast marine geographic

areas. Nevertheless, as mentioned above, enhanced computer
power and new modeling approaches have also allowed the
processing of extensive time series thus facilitating the study and
comparison of coastal shelf food webs over large spatial scales
(i.e., at a national or even global scale; Pauly and Christensen,
1995), as well as their evolution over extensive time scales (more
than 400 years) so as to forecast and project future trends
in response to global change or other sources of ecosystem
alteration (e.g., Hoover et al., 2013; Neira et al., 2014; Hattab
et al., 2016; Eddy et al., 2017). Still, approaches that are largely
driven by administrative boundaries and access to data often limit
the validity of the outputs, as political boundaries commonly do
not reflect meaningful ecological boundaries. Species, habitats,
as well as many physical or human induced drivers of coastal
food web structure (such as marine currents and pollution) move
across political boundaries, thus creating strong interdependence
among countries. Transboundary collaboration, data sharing and
common research efforts at the ecoregional level, as opposed
to unilateral uncoordinated efforts at a national or subnational
scale, can lead to improved efficiency of food web assessments
and ecosystem-based management (Giakoumi et al., 2013; Mazor
et al., 2013; Katsanevakis et al., 2015).

All food web studies that met our search criteria focus in
coastal ecosystems, but only few of them refer to a particular
habitat type (specifically, sand/mud, rocky reefs, seagrasses or
coral reefs). Approximately 50% of the studies do not account
for habitat type, while 9% of the studies do not even mention
the depth range of focus. Moreover, 50% of the studies have
not incorporated seasonality into their analysis and/or do not
provide sufficient details regarding the timing and the periodicity
of sample collection. Food webs are known to be greatly affected
by the physical environment (Briand, 1983; Shears et al., 2008),
while depth, habitat type, habitat complexity, and seasonality
have been identified as key components both in the structuring
of coastal shelf food webs (e.g., Torruco et al., 2007; Abrantes
et al., 2015; Ferriss et al., 2016), as well as in the intensity of
specific human impacts that shape them, such as fisheries or
eutrophication (e.g., Nilsson and Ziegler, 2007; Kritzer et al.,
2016; Quillien et al., 2016). Temporal variability is generally
related to changes in community composition, quantity and
origin of organic matter, productivity levels, and availability of
resources, as well as the size structure and ontogenetic shifts of
dominant consumers (Akin and Winemiller, 2006; Tallis, 2009).
On the other hand, depth and habitat type or habitat complexity
are commonly linked to ontogenetic differences and changes in
community structure (e.g., Shears et al., 2008; Schmidt et al.,
2011; Hattab et al., 2013; Sini et al., 2019). Specifically accounting
for depth, habitat type, and temporal variability is not only
important for the better understanding of the food webs and the
role of the multiple trophic links and pathways in the overall
functioning of an ecological system, but it is also essential for the
cross comparisons of datasets at different spatiotemporal scales
and the prioritization of areas for conservation and management
(Abrantes et al., 2015).

The vast majority of coastal shelf food web studies classified
organisms into distinct biotic groups, rather than providing
information on selected species only. Notably, in several cases,
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biotic groups were defined as “functional groups,” although
the actual categorization was based on the wider taxonomic
status of organisms (e.g., whales, dolphins, birds, macrobenthos),
rather than on purely functional criteria. Other biotic groups
were usually related to body size, age, or feeding habits (e.g.,
trophic or feeding guilds). Regardless the case, most studies
assigned species or biotic groups into distinct trophic levels
(as also reported by Libralato et al., 2014) and used different
methods to define trophic levels. Investigation of trophic
relations is a difficult process in marine ecosystems (Libralato
et al., 2014), and as seen in our results there is still great
heterogeneity in the methods of trophic level estimations (e.g.,
Mathews, 1993; Søreide et al., 2006).

Stable isotope analysis is currently the most extensively
used method for the identification of trophic levels (present
study; Vander Zanden and Rasmussen, 1999). One of its main
advantages is that it allows the determination of trophic position
with an increased accuracy, as stable isotopes incorporate
assimilated dietary information over long periods of time (De
Niro and Epstein, 1981). On the other hand, the complexity
of marine food webs (Isaacs, 1973) cannot be fully captured
by the stable isotope technique (Post, 2002; Boecklen et al.,
2011). For example, certain food types, like detrital matter, may
originate from various sources, while several species may change
their feeding preferences according to size, ontogenetic changes,
stochastic reasons, or simply because they are omnivores (Pimm
et al., 1991). Species that act both as prey and predator can
have isotopic signatures that are difficult to interpret, while,
natural change in physical conditions may bring about short
term seasonal shifts in the isotopic composition of the organisms
and their environment. Thus, although the movement of
nutrients between distinct trophic groups can be traced through
the use of stable isotopes, predator-prey interactions can be
identified with sufficient certainty only among specific groups
of species and within rather simplified versions of ecosystems
(Sousa et al., 2016).

Along with stable isotopes, lipids and fatty acids are gradually
becoming increasingly common in the estimation of trophic
level, as they provide reliable information on the long-term
diet of organisms. However, fatty acid analyses alone cannot be
used to track down the contribution of certain trophic groups
within an organism’s diet, especially in cases when organisms
consume dietary items of different origin (e.g., ice algae vs. pelagic
phytoplankton; Søreide et al., 2008). Fatty acid techniques still
need to be tested and more broadly applied (Valiela, 2015).

The traditionally used gut content analysis also presents
several important limitations. A main drawback is the failure
to identify all prey items, especially when there are no hard
structures (like otoliths, scales, beaks, carapaces, or shells).
Moreover, it only provides a snapshot of the feeding habits of an
individual, hence it requires large sample sizes in order to assess
the seasonal and spatial variability of the dietary preferences of
a species during its different life stages (Paine, 1988). This is
particular problematic for species that go through ontogenetic
dietary shifts, and for large piscivorous fish which consume a very
wide range of prey items that are of highly variable abundance
in space and time (Armstrong and Schindler, 2011). Problems

related to the regurgitation of stomach contents of the predator
due to stress during capture, the time of feeding vs. the time of
capture of the predator, as well as the differential digestion rates
of different prey items, provide extra sources of bias related to
the type and abundance of prey items found in the gut contents.
Most importantly, gut content techniques fail to define what
prey has been assimilated into predator growth, as not all the
captured prey items are eventually digested and assimilated;
unassimilated material is released back to the environment in the
form of unused feces (Pinnegar and Polunin, 1999). Moreover,
gut content analysis requires either destructive sampling or
stressful protocols for the stomach flushing (Jarman et al., 2002;
Bucklin et al., 2011). For all these reasons, gut content analysis is
gradually being substituted bymore advanced techniques, such as
stable isotopes and fatty acid analysis, and is used to supplement,
compare or verify the results of the latter (e.g., Rodríguez-Graña
et al., 2008; Paiva et al., 2013).

In the present review only three studies were found to use
molecular tools for the determination of trophic level (Menge
et al., 1999; Lindeque et al., 2014; Brannock et al., 2016).
Nevertheless, molecular analysis, including DNA barcoding, is
a promising new approach that is expected to advance the
quality of dietary information. Samples of gut content or fecal
material, containing even partially digested prey items, can
provide information on the presence (Valentini et al., 2009;
Jo et al., 2014), or even the frequency of occurrence (Bowser
et al., 2013) of different prey items. As molecular techniques are
progressing, new tools facilitate the study of ever more complex
food webs (e.g., next generation sequencing; Pompanon et al.,
2012), revealing the diets of fish, mammals, and seabirds (Jarman
et al., 2002; Leray et al., 2013; De Barba et al., 2014). The main
disadvantage of themolecular approach is that DNA sequences of
dietary items may be altered or partly broken by the time they are
measured (King et al., 2008). Moreover, techniques such as DNA
barcoding are still quite complex and costly to apply (Valentini
et al., 2009; Bucklin et al., 2011; O’Rorke et al., 2012).

All the aforementioned techniques (used in isolation or
in combination) have improved the determination of trophic
level and the resolution of trophic relations (Kohlbach et al.,
2016, 2017). Along with these analytical methods, certain
other approaches may also be used to provide qualitative
supplementary information on food preferences in certain cases.
For example, the structure of organs involved in the capture
and consumption of prey items (e.g., Platt and Warwick, 1980),
observations of feeding habits through direct observations (e.g.,
Paine, 1980; Kvitek and Bretz, 2005), field enclosure/exclusion
experiments, and mesocosm experiments (e.g., O’Connor and
Bruno, 2009; Kotta et al., 2018) may provide direct evidence
on the trophic preferences of a species. However, such
approaches can only be useful in a small number of studies
dealing with the feeding habits of specific conspicuous marine
consumers within spatiotemporally restricted environments,
and thus have limited application in contemporary food
web science.

Apart from trophic level determination, approximately one
third of the reviewed studies provided a more elaborate
quantitative analysis on the energy and/or carbon transfer
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through coastal shelf food webs. Such type of analysis requires
detailed knowledge of the organisms’ energy budgets, and/or
nutritional composition usually acquired by some of the above-
mentioned trophic level determination techniques. However, the
estimation of the net energy transfer between trophic levels is
a particularly challenging issue in the study of trophic ecology,
especially when dealing with highly complex systems like the
coastal shelf ecosystems. The problem arises from the fact that
a significant amount of energy is lost to the environment, as
the assimilated energy derived from food resources is being
transferred from one trophic level to the next (Valiela, 2015).
Energy is lost either through defecation of unassimilated matter,
or through the use of assimilated energy for the maintenance
of metabolic processes and activity levels (usually collectively
referred to as respiration). The energy that is assimilated but
not respired is dedicated to production, i.e., mainly growth and
reproduction (Valiela, 2015). In order to estimate the net energy
transfer, it is important to consider all the physiological and
ecological processes involved, along with the abiotic conditions
that affect them. In the majority of relevant studies this problem
is partly being tackled through the use of modeling approaches
(e.g., Wollrab et al., 2012; Jennings and Collingridge, 2015) and,
as seen through the present review, the majority of these studies
utilize modeling for the estimation of energy or carbon flow
through coastal shelf food webs.

Modeling has become the primary tool in the study of marine
food webs and, as mentioned above, it is partly responsible for
the rapid increase of coastal food web studies in the last 20
years. It facilitates the quantitative reconstruction of food webs,
since population state variables, trophic levels, trophic links,
ecological processes (e.g., emigration or immigration), energy
transfer estimations, as well as the abiotic or human factors
that affect them can be combined within sophisticated models.
It is thus the only approach that can provide an integrated
analysis of whole communities within extended spatiotemporal
scales, along with the respective environmental or anthropogenic
drivers (Shannon et al., 2014). On the other hand, the quality of
ecosystem modeling results largely depends on data availability,
the uncertainty in model structure, parameter estimates and
the exploration of alternative functional response hypotheses
(Plagányi, 2007). Hence, modeling approaches, as well as the
respective simulations and future predictions, can be of low
value when the lack of sufficient data on dietary information,
trophic links and ecological processes leads to low confidence
in respective results (Yaragina and Dolgov, 2009; Shannon et al.,
2014). Limitations of Ecopath models are also largely attributed
to the inadequate inclusion of uncertainty in data inputs and
model structure (Plagányi and Butterworth, 2004) and the
insufficient setting of default parameters by users (Christensen
et al., 2005; Plagányi, 2007).

Despite the great progress achieved, food web analysis
appears to be constrained by multiple uncertainties due to the
incompleteness of trophic data and the notable variability of
factors that shape the structure and functioning of food webs
(Valiela, 2015). Important knowledge gaps regarding population
state variables, dietary information, trophic level estimation and
ecological processes still exist even in well studied food webs

(Link et al., 2008). Although certain groups of species, such as
fish or other large prominent species, have received increased
attention, there is still a great lack of quantitative information
regarding the majority of marine coastal shelf organisms. This
is especially true for several benthic invertebrates, such as
filter feeders (Peters and Schaaf, 1991), or even for commercial
demersal fish in certain areas (Barausse et al., 2009). Specifically,
there is a complete lack of information on the population
state variables and trophic links of infauna populations in
nearly all food webs, thus adding uncertainty to the respective
research outputs (Savenkoff et al., 2007). Besides the commonly
highlighted lack of sufficient information regarding the highly
diverse and less easily identified macro- or meiobenthic groups,
abundance data of top predators are also often missing
(Savenkoff et al., 2007). Moreover, dietary information for all
fish, invertebrates, and top predators (such as seals, cetaceans
and sharks) needs to be more complete for a thorough and
robust food web analysis (Savenkoff et al., 2007; Link et al.,
2008; Barausse et al., 2009; Gjoni and Basset, 2018). Results on
trophic relationships are often conflicting (Båmstedt et al., 2000),
as organisms commonly consume a mixture of different food
sources (Valiela, 2015), while certain consumers may even change
trophic level according to food availability (Tamelander et al.,
2008). Correctly defining the trophic relationships according to
life stage and/or size class is also essential as several marine
organisms go through ontogenetic dietary shifts, and hence
occupy a different ecological position in the food web (Savenkoff
et al., 2007; Al-Habsi et al., 2008; Albouy et al., 2014). Likewise,
several ecological processes, such as productivity, recruitment,
ontogenetic shifts, migration, predation and mortality rates
(Peters and Schaaf, 1991; O’Gorman et al., 2008; Albouy et al.,
2014) need to be better estimated.

One of the main hurdles in correctly defining coastal shelf
food webs is that marine assemblages are not autonomous
entities, but open systems (Hawkins, 2004) that are subjected to
numerous natural and anthropogenic drivers. When compared
to offshore pelagic or bathyal food webs, coastal food webs
have higher spatio-temporal variability (as the environmental
conditions are more variable near the coasts), are greatly affected
by land-sea interactions, and are directly exposed to numerous
human stressors, all of which add further complexity to their
study. This is readily evident when looking at the base of
the coastal shelf food webs. Coastal systems are energetically
supported by a variety of sources, including local benthic or
pelagic producers, as well as allochthonous organic matter which
may originate either from land via freshwater run-off or from
the open sea through tidal currents and upwellings (Nielsen and
Navarrete, 2004; Carlier et al., 2015; Christianen et al., 2017;
Meunier et al., 2017). Moreover, the proportional contribution
of the different energy sources to coastal shelf food webs may
also be affected by several human-induced drivers, such as
coastal development, seabed disturbance, eutrophication, and
changes in river flow (Tewfik et al., 2005; Al-Habsi et al.,
2008; Christianen et al., 2017; Hemraj et al., 2017). Today,
it is clear that long term anthropogenic activities can cause
major shifts in coastal shelf food web structure, which lead to
simplified communities (Tewfik et al., 2005). It is therefore of
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utmost importance to accurately define anthropogenic stressors,
understand their links to natural processes, and estimate the
overall cumulative effects, in order to set up realistic thresholds
of ecosystem resilience (Shears et al., 2008; O’Gorman et al., 2012;
Giakoumi et al., 2015; Stelzenmüller et al., 2018). However, cause-
effect pathways of cumulative pressures on coastal shelf food
webs are often complex, involving a combination of additive,
synergistic and antagonistic impacts on ecosystems (Crain et al.,
2008; Stelzenmüller et al., 2018). At present, existing knowledge
on the effects of cumulative natural and anthropogenic drivers
on different coastal shelf food web compartments remains
limited (Giakoumi et al., 2015), and constitutes one of the
great challenges in marine ecosystem ecology (Borja et al.,
2020). Cumulative effects assessments need to be well-framed
into a risk-based framework, properly accounting for and
communicating uncertainty, in order to function as operational
tools that can guide management actions for protecting coastal
shelf food webs (Stelzenmüller et al., 2018, 2020).

Whereas, the effects of certain drivers have been more
extensively and regularly investigated throughout the years
(e.g., fisheries, spatial and temporal variability), others remain
much less studied and understood (e.g., species interactions,
climate change, habitat alterations). The increased use of drivers
related to upcoming threats in the more recent literature,
such as those linked to global change, alien species and other
anthropogenic drivers, is partly due to the advancements of
modeling approaches, but also reflects the need to provide future
predictions that will allow human communities to adapt to
the changing conditions (Lawler et al., 2010; Essl et al., 2020).
Although understanding the effects of such threats is critical in
order to propose effective management strategies and impact
mitigation actions, at present there is a low level of certainty
both with regards to the extent of certain threats (e.g., climate
change and alien species) and to the nature and magnitude of
their present and future impacts on coastal shelf food webs
(Lawler et al., 2010; Ainsworth et al., 2011; Giakoumi et al.,
2015). Besides, the interaction among different drivers (e.g., the
impacts of alien species are driven by other drivers such as climate
change, eutrophication and pollution; Essl et al., 2020) further
complicates assessments of cumulative effects on coastal shelf
food webs.

In order to reduce biodiversity loss and the deterioration of
coastal shelf food webs, quantitative knowledge on community
state variables and trophic links needs to be constantly updated,
while the respective effects of the various environmental
processes and anthropogenic stressors need to be better defined
and quantified. This will facilitate a better understanding of
ecological processes and the overall functioning of coastal

shelf systems, which will enable more accurate estimations of
ecosystem resilience and predictions of potential impacts, and
will contribute to more informed and effective management.

Finally, given the limitation of modeling approaches when
studying data-deprived food webs and ecosystems, systematic
model-independent data should be used to reinforce ecosystem
modeling results (Coll et al., 2009). From then on, further insights
to food web changes could be achieved through the dynamic
simulations and comparison to other past or present food webs
(Coll et al., 2008).
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