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The quantitative description of marine systems is constrained by a major issue of scale

separation: phytoplankton production processes occur at sub-centimeter scales, while

the contribution to the Earth’s biogeochemical cycles is expressed at much larger

scales, up to the planetary one. In spite of vastly improved computing power and

observational capabilities, the modeling approach has remained anchored to an old view

that sees the microscales as unable to substantially affect larger ones. The lack of a

widespread theoretical appreciation of the interactions between vastly different scales

has led to the proliferation of numerical models with uncertain predictive capabilities.

In this paper, we use the phenology of phytoplankton blooms as one example of a

macroscopic ecosystem feature affected by microscale interactions. We describe two

distinct mechanisms that produce patchiness within a productive water column: turbulent

entrainment of less-productive water at the base of the mixed layer, and stirring by

slow turbulence of a vertical phytoplankton gradient sustained by depth-dependent light

availability. In current eddy-diffusive models, patchiness produced in this way is wiped

out very rapidly, because the time scales of irreversible mixing largely overlap those of

mechanical stirring. We propose a novel Lagrangian modeling framework that allows for

the existence of microscale patchiness, even when that is not fully resolved. We show,

with a mixture of theoretical arguments and numerical simulations of increasing realism,

how the presence of patchiness, in turn, affects larger-scale properties, demonstrating

that the timing of phytoplankton blooms and vertical variability of chlorophyll in the

oceanic upper layers is determined by the mutual interplay between the stirring, mixing

and growing processes.

Keywords: biogeochemistry, plankton modeling, lagrangian particle, Bio-Geo-Chemical Argo (BGC-Argo), model

bias and bias correction, phytoplankton bloom, aquacosms, irreversible mixing

1. INTRODUCTION

Marine phytoplankton are involved in several biogeochemical processess at the microbial ocean
scale that affect entire ecosystems (Azam and Worden, 2004; Legendre et al., 2018). Predictive
models of phytoplanktonic processes are thus fundamental to many applications. In climate
projections, the “biological pump” is a fundamental component of the carbon cycle (Gruber
et al., 2009; Bopp et al., 2013), described by modeling phytoplankton primary production and
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the net export of organicmatter through themarine foodweb and
the water column. Models of biogeochemical and phytoplankton
processes are also employed in operational oceanography and
coastal management (Hyder et al., 2015; Piroddi et al., 2015).
Predictivemodels of coastal and near-shore transport are coupled
with water quality and biogeochemical models to provide
forecasts of undesirable disturbances such as eutrophication,
hypoxia, or harmful algal blooms. Ultimately, the outputs of these
models are used for fishery management, end-to-end ecosystem
models, and indicators of ocean health (Travers et al., 2007; Fu
et al., 2018).

There is, however, a fundamental difficulty in the modeling
process: namely, the chasm between the scales where the
biogeochemical processes occur and are being observed [by
probes deployed in the ocean, laboratory experiments or
metagenomics studies (Azam and Worden, 2004; Stec et al.,
2017; Legendre et al., 2018)] and the scales where the system
response is sought, observed and interpreted (by remote sensing,
data aggregation and models). Laboratory experiments using
cultures and mesocosms allow the empirical estimation of a
model’s biological terms, upon the assumption of homogeneous
distribution of all the biochemical fields (Denman, 2003; Tian,
2006), while neglecting the physical terms. The interactions
between these terms are ultimately mandated to the numerical
solution of coupled physical-biogeochemical models (Nihoul,
1975; Nihoul and Djenidi, 1998), which cannot include all the
spatial and temporal scales necessary to close the chasm.

In this paper, we address the theory behind marine
physical-biogeochemical models, we expose some limits of the
current models, and we propose a new approach. To make
our point, we focus on the open ocean mixed layer and
phytoplankton dynamics, which is at the base of the water
column biogeochemistry (Legendre et al., 2018).

The distribution of plankton shows variability from the global
scale down to the microscale (centimetric lengths) (Pinel-Alloul
and Ghadouani, 2007; Prairie et al., 2012). Plankton patchiness
at the mesoscale and sub-mesoscale is shaped by the interaction
between biological growth processes and turbulent lateral stirring
linked to upper ocean frontal eddies and currents (Martin, 2003;
Mahadevan, 2016; Lévy et al., 2018). Lateral stirring and mixing
alone cannot generate patchiness (Martin, 2003). A triggering
mechanism is needed, and physics-driven processes affecting the
vertical structure of the mixed layer (that is, on scales smaller
than 100 m) may easily fulfill this role. This variability, in
turn, is enhanced by biological processes such as the interplay
between light and nutrient gradients, cell buoyancy adjustments,
gyrotaxis, convergent swimming, and light-dependent grazing
(Huisman et al., 2006; Durham and Stocker, 2011; Cullen,
2015; Moeller et al., 2019). The emerging very-high-resolution
sampling techniques suggest that plankton remain patchy at the
scales of one meter both in the vertical and in the horizontal
(Foloni-Neto et al., 2016), and that homogeneity might not be
reached even at the centimeter scales (Currie and Roff, 2006;
Doubell et al., 2009; Foloni-Neto et al., 2016). As we shall
illustrate in section 3, models assuming that biological scalars
are homogeneously distributed at the fine and micro scales may
easily incur serious biases.

Three classes of processes should be included to model
marine biogeochemical processes: turbulent stirring, caused
by fluid eddies, which displaces, stretches, and folds water
volumes, increasing the gradients of the transported fields;
irreversible mixing, caused by sub-microscale processes, which
decreases these gradients; and growth (or decay) which changes
the concentration of a field or a group of interacting fields
by chemical or biological means. Even phenomena such as
swimming/motility, grazing by zooplankton, and aggregate
formation, are generally described as a combination of suitable
transport, mixing and reaction processes. In principle, these
processes must correspond to distinct terms in the equations
resolved by numerical models.

In practice, when the model equations are solved on a digital
computer, two broadly-defined formulations may be used to
build a numerical model: the Eulerian and the Lagrangian.
Each formulation binds the modeler to a set of approximations,
briefly discussed below, which either blur the distinction
between transport and irreversible mixing terms, or skip the
latter altogether. As we shall illustrate throughout the rest
of the paper, these approximations engender biases in the
growth terms.

The majority of model applications mentioned above are
Eulerian (Denman, 2003; Le Quéré et al., 2005; Vichi et al.,
2007; Aumont et al., 2015). In this formulation, all three
processes occur at the nodes of a fixed spatial grid, where
all the relevant fields are located (Figure 1A). The biological
variables are approximated as smoothly varying mean fields
whose values at the grid nodes are representative of the average
values in the grid cell (Vichi et al., 2007). An important
feature of Eulerian models is that the unresolved turbulent
stirring processes are assimilated to irreversible mixing. While
this practice may achieve satisfactory results for non-reacting,
passively transported tracers, it yields questionable, if not flawed,
results for biological and chemical tracers, because it hopes that
the biological response to the simulated Eulerian mean field is
the same as the average response to the real, unresolved, patchy
environment (Baudry et al., 2018; Paparella and Popolizio, 2018).

Other models use the Lagrangian formulation, which singles
out either small portions of the fluid or individual biological
agents, and follows them along their motion (Figure 1B). Despite
their approximations (e.g., number of parcels insufficient to
resolve all the fluid structures and use of stochastic processes
to mimic turbulence), Lagrangian models describe stirring
processes as such, rather than assimilating their effect to
irreversible mixing. In plankton modeling, the Lagrangian
formulation, originally identified with the term Lagrangian
ensemble (Woods and Onken, 1982; Wolf and Woods, 1988;
Woods et al., 1994; Woods, 2005), is often referred to as
individual-based modeling (Cianelli et al., 2012). We argue that a
clear distinction should be made between single cell Lagrangian
models (Yamazaki and Kamykowski, 1991; Kamykowski et al.,
1994), or agent-based models, in which the movement of
a single individual is followed, but growth/death processes
and cell division are not included, and Lagrangian ensembles
(Figure 1B), where the super-individual concept (Scheffer et al.,
1995) is used to describe the plankton population dynamics,
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FIGURE 1 | Schematic of different phytoplankton modeling approaches. (A) The vertical distribution of phytoplankton carbon and chlorophyll can be simulated

according to vertical nutrient and light gradients and a turbulent field. The Eulerian approach samples all active fields at the nodes of a fixed grid; fine and microscale

stirring (turbulence) is modeled as irreversible mixing, wiping out fine, and microscale patchiness. (B) The Lagrangian Ensemble approach bundles individual cells into

Lagrangian parcels; the number of organisms per parcel is modified by infra-parcel ecological interactions; unresolved turbulence is modeled as a stochastic motion of

the parcels, which don’t interact with each other. (C) The Lagrangian aquacosm approach tracks tiny Lagrangian water masses (aquacosms) moving as in (B);

biogeochemical interactions occur within aquacosms, which are permeable, thus allowing for mass exchanges between nearby aquacosms.

falling back to a description of biogeochemical processes based
on interacting concentration fields.

Some authors have stated the superiority of the Lagrangian
approach in describing plankton dynamics (Woods, 2005;
Hellweger and Kianirad, 2007; Hellweger and Bucci, 2009;
Baudry et al., 2018), because they allow the reconstruction of
the life history of individual water parcels, and thus, ideally, of
individual cells, tracking how they adapt to the local environment
as the fluid moves. However, there are intrinsic limitations
to applying the super-individual concept to the modeling of
phytoplankton communities, because a Lagrangian ensemble is
not conceived to exchange with surrounding ensembles any
of the active agents that it carries (Figure 1B). Therefore,
nearly all Lagrangian models (but see Dippner, 1998) neglect to
include irreversible mixing processes. In the sporadic cases where
Lagrangian and Eulerian formulations have been compared, this
issue appears to have been overlooked (Wolf and Woods, 1988;
Lande and Lewis, 1989; McGillicuddy, 1995; Kida and Ito, 2017;
Baudry et al., 2018), even though it may lead to unrealistic, even
paradoxical outcomes.

Consider a region of ocean with steady conditions, favorable
for a phytoplankton bloom. Assume an initial random
distribution dividing the fluid in very small patches, half
devoid of phytoplankton, and the others at carrying capacity,
which is the maximum phytoplankton biomass allowed by the
system at those conditions. The ensembles of a Lagrangian
model would mimic these patches, but, lacking any mutual

interaction, plankton in those already at carrying capacity would
never reach the nearby empty ones and trigger growth. The
ensembles lacking phytoplankton would remain devoid of it,
and the others would stay at the carrying capacity. The bulk
concentration, computed as an average over all the Lagrangian
ensembles, would indefinitely remain at one half of the carrying
capacity: a baffling outcome given the favorable conditions!
In an Eulerian model, irreversible mixing would quickly offset
from zero the concentration of the empty nodes, triggering
growth, so that the bulk concentration will eventually reach the
carrying capacity. However, if the initial subdivision of empty
and full patches were too fine to be resolved, then the amount of
irreversible mixing computed by the Eulerian model would be
a gross overestimation of the real one, which begs the question
whether the modeled growth rate of the bulk concentration is
realistic (Baudry et al., 2018).

Turbulent stirring, irreversible mixing, and growth are each
associated to their own distinct time scales. For example, the
celebrated Sverdrup model (Sverdrup, 1953) for the onset of
phytoplanktonic blooms stems from the assumption that the
growth time scale is slower than the stirring time scale. It is of
extreme historical importance, and is the founding stone that all
later bloom models have confronted, either to build on it, or to
overthrow it (Fischer et al., 2014; Sathyendranath et al., 2015).
It also has a peculiar feature: owing to its linearity, substituting
stirring with irreversible mixing (if characterized by the same
time scales as the stirring) leaves the results unchanged. As we
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shall illustrate in the following, in the presence of non-linear
biological terms, this equivalence is lost: in Sverdrup-like non-
linear models, the separation between the time scales of stirring
and of irreversible mixing determines the tempo and mode of
the bulk phytoplankton growth. The proliferation of explanations
for the occurrence of blooms, often distinct from each other by
subtle details, may be a symptom of the lack of appreciation
for a key theoretical issue: phytoplankton patchiness affects the
bulk growth.

Occasionally, some attempts have been made to parameterize
patchiness effects into Eulerian biogeochemical models. Realizing
that the biological response is greatly affected by the treatment of
the unresolved scales, authors like Fennel (Fennel and Neumann,
1996) have long proposed to use “effective” biological parameters.
A time-delay parameterization was suggested for the case where
patchiness is the result of oscillatory population dynamics
occurring with different phases in different places (Wallhead
et al., 2006). More recently, a closure parameterization was
introduced, reminiscent of those used for turbulence (Mandal
et al., 2016, 2019). Because the approach requires a truncated
Taylor expansion of the non-linearities, it is formally valid
only when the fluctuations are small, which high resolution
chlorophyll profiles suggest is not the case (Doubell et al., 2014).
Furthermore, it requires one additional equation for each pair
of tracer variables, in order to track the evolution of their
covariance, which may result in a substantial increase of the
computational cost for some applications.

Overall, the bulk of the literature appears to overlook the
issue, treating biogeochemical tracers in the same way as
non-reacting ones.

We argue that the strategy of replacing unresolved
transport with irreversible mixing, and then compensating
the resulting biases by means of some parameterization, will
face overwhelming difficulties. For example, different initial
conditions, keeping everything else the same, may yield different
bulk growth rates (Paparella and Popolizio, 2018) (an issue
also noted in the early work on the plankton patchiness theory;
Martin, 2003).

If turbulent stirring, irreversible mixing, and growth processes
are modeled separately and independently from each other,
then reproducing realistic phytoplankton dynamics in predictive
models should become much easier. A class of Lagrangian
methods recently proposed (Paparella and Popolizio, 2018)
achieves this goal by depicting Lagrangian parcels as representing
microscale-sized, homogeneous control volumes of water, rather
than individual organisms or ensembles. In this framework,
irreversible mixing processes are represented by exchanging
small mass fluxes between nearby parcels. We call aquacosms
such Lagrangian parcels subject to coupling fluxes (Figure 1C,
section 2). The coupling is regulated by a parameter, p,
whose value is proportional to the intensity of the fluxes. As
we shall demonstrate, p sets the time scale associated with
the irreversible destruction of biogeochemical variance at the
microscales, which, in this approach, remains independent of the
time scales of mechanical stirring. Results analogous to those
of Lagrangian ensemble models are recovered for uncoupled
parcels (p = 0). In the opposite limit, high values of p produce

an excessive irreversible mixing, and yield results strongly
resembling Eulerian simulations.

In the rest of the paper we shall build a hierarchy of
models, from simple, idealized ones up to moderately realistic
ones, to illustrate in detail the biases that Eulerian and
Lagrangian ensemble models may generate in the presence
of plankton patchiness, and the benefits of the aquacosm
approach. Through the idealized models we identify two
distinct mechanisms that generate and sustain patchiness
in the biology, provided that transport and irreversible
mixing are modeled as distinct processes. These findings
reveal that irreversible mixing shapes the interaction between
biogeochemical processes occurring at the microscales and larger
scale transport processes. Building on these results, we use
two simulations of an open ocean phytoplankton bloom, with
parameters and forcings appropriate for the North East Pacific
(PAPA station), and for the Southern Ocean sub-Antarctic
Zone (SAZ), to illustrate that the same mechanisms are at
work in the open ocean, affecting important parameters such
as plankton patchiness, primary productivity and phenology of
the bloom.

2. METHODS

Here we present all of the models that we shall use in the
next section. In all cases, they describe a column of fluid
in turbulent motion, where the only spatial dimension is
the vertical (denoted by z). The complexity of the biological
reaction term is progressively augmented although kept to a
minimum level to better highlight the interplay between physics
and biology.

We first present the Eulerian, eddy-diffusive formulation of
each model, where turbulent transport is not explicitly resolved,
and is instead parameterized as an eddy diffusivity term. At
the end of the section we describe the aquacosm Lagrangian
formulation, which represents turbulence as a stochastic vertical
transport of fluid parcels, and explicitly allows for additional
irreversible mixing of tunable intensity. When the intensity of
irreversible mixing is reduced to zero, one recovers a standard
Lagrangian ensemble model. In the paper we will use the term
aquacosm to refer to interacting Lagrangian fluid parcels as
shown in Figure 1C.

2.1. Idealized Eulerian Models
We begin with a simple turbulent dispersion model with no
reaction term. Assuming homogeneity throughout the water
column, the Eulerian, eddy-diffusive formulation describes the
flow with the following diffusion equation

∂C

∂t
=

∂2C

∂z2
(1)

where C is the concentration of a non-reactive substance
dissolved in the fluid. The model is already written in non-
dimensional units [see below, before Equation (5) for details].
We impose no-flux boundary conditions at the ends of the
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water column 0 < z < 1. We choose as initial condition the
step function

C(z, 0) =

{

0, z < 1/2

1, z ≥ 1/2
. (2)

Next we consider a homogeneously turbulent water column
carrying an idealized phytoplankton population subject to a
logistic growth limited by the availability of light, whose intensity
decreases as a function of depth. This is a generalization of the
celebrated Sverdrup model of the onset of open-ocean blooms
(Sverdrup, 1953). In dimensional units, the Eulerian, eddy-
diffusive model is

∂C

∂t
= κ

∂2C

∂z2
+ rf (z)C

(

1−
C

K

)

(3)

where κ is the eddy diffusivity, assumed to be constant,
and r is the maximum growth rate of phytoplankton, having
concentration C and carrying capacity K. Zero-flux boundary
conditions are imposed at both ends of the water column, that
is at z = 0 and z = ℓ. The non-dimensional function f quantifies
the balance between light-stimulated growth, and loss of biomass
due to respiration. Sverdrup defined it as

f (z) = e−λz −
µ

r
, (4)

whereµ is a constant respiration rate, and λ is a measure of water
transparency. Choosing ℓ as the unit of length, ℓ2/κ as the unit of
time, and K as the unit of concentration, Equation (3) takes the
non-dimensional form:

∂C

∂t
= εf (z)C(1− C)+

∂2C

∂z2
. (5)

The parameter ε = rℓ2/κ expresses the ratio of the turbulent and
of the biological time scales (the former quantified through the
eddy diffusivity as ℓ2/κ). For ε≪ 1 the linearized version of this
model reduces to the Sverdrup model.

2.2. The SAZ and PAPA Eulerian Models
We simulate open-ocean phytoplankton blooms at two distinct
stations, intended to represent the North East Pacific and the
Atlantic sector of the Southern Ocean. The chosen station
locations are representative of two typical stratification regimes
in the open ocean. Since we focus on the relationship between
turbulence and light, the key distinguishing feature is the time
evolution of the vertical water column structure. Weather station
PAPA is located in the North-East Pacific (50◦N, 145◦W), and
is characterized by mixing confined to less than 100 m with
maximum cooling in March-April and the development of
summer stratification between June and October. The PAPA
station has been used in the literature to develop and analyze
turbulence closure models (Burchard and Bolding, 2001; Reffray
et al., 2015). We use a 1-D version of the NEMO physical
ocean model with the parameterizations described in Reffray
et al. (2015), implementing the generic length scale turbulence
closure. The model is run with 75 vertical levels extending from

the surface to the ocean floor and is forced by ECMWF ERA-
interim reanalyses (Dee et al., 2011), to obtain hourly values
of the eddy diffusivity required by the Eulerian and Lagrangian
biogeochemical models. A similar model is used for the Sub-
Antarctic zone of the Southern Ocean (SAZ), with the same
vertical grid and same type of atmospheric forcing as in PAPA.
This model site is ideally located in the Atlantic sector at 45◦S
8◦E, in similar light conditions as for PAPA. This region features
deep mixing beyond 100 m between May and August and weak
stratification during the Austral summer months.

To move forward from the logistic growth model used
as an idealized case, we adopt a more realistic but still
simplified version of the Biogeochemical FluxModel (Vichi et al.,
2007). The chosen formulation tracks phytoplankton carbon
concentration C, measured in mg m−3, for a generic functional
type of mid-sized diatoms, in which growth is only limited
by light availability and an implicit temperature dependence is
included in the parameter choice to account for the different
oceanic regions.

The photosynthetic available radiation EPAR is propagated
according to the Lambert-Beer formulation

EPAR (z) = εPAR QS e
λwz+

∫ 0
z λbio(z

′)dz′ (6)

where Qs is the net broadband solar radiation at the surface
from ERA-interim (W m−2), εPAR = 0.4/0.217 is the
coefficient determining the fraction of photosynthetically-
available radiation (converted to µE m−2s−1 using the constant
0.217). Light propagation takes into account the extinction
due to pure water λw (0.0435 m−1) and to phytoplankton
concentration λbio. The broadband biological light extinction
is approximated to a linear function of the phytoplankton
chlorophyll concentration L

λbio = cL (7)

regulated by the specific absorption coefficient (c = 0.03 m2

mg chl−1). To be more comparable with the non-dimensional
idealized experiments, the model neglects photoacclimation
phenomena, therefore we assume

L = θchlC (8)

where the chlorophyll to carbon ratio θchl was taken to be 0.017
mg chl mg C−1 for PAPA and 0.013 for SAZ (Behrenfeld et al.,
2005; Thomalla et al., 2017). The same results (not shown)
were confirmed using the BFM acclimation model with variable
chlorophyll, based on the Geider et al. formulation (Geider
et al., 1997; Vichi et al., 2007). The carbon concentration rate
of change is controlled by gross primary production, respiration
and a crowdingmortality term that parameterizes unresolved loss
terms such as zooplankton grazing:

Ċ = rf EC − bC −
aC2

Ch + C
(9)

where r is the maximum specific photosynthetic rate, b is
the basal specific respiration rate, a is the specific crowding
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mortality rate and Ch is the crowding half-saturation. Owing
to the difference in the seasonal cycle of nutrients and water
temperature, we use r = 2, b = 0.16, a = 1 days−1 for PAPA and
r = 0.5, b = 0.04, a = 0.25 days−1 for SAZ. The lower realized
growth rate in SAZ is due to the different mean temperature
during the bloom period (see Equation (7) and (16) in Vichi et al.,
2007). The other parameters are tuned to yield realistic values of
chlorophyll at the study sites. In all cases we set Ch = 12.5 mg
m−3. The light regulating factor is defined as

f E = 1− exp

(

−
αEPAR

r
θchl

)

(10)

where α = 1.38 10−5 µE−1m2 (Vichi et al., 2007).
The eddy-diffusive Eulerian version of this model is

∂C

∂t
=

∂

∂z

(

κ(z, t)
∂C

∂z

)

+ Ċ. (11)

Starting from initial conditions having a small constant
concentration, the runs extend for 4 years (each year repeats the
same eddy diffusivity and radiation data). Except for the first
year, in all models the results have negligible differences between
the years.

2.3. Numerical Eulerian Scheme
All the Eulerian models in this paper are solved with an explicit,
second-order finite differences scheme, with C and κ evaluated
on staggered uniform grids. The depth of the simulated water
column is one non-dimensional length unit for the idealized
cases, and 200 m deep for the PAPA and SAZ simulations. In
all cases the distance between consecutive grid nodes is 1/200 of
the domain length. No-flux boundary conditions are imposed at
the top and bottom of the water column. The eddy diffusivity
κ is interpolated onto the uniform grid with the same B-spline
interpolator used for the Lagrangian simulations (see below).

2.4. Lagrangian Aquacosm Simulations
A generic Lagrangian-ensemble water-column model is
embodied by the following equations

dzi =
∂

∂z
κ(zi, t) dt +

√

2κ(zi, t) dWi (12)















ċ
(1)
i = f1(c

(1)
i , . . . , c

(m)
i , zi, t)

...

ċ
(m)
i = fm(c

(1)
i , . . . , c

(m)
i , zi, t)

(13)

where the index i = 1, . . . ,N identifies the parcel having depth
zi, that performs a Brownian motion characterized by an eddy
diffusivity κ , which may depend on depth and time t; Wi is a
realization of the standard Wiener process. See Gräwe (2011)
and Van Sebille et al. (2018) for a derivation of Equation (12).

The quantities c
(1)
i , . . . , c

(m)
i are the concentrations of them scalar

quantities describing the planktonic ecosystem (e.g., in the model
of section 2.2, it would be m = 2, if we had modeled separately

the dynamics of the concentration of phytoplankton carbon and
chlorophyll) and the overlying dot denotes the time derivative.
The functions f1, . . . , fm describe the reaction kinetics, where
the dependence on depth and time accounts for the effect of
light and its daily and seasonal variations, and for any other
external forcing.

In the aquacosm approach we interpret the Lagrangian parcels
as tiny control volumes. They should be thought of as minuscule
aquatic mesocosms, which are carried by the ocean dynamics,
and are homogeneous in their scalar content. This interpretation
is shared with the Lagrangian-ensemble models, but, to avoid the
issues discussed in the introduction, they are not isolated and
exchange mass between nearby aquacosms (see Figures 1B,C).
Following Paparella and Popolizio (2018), we define the mass
fraction qij that the i−th aquacosm gives to the j−th aquacosm as

qij =







p
(

4πKij1t
)−1/2

exp

(

−
|zi−zj|

2

4Kij1t

)

,
∣

∣zi − zj
∣

∣ < R

0,
∣

∣zi − zj
∣

∣ ≥ R

(14)

where R is an interaction radius, and the parameters p and the
symmetric matrix K are defined below. At intervals of time 1t,
we update the concentrations carried by each parcel as

c
(l)
i ←− c

(l)
i −

N
∑

j = 1

qijc
(l)
i +

N
∑

j = 1

qjic
(l)
j , l = 1, . . . ,m (15)

for all the scalars l = 1, . . . ,m. The first sum represents the mass
fraction that leaves the i−th aquacosm and is redistributed to all
the other aquacosms, and the second sum, conversely, represents
an equal mass fraction received by the i−th aquacosm from all
the others (note that qij = qji). The received mass fraction is
composed ofmany distinct parts, each carrying the concentration
of the scalars contained in the acquacosm of provenance.
These parts immediately and irreversibly homogenize with the
remaining content of the i−th aquacosm in order to determine
its new concentration values. The constant p is a free parameter,
which in this one-dimensional formulation has the dimensions
of a length, but in three dimensions would be a volume, that can
be used to tune the coupling strength between the aquacosms
(choosing p = 0 is equivalent to isolating the parcels as in a
Lagrangian ensemble model). The variance Kij of the Gaussian
kernel coupling the i−th and j−th aquacosms is chosen on the
basis of the eddy diffusion coefficient as

Kij = min
{

κ(zi, t), κ(zj, t)
}

. (16)

The choice of the minimum is dictated by the observation that
there is very little flux across a region where the eddy diffusivity
jumps from very small to very high values, e.g., at the base of
the mixed layer. In order to allow for an efficient numerical
implementation, the coupling between aquacosms further apart
than the interaction radius R must be zero. This algorithm
conserves mass and avoids the creation of spurious maxima
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FIGURE 2 | (A–D) Exact solutions at time t = 0.05 of the diffusion Equation (1) with the initial condition (2) and no-flux boundary conditions (red lines). The blue dots

show the position and the concentration of the aquacosm simulations with the same diffusivity and varying coupling strength p. The black triangles are a

coarse-grained version of the same data, obtained with a Gaussian kernel estimator with standard deviation 0.1 (see section 2). (E) variance, as a function of time, in

Lagrangian aquacosm simulations with varying coupling strength p (solid lines) and variance of the exact solution of the Eulerian problem (1) (dashed line).

and minima (Paparella and Popolizio, 2018), provided that the
parameters are chosen so that, for all i = 1, . . . ,N, it is

N
∑

j = 1

qij ≤ 1. (17)

Roughly speaking, one may think the aquacosms as oozing
out part of their content into Gaussian clouds spreading at
a rate specified by the eddy diffusion coefficient (Figure 1C).
Then, at regular intervals of time 1t, all the material within
a control volume (both what was left inside the volume, and
what came from the overlapping clouds) is instantaneously and
irreversibly homogenized, thus determining the concentrations
which will evolve according to (13) for the next interval of
time 1t. A conceptually similar technique describing advection-
diffusion processes as the interleaving of short time intervals of
pure transport alternated with instantaneous irreversible mixing
events has already been successfully used to model mixed layer
dynamics (Ferrari and Young, 1997). These sort of modeling
procedures have their justification rooted in the fractional step
method for the numerical solution of differential equations.
From a different point of view, we should note the similarity
between the aquacosm approach and the so-called tanks-in-series
model, popular in chemical and environmental engineering
(see e.g., Levenspiel, 2011, Chapter 8). The main difference
is that, in that case, the topology of the interconnections
between tanks does not change in time, while here the

existence of a flux connecting two aquacosms depends on their
relative position.

All Lagrangian results presented in this paper use 200
aquacosms. Equations (12) and (13) were integrated using,
respectively, Milstein’s and the midpoint methods (Gräwe, 2011;
Van Sebille et al., 2018), with a time step 1t = 10−5 non-
dimensional time units for the idealized cases of Figures 2–4 and
1t = 5 s for the PAPA and SAZ cases. The eddy diffusivity
κ used in Equations (12) and (16) is the same as that of the
corresponding Eulerian model. In particular, the eddy diffusivity
for the PAPA and SAZ simulations are generated by the NEMO
ocean model as described in section 2.2, and are interpolated at
the position of the aquacosms with monotone B-splines (Ross
and Sharples, 2004). In these two simulations the reaction terms
(13) reduce to (9). Reflecting boundary conditions are imposed at
both ends of the water column on all Lagrangian simulations. The
interaction radius in Equation (14) is R = 0.05 non-dimensional
units for the idealized cases and R = 10 m for the PAPA and
SAZ simulations.

In the following, the amount of patchiness present in the
various models is evaluated and visualized by showing the
fluctuations around local averages, which we call coarse-grained
profiles, and are obtained by smoothing the concentrations with
a Gaussian kernel estimator (Gräwe, 2011) having a standard
deviation of 1/20 of the domain for the idealized cases and 2.5
m for PAPA and SAZ, or as otherwise specified in the figure
caption. As it is customary for fields transported by turbulence,
we also quantify such fluctuations by evaluating the variance
of the concentration field (see e.g., Warhaft, 2000 for more
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FIGURE 3 | (A,C) Average phytoplankton concentration and (B,D) variance, as a function of time, for the problem (5) with f (z) = 1, ε = 0.1 (A,B) or ε = 1 (C,D) and

the step initial condition (2). The solid lines refer to Lagrangian aquacosm simulations with varying strength of the coupling parameter p. The dashed line is the solution

of the Sverdrup’s approximation (18). Note the different ranges of the time axes.

details). In the Eulerian formulation the variance is defined as
〈

(C − 〈C〉)2
〉

, where the angular brackets denote an average over
the whole water column. In Lagrangian models, the variance
of the concentration field is estimated just by computing the
variance of the concentration values carried by each parcel.

3. RESULTS

3.1. Pure Stirring and Mixing
First, we shall consider the case of turbulent stirring and mixing
of a substance not subject to any reaction (section 2.1). The
Eulerian formulation of this problem is given by Equation (1).
The aquacosm formulation uses κ = 1 in Equations (12) and
(16), and no reaction terms.

Figures 2A–D show the concentration and position of the
aquacosms for different values of the coupling parameter p,
together with the analytical solution of Equation (1). The
Brownian motion scrambles the order of fluid parcels initially
arranged as to produce the step-like initial condition (2), and
this produces patchiness: a random alternation of parcels with
high and low concentration values. Irreversible mixing equalizes
the concentration of nearby parcels, thus removing patchiness,
more and more effectively as the coupling strength p increases.
Local weighted averages of the Lagrangian result (black triangles,
see section 2), are essentially identical to the analytic solution
of the Eulerian model. This coincidence might suggest that the
Eulerian and all of the Lagrangian models are equivalent. The
coarse-graining process of taking local averages, however, gives
only a partial picture. Figures 2A–D do not depict equivalent

microphysics. The concentration carried by the individual parcels
(which, ultimately, is all that matters for the reaction terms
when they are present) is vastly different in the four cases. The
amount of irreversible mixing, set by the parameter p, determines
how quickly the fluctuations around the local averages are
dissipated, that is, p sets the time scale associated to irreversible
mixing processes. We note that, on rearranging the position of
the parcels without changing their concentration, the variance
shown in Figure 2E remains the same (variance is invariant with
respect to permutations). Therefore, in the special case p =
0, that is, when aquacosms are uncoupled and each maintains
its initial concentration, the variance remains constant in time,
and equal to the variance of the initial condition, even though
the local averages still tend to uniformity, as prescribed by
(1). The reason is that the Brownian motion (or the turbulent
stirring in an actual turbulent water column) eventually produces
such a fine interleaving of nearby parcels with vastly different
concentrations, that upon averaging those fluctuations cancel out
(Figure 2A). When p > 0 then the irreversible mixing [in the
present model represented by mass exchanges between nearby
aquacosms as in Equations (14) and (15)] damps the difference
in concentration between nearby regions of the fluid, and thus
reduces the variance, which becomes a decreasing function of
time (Figure 2E). As the amount of irreversible mixing increases
(that is, for increasing values of p) the decrease of fluctuations,
and thus of the variance, becomes quicker. For sufficiently
large values of p the variance decays just as quickly as in the
Eulerian, eddy-diffusive case, where stirring is all assimilated to
irreversible mixing.
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FIGURE 4 | (A) Average phytoplankton concentration and (B) variance as a function of time, for the Eulerian problem (5) with f (z) = e−z/0.15 − 0.1, ε = 10 and

constant-in-space initial condition C(z) = 10−4 (dotted lines). The solid lines in color refer to Lagrangian aquacosm simulations with the same parameters, with varying

coupling strength p. The dashed line is the solution of Sverdrup’s approximation (18). The thin black line is an exponential growth with a rate estimated by means of

the Rayleigh quotient (section S2 in Supplementary Material) associated to Equation (5). The inset shows the same data as (A) but with a linear, rather than

logarithmic, vertical axis. (Lower panels) Plankton concentration as a function of depth and time for Lagrangian simulations with p = 0, 10−8, 10−6. (C–E)

concentration and depth of the aquacosms (dots), coarse-grained concentration of the aquacosms (black line) and numerical solution of the Eulerian model (red line)

at the time marked by the dashed black line in the left panels.

3.2. Sverdrup’s Model Expanded
3.2.1. Fast Turbulence, Homogeneous Light
Next we shall consider Equation (5), which is a very simple
model of light-limited growth. If the time scale of turbulent
overturning is much faster than the time scale of biological
growth, that is for ε ≪ 1, following Sverdrup (Sverdrup,
1953), one can argue that physics and biology disentangle: first
turbulence makes the initial condition vertically homogeneous,
in a coarse-grained sense, within a transient no longer
than O(1), and keeps the concentration C independent of
depth at all later times. Then, on O(ε−1) time scales, the
vertically constant concentration changes in time according to

the ODE

Ċ = εI C(1− C) (18)

where I is the integral over the water column of the function f
that appears in Equation (5) (see Supplementary Material S1),
and the dot denotes a derivative with respect to time. Sverdrup’s
approximation does not require a specific form of the function
f , but holds for any integrable f sandwiched between O(1)
bounds. The comparison with eddy-diffusive, Eulerian numerical
simulations shows that in practice this approximation gives good
results up to ε ≈ 1.
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The aquacosm formulation of this problem uses κ = 1 in
Equations (12) and (16). The only reaction term in Equation (13)
coincides with the reaction term of Equation (5).

As it should be clear from the previous subsection,
reaching coarse-grained homogeneity implies having reached
homogeneity at all scales in an eddy-diffusive Eulerian model,
but not necessarily in a Lagrangian one (nor in the real world).
This discrepancy leads to question the equivalence of the eddy-
diffusive Eulerian and of the Lagrangian formulations (Lande
and Lewis, 1989; McGillicuddy, 1995). We show here, and
demonstrate analytically in section S1 of the Supplementary
Materials, that for the linear Sverdrup model the two approaches
yield the same averages, but non-linear reaction terms break
down the equivalence.

Figure 3 shows the phytoplankton concentration mean and
variance as a function of time for Equation (5) and its aquacosm
counterpart, with f (z) = 1, the initial condition (2), and two
values of the ratio ε = 0.1 and ε = 1. As sketched in the
introduction, because all fluid parcels are initially set at a fixed
point of the reaction terms (namely, half of them at C = 0 and
the other half at C = 1, the value of the carrying capacity), with
uncoupled aquacosms (p = 0) the mean unrealistically remains
at one half of the carrying capacity despite the positive growth
rate. When the coupling between the aquacosms is switched on,
themean gradually tends to the carrying capacity (C = 1) and the
variance tends to zero. The rapidity with which the asymptotic
values are approached depends on the strength of the coupling
parameter p: high values produce results that behave just as
predicted by Sverdrup’s theory, but small ones produce growth
curves that are nothing like the solution of the ODE associated
with the reaction term.

3.2.2. Slow Turbulence, Inhomogeneous Light
The examples so far show that the fast stirring of a step-like
initial condition produces patchiness, which then affects the bulk
growth rate. Much attention has been given to the case of non-
homogeneous biological growth [e.g., using the form (4) for f (z)]
when growth is faster than stirring. Then, according to the critical
turbulence theory (Huisman et al., 1999; Taylor and Ferrari,
2011; Ferrari et al., 2015), phytoplankton closer to the surface
contributes to the overall growth more than Sverdrup’s theory
would provide for, so that a bloom may initiate even when the
average light would not allow for that. Differences in light history
and acclimation have also been affirmed to produce growth when
Sverdrup’s theory would predict decay (Lande and Lewis, 1989;
Woods et al., 1994; Esposito et al., 2009). What has not been
stressed is that these conditions would also naturally lead to the
creation of patchiness if irreversible mixing processes are not
fast enough to remove it. When growth is faster than turbulent
stirring, then the phytoplankton in water parcels at shallow depth
will have time to grow substantially more than that in the deeper
parcels spending some time in darkness. As stirring makes some
of the shallow parcels sink and replaces them with some of those
that were at depth, then microscale patchiness ensues. Just as in
the case of a step-like initial condition, patchiness affects growth.
As the bloom progresses, water parcels having spent the most
time close to the surface reach the carrying capacity before the

others, and the rapidity of the bulk growth becomes regulated
by the intensity of the irreversible mixing, which transfers the
phytoplankton from high to low concentration parcels.

This process is illustrated in Figure 4 for different degrees
of the coupling between aquacosms. In the initial linear
regime, when phytoplankton concentration is much smaller
than the carrying capacity, the Eulerian model (5) and all
the Lagrangian models show the same growth rate of the
bulk concentration (Figure 4A), which is in excess of what
Sverdrup’s theory would dictate. This is in agreement with
the critical turbulence prescriptions as long as the process
is linear (see section S2 of Supplementary Materials for a
demonstration). In the non-linear regime, the Lagrangianmodels
yield distinct results: with small coupling strength, variance
grows with time (Figure 4B), and this leads to bulk growth
significantly slower than in the eddy-diffusive Eulerian model,
due to the patchy environment. Once again, destroying the
variance by using a strong enough coupling parameter recovers
the results of the Eulerian model. Figures 4C–E shows that
variance genuinely corresponds to patchiness: with low p,
aquacosms of starkly different concentration are found next to
each other, and the coarse-grained equivalence of Lagrangian
and Eulerian models is lost. Depending on the degree of
irreversible mixing, the non-linear reaction terms lead to small-
scale patchiness and substantially different time evolution of the
mean phytoplankton concentration in a vertically non-uniform,
slow turbulence environment.

3.3. Microscales and Phytoplankton
Phenology
To demonstrate in a realistic setting how phytoplankton
growth and phenology are affected by patchiness arising
from the mechanisms identified in sections 3.2.1 and 3.2.2,
we run the PAPA and SAZ models defined in section 2.2,
using both the eddy-diffusive Eulerian and the aquacosm
Lagrangian formulations.

Figure 5 shows the simulated average chlorophyll content at
PAPA station over the first 50 m of water column in the weeks
when the bloom starts. We define the onset of the bloom as the
first day of the year when the chlorophyll content exceeds the
median plus 5% of the daily chlorophyll concentration tracked
over 1 year (Racault et al., 2012). Reductions of the coupling
strength p delay the onset by over 2 weeks. The results diverge
from each other before the onset of stratification, from mid April
until the beginning of May, when the mixed layer depth is ℓ ≈

100 m (Figure S1) and the typical mixed layer eddy diffusivity
is κ ≈ 0.05 m2s−1, yielding a value of ε ≈ 5 with the growth
rate r = 2 days−1. This suggests that we are witnessing the
same process illustrated in Figure 4, where slow turbulence, a
vertical light gradient, and low irreversible mixing lead to the
formation of high microscale patchiness, reducing bulk growth
and delaying the bloom. The Lagrangian model without any
coupling (p = 0) shows the slowest growth, but this limit case is
unrealistic, as demonstrated above. In the following 15 days the
mixed layer becomes much shallower (Figure S1), with typical
eddy diffusivity values of κ ≈ 0.025 m2s−1. The time scales of
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FIGURE 5 | Average chlorophyll in the first 50 m of water column for the simulated Ocean Station PAPA in the North-West Pacific. Thin colored lines refer to

aquacosm simulations coupled with varying strength p. The thick back line refers to the eddy-diffusive Eulerian model. Inset (A) shows the day of the onset of the

bloom (see main text); inset (B) shows the average chlorophyll in the period April 15th to May 15th, both of them plotted as functions of the coupling parameter.

growth and stirring become comparable, and the vertical light
gradient ceases to be a source of patchiness. Only the entrainment
of phytoplankton-poor aquacosms at the base of the mixed layer
continues to be a source of patchiness. Overall, the chlorophyll
content averaged over the month of the bloom initiation changes
by as much as a factor 6 depending on the coupling strengths
(inset B in Figure 5).

Next, we simulate the open ocean of the sub-Antarctic zone
(SAZ), characterized by a mixed layer deeper than 100 m
from July to October (Figure S2). Throughout the year, typical
simulated eddy diffusivity values in the mixed layer are κ ≈ 0.06
m2s−1, corresponding to ε ≈ 1. Here, growth is never faster
than stirring, and Sverdrup’s approximation holds. Therefore,
only the intermittent deepening of the mixed layer, which scoops
phytoplankton-free aquacosms from the depths, contributes to
the creation of patchiness in the mixed layer. In the days
immediately after a sudden deepening of the mixed layer, the
dynamics is reminiscent of that shown in Figures 2, 3, whereby
a step-like initial condition first breaks down into patchiness and
then is brought to vertical homogeneity with a speed determined
by the intensity of the irreversible mixing. The smaller is the
mixing, the slower is the destruction of variance, and the slower is
the bulk growth of phytoplankton (Figure S2). The phenological
and productivity differences are not as marked as in the PAPA

simulations, but we note that coarser resolution climate models
with a larger impact of irreversible mixing are likely to generate
greater differences and discrepancies in the bloom phenology
(Hague and Vichi, 2018).

3.3.1. Comparison With BGC-Argo Float

Observations
Recent bio-optical measurements using BGC-Argo floats from
sub Antarctic zones (Carranza et al., 2018) reported the presence
of substantial chlorophyll variance within the hydrographic
mixed layer. This was interpreted as the signature of vertical
gradients of chlorophyll at the fine scales (tens of meters), which
called for some mechanism incompatible with the presence of
strong turbulence. In particular, it was argued that periods of
storm quiescence associated with slacking turbulence would
occasionally leave the mixed layer homogeneous in density,
but stirred only in its uppermost part, thus allowing for
light-modulated growth below the turbocline (the base of the
uppermost layer), generating a vertical gradient of chlorophyll.

In our models, slacking turbulence and vertical gradients of
light definitely produce vertical gradients of chlorophyll, even
when stirring is modeled as irreversible mixing (see e.g., the
Eulerian simulation profiles in mid April and end of May in
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FIGURE 6 | Top four panels: chlorophyll in the SAZ simulation in logarithmic units. The top panel shows the eddy-diffusive Eulerian model, and the thin white line

marks the mixed layer depth; the next three show the aquacosm simulations for p = 10−3, 10−7, 0. The lower panels show, as a function of depth, the chlorophyll

content in mg/m3 of the aquacosms (dots) for different values of p, their coarse-grained version (black line, see section 2), the mixed layer depth (horizontal gray line)

and the turbocline depth (horizontal black dashed line) at the date marked in the upper panels by the vertical black dashed lines. For comparison, the chlorophyll

concentration as a function of depth computed with the Eulerian simulation (red line) is repeated in all the panels corresponding to the same date.

Figure S1), and effects which our models neglect, such as light-
dependent grazing, may greatly enhance these gradients (Moeller
et al., 2019). However, in the models where irreversible mixing
is weak, patchiness, rather than these vertical gradients, is the
dominant source of variance in the mixed layer. Patchiness is
visually evident in the bottom panels of Figure 6. At lower values
of p, very large relative differences in the chlorophyll content of

nearby aquacosms are normal even above the turbocline. This
extreme variability is quantified in Figure 7A (see Figure S3A

for the PAPA simulations), showing the monthly average of
the coefficient of variation of chlorophyll (ratio of the standard
deviation and the mean) computed above the turbocline depth,
thus excluding the effects of slacking turbulence. In simulations
with moderate and low irreversible mixing, the coefficient of
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FIGURE 7 | (A) Monthly average coefficient of variation (standard deviation over mean) of the chlorophyll above the turbocline depth in the SAZ simulation. A value of

0 indicates homogeneity, while a value of 1 implies departures from the vertical mean that are as large as the mean itself. The thin lines in color refer to the Lagrangian

aquacosms with different values of the coupling parameter p. The thick black line refers to the eddy-diffusive Eulerian simulation. (B) Monthly average coefficient of

variation of the Lagrangian simulation with p = 10−7, and the same quantity computed from profiles coarse-grained using a Gaussian kernel estimator with standard

deviation σ = 0.5, 1, 2.5, 5, 10 m. The line σ = 0 refers to the results without coarsening.

variation is never negligibly small, and even when the mixed
layer is deepest and the turbulence is strongest, it doesn’t drop
below about 0.5. As expected, the variability is larger during
the Austral summer months, when turbulence is weaker than
in other seasons, showing an extended peak from spring to
autumn, in full agreement with the variability observed through
autonomous observations in the SAZ (Little et al., 2018). In
the Eulerian simulation, and in Lagrangian simulations with
very strong irreversible mixing, the peak is small and occurs
in December, when the mixed layer is the shallowest, while the
coefficient of variation remains negligibly different from zero in
other months.

These results, for p = 10−6 or lower, bear a strong
resemblance to the statistics of the BGC-Argo float observations
in the Southern Ocean (Figure 6 in Carranza et al., 2018),
but suggest that, rather than by external forcing, chlorophyll
variability is mostly caused by differences in the Lagrangian
histories of water parcels (Kida and Ito, 2017; Baudry et al.,
2018) but modulated by irreversible mixing. We remark that
BGC-Argo floats are not high-resolution chlorophyll profilers
(Carranza et al., 2018), and can’t accurately represent vertical
fluctuations on scales smaller than a few meters. The black
lines in the lower panels of Figure 6 have been computed
from the aquacosm concentration using a smoothing procedure
yielding 5 m of resolution (see section 2), thus comparable
with that of the floats. Chlorophyll fluctuations are damped,
but not completely wiped out. The resolution length scale of
observations affects variance estimations, as found when high-
frequency sampling instruments are used (Little et al., 2018). In
Figure 7B (Figure S3B for PAPA) we show the monthly average
of the coefficient of variation of the simulation data relative to

p = 10−7, after they underwent this coarse-graining procedure
at several resolutions. Extreme smoothing yields estimates of
fluctuations not far from those of the Eulerian simulations, which
progressively increase as the resolution increases. Thus, albeit
the BGC-Argo data are surprising in the amount of variability
that they show, we suspect that this is still an underestimation of
the reality.

4. DISCUSSION AND CONCLUSION

When considering mesoscale, and, more recently, submesoscale
dynamics, it has often been stressed that the joint effect of
turbulent stirring and non-linear biochemical processes must
produce an uneven, patchy distribution of active tracers, and
this, in turn, may affect the bulk productivity and structure of
oceanic ecosystems (see Martin, 2003; Levy and Martin, 2013;
Mahadevan, 2016; Lévy et al., 2018 and references therein).
Here we remark that the fundamental idea expressed in those
studies should also be scrutinized at smaller scales, e.g., across
the water column.

We do so by contrasting the results obtained with the eddy-
diffusive, Eulerian formulation and the aquacosm Lagrangian
formulation for water-column models of increasing physical and
biological complexity. We demonstrate in sections 3.2 and 3.3
that, in the presence of non-linear reaction terms, a discrepancy
between the Lagrangian and the Eulerian formulations arises
because the latter postulates the equivalence of stirring and
irreversible mixing, wrongly implying that the time scales of
these two processes are the same. As a consequence, a water
parcel devoid of plankton and one full of plankton would equalize
their concentration within the stirring time scale. When stirring
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and mixing are treated as separate processes, with the second
allowed to be slower than the first, parcels lacking plankton are
constantly seeded by the full ones, and the overall rate of growth
is determined by a delicate interplay of biological processes,
turbulent stirring and irreversible mixing. These findings lead
to an important conclusion: in a generic non-homogeneous
environment with concurrent stirring, mixing and growing, there
is no reason to expect that the bulk phytoplankton concentration
is described solely by the ODE associated with the reaction terms.

In order to illustrate how this delicate interplay occurs in
a realistic situation, we focused on the specific problem of the
onset of open-ocean blooms. There exists a very large body of
literature on this decades-old subject. Some of this literature
tackles the problem of how different turbulence properties affect
biological growth. Yet the distinction between the time scales of
turbulent stirring and the time scales of irreversible mixing is
never considered. In spite of mounting evidence of ubiquitous
presence of patchiness in the vertical direction across the mixed
layer (Currie and Roff, 2006; Doubell et al., 2009, 2014; Foloni-
Neto et al., 2016), theories of the onset of the bloom freely
interchange turbulent stirring and irreversible mixing as if they
were one and the same thing (see the recent review Fischer et al.,
2014 and references therein). On the other hand, most of the
literature on mixed layer plankton patchiness (Huisman et al.,
2006; Durham and Stocker, 2011; Cullen, 2015; Moeller et al.,
2019) focuses on unveiling the underlying mechanisms but does
not investigate how patchiness contributes to signal at larger
scales and how it should be included in predictive models.

In the present work we identified two simple and distinct
mechanisms that create patchiness vertically in the mixed layer.
The first mechanism, and the dominant one at SAZ, is essentially
physical: when deeper, phytoplankton-poor water is entrained
by turbulence into the phytoplankton-rich mixed layer, rapid
mechanical stirring produces a highly patchy water column. The
second mechanism requires the existence of a depth-dependent
growth/decay process (e.g., due to the vertical gradient of light)
acting on time scales faster than the stirring time scales. When
this occurs, such as during spring at PAPA, the uneven growth
at different depths creates a vertical gradient of the active tracers,
which breaks down into patchiness under the action of stirring.

Eulerian models that replace unresolved stirring with
irreversible mixing can’t generate any patchiness from either
of these mechanisms. Lagrangian ensemble models produce
patchiness through both mechanisms, but their inability to
represent irreversible mixing processes may lead to paradoxical
results. Our aquacosm modeling framework extends the
Lagrangian approach and incorporates irreversible mixing by
allowing for locally interacting parcels.

The aquacosm approach appears to be preferable
because, by design, the reaction terms are representative
of the biogeochemical dynamics occurring in a very small,
homogeneous water mass, therefore, they can effectively include
empirical reaction norms derived from laboratory experiments
and can retain the relationship with the environmental drivers
as they were originally measured (Boyd et al., 2018). In contrast,
the biological rates present in Eulerian models should always be
considered as “effective” values, representative of aggregate bulk

dynamics, which is not immediately comparable with laboratory
experiments, or in-situ samplings.

Obviously, our PAPA and SAZ simulations should not be
taken as an operational model for those two stations. In order
to allow for a direct, quantitative comparison with the observed
data throughout the year, the biological formulation should
be expanded to include grazing, nutrients, remineralization,
and, possibly, multiple phytoplankton functional groups, as
well as data assimilation and formal, station-specific, parameter
optimization procedures (Friedrichs et al., 2007). A comparison
between Figure 5 and Figure S2 and the satellite observation of
surface chlorophyll at the corresponding locations (Figure S4,
data from the Ocean Colour Climate Change Initiative dataset,
Version 3.1, European Space Agency) shows that at PAPA all
simulations catch the May-June growth burst, but the eddy-
diffusive Eulerian model has a prominent early May onset of the
bloom, and that at SAZ all simulations show an early growth with
respect to the December peak, but those with high irreversible
mixing more so than the others.

We should stress that most Earth-System models simulate
open-ocean blooms occurring earlier than the observed ones
(Hague and Vichi, 2018). For strengths of irreversible mixing
that we consider realistic, we find a shift forward in the onset
of the bloom (section 3.2) by an amount which would largely
mitigate the problem. This stubborn bias, which is the same
magnitude as the projected change in bloom onset due to climate
change in the twenty-first century (Henson et al., 2018), has
often been attributed to inadequacies of the physical or biological
formulations (McKiver et al., 2015), but in the light of our
results, it is likely to stem from mismodeling the interaction,
across vastly different scales, of growth and stirring, mediated by
irreversible mixing.

A second puzzling issue that our findings help to unravel is
that of the chlorophyll variance observed by BGC-Argo floats in
the southern oceans. The proposed mechanisms for generating
vertical plankton inhomogeneity in the mixed layer (referred to
above) require periods of moderate to no turbulence as they
occur in seasonally stratified systems like the Northeast Pacific,
and thus are unlikely to be dominant in the Southern Ocean.
And yet BGC-Argo floats ubiquitously find high chlorophyll
variance (Carranza et al., 2018). As we showed with Figure 7,
and discussed in detail in section 3.3.1, if the irreversible
mixing terms are not blown out of proportion, this high
variance is readily reproduced in our aquacosm framework, even
though we adopt an extremely simplified description of the
biological processes. This interpretation of BGC-Argo data is
further corroborated by the uncanny resemblance between the
distribution of chlorophyll carried by the aquacosms shown in
the lower panels of Figure 6 an Figure S1 and that of the high-
resolution profiles shown in Mandal et al. (2019), Doubell et al.
(2014), and Doubell et al. (2009).

In this study we have used the parameter p that determines
the strength of irreversible mixing as a free parameter. We have
shown that for high enough values of p our aquacosm models
reproduce the results of the corresponding eddy-diffusive,
Eulerian model. We have also given proof that the Lagrangian
ensemble models that one obtains by setting p = 0 may yield
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paradoxical results. For very low, but non-zero values of p, the
aquacosm models appear to shed light on the problems of the
bloom onset timing, and of the observed chlorophyll variance.
This suggests that those low values might be physically correct,
although this alone would not be sufficient for upholding such
a conclusion. In the Supplementary Material S3, we develop a
theoretical argument supporting it. In summary, we evaluate
the mixing rule embodied by Equation (15) for a regular
arrangement of aquacosms, which allows the computation of a
simple formula associating p and other parameters (inter-parcel
distance, time step, etc.) to a diffusion coefficient representative of
the irreversible mixing processes. On identifying those processes
with molecular diffusion we can match that diffusion coefficient
with the known diffusivity of sea-water solutes. We find that for
the simulations of section 3.3, a value of p in the range between
10−7 and 10−8 appears to be the most realistic. Obviously, the
mixing processes deemed to be “irreversible” need not always be
identified with molecular diffusion. For some applications other
choices might be justifiable, but for modeling the mixed layer,
given the recent observations of chlorophyll fluctuations below
the centimeter scale mentioned in the introduction, that seems
to be the most appropriate and least arbitrary choice. Because
aquacosms are assumed to be homogeneous parcels of water, the
identification with molecular diffusion clarifies that the size of an
aquacosm should be taken as comparable with Batchelor’s scale,
which is the scale where the concentration of sea-water solutes is
homogeneous, and which is usually no larger than a millimeter
(Thorpe, 2005).

Finally, we remark that aquacosm simulations offer an ideal
tool for exploring which biological features and the relative
parameterizations are able to build up large-scale impacts, and
which are negligible in terms of bulk properties. The aquacosm
approach is not limited to the extremely simplified treatment of
the growth/decay processes that we have used here to illustrate
the potentialities of the method, and can be expanded to include
an extreme variety of biogeochemical processes that may be
deemed relevant for the specific problem at hand.
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