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Marine ecosystems are facing unprecedented threats. Baseline information about the
state of ecosystems is needed to address these threats. Ecosystem assessments can
be completed over varying scales through different methodologies or a combination of
them. Despite these many technologies, most marine environments lack comprehensive
habitat assessments. Remotely operated vehicles (ROVs) provide an opportunity to
conduct small- to meso scale ecological surveying without some of the constraints
of commonly used methodologies such as scuba. The development of cost-effective
models of ROVs broadens the accessibility of this technology to many different user
groups. We applied the Trident ROV as part of a community-based research project
to conduct marine conservation planning around the Tl’ches archipelago with the
Songhees Nation in Victoria, British Columbia. We had two main objectives: (1) We
evaluated the marine ecological data collection capabilities for the Trident OpenROV and
(2) our surveys aimed to complete a systematic benthos classification and document
the algal community as well as document a baseline of Songhees culturally important
species. We also discuss evaluated the ability of the Trident to provide high resolution
ecological data to inform a marine use planning process. We found the Trident to be a
capable tool to conduct systematic marine surveying despite some limitations such as
low maneuverability in moderate to high current environments and dense kelp areas. We
were able to document 14 of 25 culturally important species and 28 species of algae and
seaweeds. We were also able to identify highly stressed environments suited for future
restoration efforts. The application of a mini low cost ROV to inform marine use planning
generated high-resolution data that enabled the Songhees Nation to confirm the whole
archipelago warrants protection and necessitates the exclusion of non-Indigenous user
groups. Documenting and having a permanent record of the substrate, algal cover, and
culturally important species composition around the seascape Tl’ches could serve as
one reference point for the Songhees Nation to establish a monitoring system.

Keywords: indigenous governance, marine conservation, indigenous conservation, remotely operated vehicle,
baseline assessment
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INTRODUCTION

Marine ecosystems are faced with many threats such as climate
change, ocean acidification, overfishing, increased shipping traffic
(Myers and Worm, 2003; Worm et al., 2006; Ban et al., 2010;
Kroeker et al., 2013; Seebens et al., 2013; Cheng et al., 2019),
and therefore resource managers and policy-makers alike need
information about the state of a system in order to formulate
meaningful management direction and have a baseline against
which to assess it (Gaydos et al., 2008; Berkes, 2015). Ecological
baselines can be established through systematic ecological
surveying or through other methods, such as interviews with
users of the marine environment (Moller et al., 2004; Eckert
et al., 2018). Baselines of ecological variables are shifting via
generational or personal forgetfulness through time (Pauly,
1995; Papworth et al., 2009). Despite this, recent marine
historical ecology work has shown that baselines can be extended
backwards over decades through interviews with knowledge
holders and users of the local marine environment (Eckert et al.,
2018), and over centuries and millennia through archeological
means (McKechnie et al., 2014). Ecological baselines are an
essential precursor to monitoring programs to be able to
judge change in a given ecosystem and subsequently counteract
ecological degradation by establishing conservation measures
(Magurran et al., 2010).

Marine ecosystems can be assessed through monitoring
and mapping benthic habitats to varying scales (Diaz et al.,
2004; van Rein et al., 2009). To assess habitat composition
of broadscale marine ecosystems (>1 km), single beam,
side-scan or high resolution multibeam sonar are typically
used for mapping the physical aspects of the ocean floor at
all depths (Greene et al., 1999; Diaz et al., 2004; Rooper and
Zimmermann, 2007; Pacunski et al., 2008; Tempera et al.,
2012; Lawrence et al., 2015). Aerial photography as well as
Light Detection and Ranging (LIDAR) are also employed
to map physical aspects of the ocean floor. However, such
mapping is only possible at shallower depths of up to 40 m
(Zavalas et al., 2014). In order to supplement physical seascape
information with biotic information of the benthos, several
techniques can be utilized, such as dredging or trawling
to collect samples (Ceia et al., 2013), whilst others have
used video taken by remotely operated vehicles (ROVs) to
characterize biota (Micallef et al., 2012). To survey smaller
areas containing distinct biotic communities and their associated
habitats [mesohabitats; 10–1000 m (van Rein et al., 2009, 2011)],
divers typically characterize the benthos and its associated
biota along transects or within quadrats by swimming or
using diver propulsion vehicles, at times video recording the
transect (Brown et al., 2004; Leujak and Ormond, 2007; Jokiel
et al., 2015). Others have used towed-video or rotating cameras
to characterize biological communities (Kenyon et al., 2006;
Pelletier et al., 2012). Occasionally, mesoscale surveys include
semi-quantitative methods of physical sampling through trawls
and dredges (Lathrop et al., 2006). Both broad-scale and
mesoscale assessments of biotic benthic communities can also
be achieved through video surveying methods with ROVs
(Tempera et al., 2012).

Over the past 30 years, rapid technological developments have
produced increasingly inexpensive tools for conducting marine
surveys, such as low-cost mini ROVs. Remotely operated vehicle
employment has reduced some of the limitations of SCUBA
surveys techniques, such as depth and survey time restrictions.
Remotely operated vehicles have the advantage of extending
dive time and depth whilst creating a permanent record, and
facilitating resampling (Riegl et al., 2001; Lam et al., 2006).
Marine surveying with an ROV has been done on both a meso-
and broad scale (Stein et al., 1992; Pacunski et al., 2008; Campos
et al., 2009; Cánovas-Molina et al., 2016), and the initial costs
of purchasing and operating ROVs for smaller-scale projects are
now feasible (Pacunski et al., 2008; Azis et al., 2012). Remotely
operated vehicles are also versatile and fairly easy to operate
(Leujak and Ormond, 2007; Pacunski et al., 2008). Remotely
operated vehicles have now been used in numerous applications,
such as characterizing rockfish habitat in California, British
Columbia (BC), and Alaska, and surveying biotic communities in
Washington and Oregon state (Richards, 1986; Stein et al., 1992;
Pacunski et al., 2008).

Despite the usefulness of marine habitat assessments, most
marine areas have never been surveyed, likely because of the
high cost and the intensity of effort and analysis. Furthermore,
for those that have been surveyed, many different classification
schemes exist that characterize benthos, making comparisons
of data or results difficult (Diaz et al., 2004; van Rein et al.,
2011, 2009). One example of a consistent classification schema
is the ShoreZone project1, developed in the 1980s and 1990s. It
classifies the intertidal and nearshore habitat for all 37,619 km
of shoreline across Oregon, Washington, British Columbia,
and Alaska. ShoreZone provides biological and geological data
of the intertidal and nearshore zones, enabling researchers to
compare or complement their own data with the ShoreZone data
on various scales. The overall methodology involves collecting
low-tide imagery and completing a shoreline classification with
descriptive biophysical attributes. Shorezone data only extends
to the low intertidal, whilst it was used to help guide the
surveys this project sought to extend comprehensive physical and
ecological data to the subtidal using a mini ROV. Importantly,
Shorezone has been used in British Columbia to inform
marine spatial planning (MSP) in waters around Haida Gwaii
(Shorezone, 2019a).

ROVs produce easily replicable, high quality data, and recent
technological developments and crowdfunding projects have
made acquiring and employing ROVs cost-effective. For example,
OpenROV2 was a Kickstarter project that offers a prebuilt ROV
(called the Trident ROV), in addition to selling do-it-yourself kits
to build your own ROV (Please note: OpenROV merged with
the sea sensor developer Spoondrift in 2018 and is now known
as Sofar Ocean Technologies, which continues to manufacture
and sell the Trident). The prebuilt Trident ROV weighs 3.485 kg
and is attached to a tether, which lets the pilot livestream the
video onto a tablet or controller. The tether is available in
lengths of 25 and 100 m. Video can be recorded continuously

1www.ShoreZone.org
2www.openROV.org
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at a resolution of either 720 pixels or 1080 pixels, and the
date and time are automatically recorded. The battery lasts
approximately 3.5 h. Software is continually updated and more
advanced features such as flight stabilization or geographic
tagging are expected to become available. The acquisition cost
for mini ROVs is approximately 0.2–12% of the cost of other
ROVs currently used for this kind of research. The availability of
low-cost ROVs puts the technology within reach of projects with
limited resources, but the technology is so new that the ease of
operations and quality of the data will be tested and determined
through this research.

The Songhees Nation, an Indigenous people whose traditional
territory includes what is now known as Victoria, British
Columbia, Canada, have been worried about the health of
their traditional territory, which has seen significant urban
development since European settlements were established in the
19th century. As a result of this development and colonial policies
from both the federal and provincial government, Songhees’
members’ ability to practice their Aboriginal and Douglas Treaty
rights and culture has been severely diminished. Songhees has
been actively working to protect and preserve the community’s
way of life and their Aboriginal and Douglas Treaty rights.
Inspired by the Marine Plan Partnership’s marine spatial plans for
BC’s North and Central Coast (MaPP)3 (Diggon et al., 2019)—a
collaboration between seventeen First Nations from the Central
and North Coast of British Columbia—the Songhees desired to
produce their own spatial plans to support the ecological and
cultural health of their traditional territory and to assert and
establish exclusive Songhees stewardship.

To establish a baseline of the Songhees Indigenous seascape,
we were interested in applying the new low-cost, mini ROVs
for marine surveying of benthos and associated biota. In
collaboration with the Songhees Nation, we seek to create this
baseline of the Nation’s culturally important seascape and species
to allow the establishment of an ongoing monitoring system
to gauge the seascape’s ecological health for future generations.

3www.mappocean.org

Focusing on culturally important species allowed us to integrate
a human dimension into this otherwise scientific undertaking of
ecological monitoring (Moller et al., 2004, 2009). The purpose
of our research was to (1) to create a present-day ecological
baseline of the Songhees Indigenous seascape by documenting
the physical substrate, benthic algal communities, and a variety
of Songhees culturally important species, (2) test the applicability
and capabilities of a low cost mini ROV to gather data to obtain
a baseline in a case study seascape and (3) evaluate the ability
of ROVs for informing marine use planning by the Songhees
Nation in Canada.

BACKGROUND

This research was initiated by the Songhees Nation Lands
Manager, who contacted researchers from the University of
Victoria to assist with the process of marine conservation
planning for a part of their territory. The study area for the
Songhees marine conservation planning effort was focused on
Discovery and Chatham Islands off South Vancouver Island in
the so-called Salish Sea (Figure 1). The islands are collectively
known as Tl’ches, or “one island,” [Sellemah (J. Morris), pers.
comm. to EB, June 2017] in the Lekwungen language, a Straits
Salish dialect of the Coast Salish language (Suttles, 1974).
The islands have longstanding importance for the Lekwungen
peoples. Archeological evidence of occupation of Tl’ches dates
likely back at least 3500 years but no systematic archeological
research has been conducted to date (D. L. Mathews, pers. comm.
to EB, October 2019). In more recent history, Tl’ches served as
a refuge for several families during the small pox epidemic in
the late 1800s (Suttles, 1974). Songhees people lived on Tl’ches
until the 1950s, when the last inhabitants of the islands moved
away because the only freshwater source dried up (C. Bryce,
pers. comm. to EB, May 2017). Tl’ches features in an important
creation story of the Lekwungen peoples as “The Origin of
Salmon” (Jenness, 2016). It has been mentioned as a location for
salmon harvesting camps for the various species of Pacific salmon

FIGURE 1 | Outline and location of Tl’ches on the British Columbia coast of Canada.
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(Onchorhynchus spp.) that pass Tl’ches on their migration route to
spawning streams (C. Bryce, pers. comm. to EB, June 2017).

The jurisdiction over the sea- and landscape Tl’ches is
complicated. The archipelago sits near a highly populated area
on Southern Vancouver Island in BC, Canada. Cumulative
impact assessment has shown the area as highly impacted
(Ban et al., 2010). The shorezone and sea bottom is under
provincial, and the water column (and hence all fisheries) is
under federal jurisdiction. However, the Songhees affirm their
stewardship rights over land and sea. There is also a Rockfish
Conservation Area (federal designation) around the perimeter of
the archipelago, and Tl’ches lies within the federally designated
critical habitat for the Southern resident population of Orca
whales (Orcinus orca). On land, most of Tl’ches is federally
designated Songhees Nation Indian Reserve, and the Southern
portion of Discovery Island is designated as the Discovery Island
Marine Provincial Park. One small parcel on Discovery Island is
privately owned.

Current non-indigenous uses of Tl’ches include commercial
fisheries, recreational activities such as fishing and kayaking
around the islands, and hiking by visitors off the BC Marine
Park on South Discovery Island. The Songhees are very
concerned about non-members trespassing on Tl’ches reserve
lands. Songhees uses include but are not limited to traditional
harvesting of marine resources around the islands, Camas bulbs
(Camassia quamash) on parts of Chatham Islands, as well as
for educational trips for the Songhees Academic Youth League
around Tl’ches. The Songhees Nation has become increasingly
concerned with the effects of irresponsible usage of the islands
by recreational users, which has been going on for at least four
decades. Former Songhees Chief John Albany (radio interview,
September 20, 1973) stated: “Chatham Island and the Southern
part of Discovery Islands (are) closed to outsiders as some visitors
abused the privilege by being careless”.

Tl’ches is an ecologically and culturally rich archipelago. In
addition, its location affects the islands ecological productivity.
For example, the entire tidal volume of the Strait of Georgia
drains by Tl’ches twice a day. In addition, the wave exposure
on the Southeast-facing coast is amongst the highest in the
entire Salish Sea with a strong energy gradient from exposed
to protected lagoon shores. The seascape environment ranges
from high exposure rocky channels and platforms, to sand and
gravel beaches, to intertidal mudflats (Shorezone, 2019b). There
are exposed and submerged rocks scattered between the islands,
which provide dangers to boaters unfamiliar with the waters.
Tl’ches contains a number of culturally significant sites for the
Songhees people. These include both large winter villages and
summer resources sites, as well as coastal root gardens and clam
beds created and/or enhanced by previous Lekwungen occupants
of Tl’ches (D. L. Mathews, pers. comm. to EB, June 2017). Coastal
root gardens were used to cultivate traditionally important foods
such as Pacific silverweed (Podospora anserina) and springbank
clover (Trifolium wormskioldii) (Deur, 2005).

Other marine species of importance include kelp forests,
which surround parts of Tl’ches, and eelgrass (Zostera marina)
found mostly between the islands of the archipelago. The most
conspicuous culturally important species is the Pacific harbor

seal (Phoca vitulina), which basks on rocks all around Tl’ches.
Previous dive surveys in the waters off Tl’ches have noted the
occurrence of 39 marine vertebrate and 42 invertebrate species
(Reef Environmental Education Foundation, 2017a,b,c). Whilst
there is some data on the presence of marine species, there has
been no comprehensive, systematic mapping of the seafloor, and
no ecological baseline inventory of Songhees culturally important
species has been conducted to date.

MATERIALS AND METHODS

To meet our objectives, our research followed several steps:
first, working with Songhees members, we identified culturally
important species for the Songhees Nation to be tracked during
underwater surveys (Buscher et al., in review). Second, we
conducted trial transects to train the research team in operating
the ROV, and to test the anticipated methods. Third, we
conducted underwater surveys to capture video footage of the
seafloor and associated biota. Finally, we analyzed the footage to
characterize the benthos, and identify and count the culturally
important species. We selected the Trident ROV by OpenROV—
which we received as beta-testers – as the best current technology
and value for money.

We identified the culturally important species through two
sources: by reviewing the ethnographic literature concerning
Lekwungen marine ethnoecology, and through interviews with
Songhees community members (UVic ethics # 17-445). We used
the dissertation of an ethnologist (Suttles, 1974) to develop
the initial list of known harvested marine invertebrate and
vertebrate species by the Songhees Nation peoples. The materials
we reviewed do not constitute a complete review of the literature
on the Lekwungen peoples. For instance, archeological work
of additional culturally important species to the Lekwungen
peoples has been compiled (D. L Mathews, pers. comm. to
EB, February 2019). We (led by Songhees team members and
co-authors Kathleen Bryce and Darlene Joseph) then conducted
semi-structured interviews (Huntington, 2000) with Songhees
members about the importance of Tl’ches, and added additional
species mentioned in interviews with Songhees members to those
that emerged from the literature review.

For the underwater transect aspect of the project, we used the
random points tool in ArcMap 10.6. (ESRI, 2011) to generate
stratified random starting points. We selected ROV transects so
that our surveys included all known substrate types as designated
by the ShoreZone project1 by stratifying by the low water mark
habitat classifications. The random points tool created 59 transect
points. We supplemented the original transect points with three
areas of high disturbance or previous heavy use, resulting in 62
transect locations in total. Transect points were evenly divided
amongst the eight shore type classifications assessed by the
ShoreZone project. Our team of 3–4 people conducted transects
during the daytime at slack tide between March and May 2018
from a 22 ft zodiac that was usually anchored for the duration
of the surveys. We started transects at the random points, or the
closest safe location. We were unable to complete some transects
(n = 11) due to the inability of the ROV to withstand the high

Frontiers in Marine Science | www.frontiersin.org 4 August 2020 | Volume 7 | Article 669

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-00669 August 11, 2020 Time: 19:12 # 5

Buscher et al. Baseline Assessment of Indigenous Seascape

current flows in certain areas even at slack tide, and due to other
physical constraints (e.g., bottom too shallow). Some starting
points (n = 12) were so close together that we surveyed them in
one transect (n = 6). In total, we surveyed 45 transect locations.

Transects ran perpendicular to shore using the integrated
compass in the ROV for navigation (Figure 2). Video recording
started when the ROV entered the water, and stopped when we
reached the end of the tether. Whilst the ROV tether was 100m,
due to current movements and depth change we estimate that
total transect length was approximately 80 m.

We used the OpenROV application and software (Version
2.14) on a Samsung Galaxy Tab S2 tablet to operate the ROV and
record videos (OpenROV, 2017). We recorded the coordinates
of the start of each transect and other observations such as
weather conditions, sea conditions, estimated maximum depth
and notable sightings. We were unable to document the GPS
location for each transect end point. Depth was categorized
into three strata: shallow (0–10 m), medium (11–20 m) and
deep (>20 m). The classification of depth strata yielded 29
transects in shallow, 13 transects in medium and three transects
in deeper waters.

We analyzed videos to characterize the substrate types, or
algal cover if benthos was overgrown. Following the benthos
classification methodology developed by Stein et al. (1992), we
categorized dominant substrates by classifying the stills into

FIGURE 2 | Image of the Trident as it returns to the survey team after a
transect.

primary and secondary benthos. We focused on the three possible
categories in line with the ShoreZone low water mark habitat
classification for Tl’ches—sand, gravel and rock. As in Stein et al.
(1992), we ascribed the primary benthos type when substrate
cover exceeded 50% of the area viewed, and secondary benthos
type when it covered more than 20% of the area viewed. Any
transect still that exceeded 80% of one single benthos type did
not have a secondary benthos category ascribed to it.

Studies have shown that still photographs yield the same
results as video analysis, but with considerably less analysis
time for benthic surveying (Cabaitan et al., 2007; Jokiel et al.,
2015; Kenyon et al., 2006; Hill and Wilkinson, 2004). Therefore,
we employed the screengrab function of the VLC media player
Version 3.0.2 (VideoLAN, 2018) to generate stills. Generating
stills did not cause any discernable resolution loss. We defined
the beginning of each transect as when the ROV showed the
substrate and was moving parallel to the benthos (i.e., no longer
descending). We slowed down transect videos to about 0.50×

speed to determine the starting point for each transect. We then
watched the individual transects multiple times (approximately
three) to determine the number of seconds of survey time that
needed to pass to show a new field of view (so that the benthos
and algal community was different for each still), and used
that interval for subsequent stills for that transect yielding on
average approximately 60 stills per transect. If it was impossible to
maintain one interval per given transect, we adjusted the interval
to account for velocity change of the ROV due to currents.

We quantified percentage cover and composition of the
benthos and algae, overlaying a grid onto the substrate of each
still (sensu Kenyon et al., 2006). When we were unable to either
identify the benthos type due to the instability of the ROV
(resulting in images that were too pixelated to identify or did
not show any benthos), we assigned a NA (non-applicable) to
that screengrab. Many screengrabs had just one category (>80%
of the transect as a single category), and thus the proportion
of secondary benthos composition was low. We identified algae
using the Biodiversity of the Central Coast guide for seagrass
and macroalgae (Biodiversity of the Central Coast, 2017). We
analyzed each still using the freeware ImageJ (Rasband, 2018).
When algal coverage equaled 100% of the field of view in stills, we
inferred primary substrate type (mostly rock) given the preferred
substrate for a given algal species.

To document the incidence and occurrence of the culturally
important macrofauna, we viewed the continuous video to
identify the culturally important species down to genus and
species wherever possible. In contrast to using stills for the
benthos classification, we opted to watch continuous video
so as to ensure that all occurring species were counted. We
counted every individual of a given culturally important species
whenever possible. Due to the low stability of the ROV in high
flow environments [a common problem for mini to mid-sized
ROVs (Pacunski et al., 2008)], and high turbidity or software
transmission problems impeding video resolution, we recorded
the duration of the transect during which highly abundant species
(>10 per still) occurred instead of counting them. We did this to
avoid double counting, and to avoid misidentification by failing
to distinguish red and purple urchin (Mesocentrotus sp. and
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Strongylocentrotus sp.) due to low light levels. Duration was also
recorded for the rock scallop (Crassadoma gigantea) in particular.

We ran a non-metric multi-dimensional scaling ordination
with the vegan package (version 2.0-10) in R version 2.15.1 (R
Studio Team, 2015) to see whether an inference could be made
on co-occurring culturally important species, which in turn could
highlight important areas for protection. So as not to skew the
ordination, we excluded any observation with a count of one. We
also ran generalized linear models in R to test for which predictors
(percentage of algal cover; percentage of primary benthos type
cover; percentage of secondary benthos type cover; depth) best
explained Songhees culturally important species richness. The
model with the least AIC score was determined to be the option
that best explained the data (Burnham et al., 2011).

RESULTS

Our literature review of the Songhees Nation culturally important
marine species identified 18 invertebrate species and 6 vertebrate
genera (Table 1). Interviews by and with Songhees Nation
members mentioned most of these species including two new
ones. They also pointed to other traditionally hunted marine
species such as waterfowl and seabirds. While these were also

TABLE 1 | List of Songhees marine culturally important species compiled from
Suttles (1974)(*) and interviews with Songhees members(**).

Common name Scientific name

Red urchin* S. franciscanus

Green urchin* S. droebachiensis

Purple urchin* S. purpuratus

Keyhole limpets** Megathura sp.

Rockfish** Sebastes spp.

Pacific herring* C. pallasii

Lingcod* O. longates

Pacific Salmon* Onchorhynchus spp.

Giant Pacific Octopus* E. dofleini

Northern Abalone* H. kamtschatkana

Harbor Seal* P. vitulina

Pacific halibut* H. stenolepis

Giant California Sea cucumber* A. californicus

Gumboot chiton* C. stelleri

Native oyster* O. lurida

Blue mussel* M. edulis

Pacific cockle* C. corbis

Butter clam* S. gigantea

Pacific littleneck clam* P. staminea

Bentnose clam* M. nasuta

White-sand macoma* M. secta

Horse clam/Pacific gaper* T. nuttallii

Barnacle* Balanus sp.

Dungeness crab* M. magister

Rock scallop C. gigantea

The bolded species are predominantly subtidal, whereas the others are considered
intertidal. The species with a shaded background represent those found present in
our transects (n = 14) and observations (n = 1).

mentioned by Suttles (1974), we did not focus on them in
our surveys because they are not considered subtidal. Our
finalized list contained 24 subtidal culturally important marine
species (Table 1).

Overall, we found 14 culturally important species or genera
to be present. We found nine culturally important species in
our most species-rich transect. Rock was the most commonly
occurring substrate in the form of boulders, flat rock, and rocky
ridges, i.e. continuous rocky benthos (Figure 3A).

Algal cover (Figure 3C) was present in every but one transect,
ranging from 1 to 100% (average 59%). With the exception of
one shallow transect, the deep transects (n = 3) showed the least
average algal cover (1.33%). Algal cover encompassed all types of
algae (red, brown, and green), and we were able to confirm the
presence of at least 28 species of algae (Table 2).

We recorded 14 of the 24 listed culturally important species.
Apart from rockfish (Sebastes spp.), 13 species were invertebrates.
While not seen in transects, we observed harbor seals from
the surface on several occasions. The generalized linear models
revealed that the best model (AIC = 179.18) for culturally
important species richness included two significant predictors,
shallow depth (0–10 m) (p < 0.0005) and medium depth
(11–20 m) (p < 0.002). The ordination plot revealed certain
species to occur more closely together (e.g., Strongylocentrotus
spp. and C. gigantea) but overall did not reveal any other
trends (Figure 4).

DISCUSSION

Ours was the first study that we know of that used the new mini
ROV Trident by OpenROV to survey a marine environment.
In partnership with the Songhees Nation, we found that the
Trident was a useful tool for our purposes, although it had some
limitations. We use the discussion to reflect on the objectives of
our study: (1) to create an ecological baseline of the Songhees
Indigenous seascape by documenting the physical substrate,
benthic algal communities, and a variety of Songhees culturally
important species, (2) test the applicability and capabilities of a
low cost mini ROV to gather data to obtain a baseline in a case
study seascape, and (3) evaluate the ability of ROVs for informing
marine use planning by the Songhees Nation in Canada.

Ecological Baseline Observations
Overall, the Trident worked well to generate baseline observation,
although it also had some limitations. Typically, we expect
a higher diversity of benthic invertebrate species in marine
high flow environments (Palardy and Witman, 2011, 2014).
However, limitations of the Trident–inability to operate in
high-flow environments and kelp beds – means that we were
unable to survey some areas near Tl’ches, potentially missing
culturally important species hotspots and biodiverse areas.
Research using other technologies also showed similar challenges,
namely difficulty maneuvering ROVs in high rugosity and high
flow environments (Pacunski et al., 2008; Benoist et al., 2019).
Similar to our methodology, research was conducted around
slack tides and other researchers tried to work with surface

Frontiers in Marine Science | www.frontiersin.org 6 August 2020 | Volume 7 | Article 669

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-00669 August 11, 2020 Time: 19:12 # 7

Buscher et al. Baseline Assessment of Indigenous Seascape

FIGURE 3 | Percentage average of (A) primary benthos type composition by transect. Percentage average of (B) secondary benthos type composition by transect.
(C) Percentage of algal cover.

currents (Pacunski et al., 2008), whereas the Trident was at
times completely overpowered by stronger (∼2.5 knots) surface
currents. In our analyses of the individual transects we attempted
to quantify the present species to our best abilities; however, we
were unable to produce an error estimate of species count.

When transects have been deployed perpendicular to shore,
descending into sublittoral, they have successfully recorded
changes in community assemblages with depth at a biotope level

(Parsons et al., 2004; Moore et al., 2006; Shears, 2007). Our survey
could have missed culturally important biota because of kelp
dense areas (limiting ROV manoeuvrability) and over substrata
with dense algal cover (obscuring understory biota) (Leonard
and Clark, 1993; Pacunski et al., 2008). Kelp forests as well as
eelgrass are highly productive habitats for many species, acting
as nurseries as well as refuge for many fish and invertebrate
species (Levinton, 2013). Finally, whilst this was the first survey to
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TABLE 2 | Documented macroalgae around Tl’ches.

Common name Scientific name

Sieve kelp Agarum sp.

Ribbon kelp Alaria marginata

Red sea fan Callophyllis sp.

Coralline algae Corallinales

Graceful coral seaweed Corralina vancouveriensis

Five-ribbed kelp Costaria costata

Three-ribbed kelp Cymathaere triplicata

Acid kelp Desmarestia spp.

Feather boa Egregia menziesii

Rockweed Fucus sp.

California limu Gracilaria pacifica

Sea spaghetti Gracilaria andersonii

Southern stiff-stiped kelp Laminaria spp.

Giant perennial kelp Macrocystis spp.

Splendid iridescent seaweed Mazzaella spp.

Sea fern Neoptilota spp.

Bull kelp Nereocystis luetkeana

Frilly red ribbon Palmaria sp.

Broad-ribbed kelp Pleurophycus gardneri

Bleachweed Prionitis sp.

Woody-stemmed kelp Pterygophora californica

Sea felt Pylaiella littoralis

Red islet silk Sparlingia pertusa

Sea cabbage Saccharina sp.

Japanese wireweed Sargassum muticum

Turkish towel Chondracanthus exasperatus

Dark sea lettuce Ulvaria sp.

Eelgrass Zostera marina

establish an ecological baseline around Tl’ches, future monitoring
should investigate other technologies (e.g., scuba diving, drop
camera) to survey high current environments, since a diverse
array of monitoring methods can better address the complexity
of ecosystems (Hilty and Merenlender, 2000).

While our surveys allowed us to ascertain a baseline, by
themselves they do not provide enough information to assess the
health of the system. There are many ways of assessing degraded
versus healthy ecosystems through environmental monitoring
(Diaz et al., 2004; Salas et al., 2006). For initial baseline data,
such as species richness, to become meaningful for a monitoring
program, it is necessary to consider the species’ general life
history strategies and tolerances to changes in environmental
quality (Carballo and Naranjo, 2002). For example, kelp forests
in temperate regions are predicted to shift ranges with climatic
changes, possibly shifting and altering whole habitats (Marzinelli
et al., 2015). Similar potential threats ought to be assessed and life
histories and environmental tolerances ought to be considered
by the Songhees Nation when developing a monitoring system
to evaluate ecological health of the Tl’ches seascape. The most
notably degraded transects we conducted (with recommendation
from our skipper) were typically associated with low biodiversity
and stunted growth or complete absence of macroalgae or
other biota. Indeed, macroalgae has been shown to serve as an

indicator for environmental quality in stressed versus healthy
environments, with highly stressed environments showing little
to no algal cover (Juanes et al., 2008). We suspect toxic paint and
other heavy metals might contaminate these areas as these spots
used to serve as a log boom and/or an area were boat paint used
to be scraped off (I. Cesarec, pers. comm. to EB, August 2017).
Confirming these areas as highly stressed facilitates Songhees to
concentrate restoration efforts in the future.

The ordination plot did not reveal any species that
closely co-occurred other than green urchin (Strongylocentrotus
droebachiensis) and rock scallop (C. gigantea), which might be
explained due to the fact that rock scallop was only recorded at
a very small number of transects (n = 4) and only in conjunction
with echinoids, thus skewing the ordination. While we only
found depth to be a significant predictor of number of species,
a study conducting similar research in the Celtic Sea found that
hard substrates (rock, boulders, gravel) had the highest species
diversity and biomass (Benoist et al., 2019). Another result of
the same study showed that coarse habitats (gravel and sand)
exhibited the lowest species diversity and biomass (Benoist et al.,
2019). Our surveys could not confirm nor reject these substrate
types as predictors of species diversity statistically, however,
qualitatively these species diversity-substrate associations seemed
to hold true. In addition, we did not focus on biotope monitoring
[surveying the whole species assemblage and benthos (van Rein
et al., 2009)] so these associations could have simply been missed.

Overall, the fact that there is no significant association
between species highlights the importance of protecting the
whole Indigenous seascape Tl’ches. Our models showed the only
significant predictors of culturally important species richness
as shallow and medium depth. Overall, the bathymetry around
Tl’ches is mostly shallow to medium depth. These are also
the areas that are most accessible for harvesting of culturally
important species to the Songhees people in the past and the
present day.

The ROV and Its
Advantages/Drawbacks/Applicability for
Marine Surveying and Monitoring
For communities or organizations that are short of financial or
personnel capacity, the Trident offers a comparatively cheap,
safe and reliable alternative to conducting dive or towed diver
surveys. We were beta testers for OpenROV, allowing us to
provide feedback about technological issues such as software
glitches. The Trident allows for nearshore and offshore surveying
with transect lengths of up to 100m, and possible dive depths of
up to 100m. Our surveys took place in nearshore environments
with depths of 0–30 m, where SCUBA or towed dive surveys are
commonly utilized (Kenyon et al., 2006; Leujak and Ormond,
2007). Additionally, depending on survey depth, divers are
constrained to three dives per day, whereas Trident ROV surveys
times can last up to 3 h without interruption. Depending on the
survey technique used, the Trident allows for video recording and
possible resampling of the video footage in the future. In addition,
although not applicable in our study, surveying in highly polluted
environments such as oil spills becomes a possibility with ROVs
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FIGURE 4 | Non-metric multi-dimensional scaling ordination showing the relationship of species co-occurrence. Two Songhees culturally important species, namely,
S. droebachiensis and C. gigantea appear to be co-dependent (highlighted by the red box) Stress = 0.25.

(Hughes et al., 2010). Overall, utilizing a mini, low-cost ROV
such as the Trident can (1) extend dive time and depth, (2)
reduce personnel, (3) preparation and overall survey time, and
(4) be safe and cheaper. As beta testers, we found that the
Trident was a cost-effective means of gathering a variety of
ecological information.

Learning how to pilot the Trident with a tablet or the
controller offered through OpenROV was intuitive. Perfecting
to pilot the Trident does, however, require a steep learning
curve. The controls are sensitive, where the ROV responds
immediately to minor adjustments in direction and/or speed.
The Trident dives well and has integrated lights, which were
not tested in the context of this research as we did not operate
at night. The battery life is around three hours, as advertised.
The resolution of the camera and the video output is good,
especially at 1080p, which had been temporarily disabled by
the developers due to software instability but was enabled
again when requested. The transect videos downloaded quite
easily. The software, despite some glitches (such as not being
able to install the updates without aid of the OpenROV

team) was more or less stable and functioning especially with
continual updates.

The Trident overall was a very versatile and capable field
assistant and allowed for the identification of many of our
culturally important target species, but its ability to resolve
smaller macrofauna (< 5cm) or buried organisms was turbidity
and flow-dependent, as well as ROV velocity dependent, as
is the case for other surveys (Cabaitan et al., 2007). Strict
species counts might not work in the marine environment
due to a typically high flow and turbidity environment;
they might however be better suited in low flow lentic
environments. Tropical environments such as coral reefs, where
visibility tends to be higher than in temperate regions year-
round, could also prove to be better suited for ecological
surveying using the Trident. Another factor could also be
that many ROV cameras are unable to resolve small species
due limitations of camera resolution, which is typically set at
1080p (Jokiel et al., 2015; Torquato et al., 2017). Recent work
with autonomous underwater vehicles has shown that higher
resolution cameras can resolve macrofauna to about 1 cm
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(Benoist et al., 2019) thus including a higher resolution camera in
a newer Trident iteration could improve species identification.

Similarly, the ROV is well built; however minor denting of
the outer casing occurred during piloting but did not affect
functioning. We also came across an issue of corrosion of
the motors within the first two to four weeks (also reported
by other beta users) despite a freshwater soak each time
post usage. OpenROV resolved this swiftly by replacing this
generation of motors.

Several improvements in the Trident could increase usability
for surveying. The current version of the software does not gather
data on variables such as temperature, water depth, geographic
location and ROV orientation. Information on these variables
would be highly advantageous for replicating transects and more
information for continued monitoring. Another suggestion to
improve the Trident would be to integrate lasers to estimate
transect width or species size. Many higher end ROVs or other
systems have this capability (Stein et al., 1992; Tissot, 2007;
Yoklavich et al., 2007).

Usefulness for the Songhees Nation
Marine Conservation Planning
The information we collected with the Trident enabled
us to establish a baseline of culturally important species
occurring around Tl’ches, which informed the Songhees
Nation Marine Use Plan (Buscher et al., in review) and
assist the Nation to negotiate protection for this ecocultural
seascape. We did this by establishing the presence of at
least 14 of 24 culturally important species and extended
the shorezone shore-type information to the subtidal as
well as established a systematic and comprehensive benthos
classification. High resolution data is a precursor to many
conservation planning initiatives (Margules and Pressey, 2000;
Pressey and Bottrill, 2009; Mills et al., 2010). Protecting
Tl’ches for Songhees cultural, social and ceremonial use only
will potentially aid in revitalizing aspects of their culture for
generations to come.

We documented the substrate and algal cover composition
of the benthos, which could serve as one reference point for
the Songhees Nation established monitoring system. Our models
identified the shallow and medium depth strata as the only
significant predictors explaining culturally important species
richness, which shows the importance of protecting the whole
archipelago around to a depth of at least 20 m to protect
culturally important species. This was in accordance with the
general vision and goals that the Songhees Nation established
during interviews and consultations with Songhees community
members (Buscher et al., in review). Tl’ches continues to be
a culturally important place for Songhees peoples and many
interviewees mentioned the need to have the islands protected
for Songhees use for current and future generations. Indeed,
in our interviews with Songhees members mentioned other
culturally important species that went beyond the scope of
this research, such as seabirds or waterfowl. This highlights
another limitation of our research, which is our focus on

subtidal species. Therefore, other culturally important species
should be included in a monitoring program for Tl’ches
to more accurately assess the whole ecocultural system that
is Tl’ches.
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