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Our review of the literature has revealed Southern Ocean subsurface chlorophyll-a
maxima (SCMs) to be an annually recurrent feature throughout the basin. Most of these
SCMs are different to the “typical” SCMs observed in the tropics, which are maintained
by the nutrient-light co-limitation of phytoplankton growth. Rather, we have found that
SCMs are formed by other processes including diatom aggregation, sea-ice retreat,
eddies, subduction events and photo-acclimation. At a local scale, these SCMs can
facilitate increased downward carbon export, primary production and food availability
for higher trophic levels. A large proportion of Southern Ocean SCMs appear to be
sustained by aggregates of large diatoms that form under severe iron limitation in the
seasonal mixed layer. The ability of large diatoms to regulate their buoyancy must play
a role in the development of these SCMs as they appear to increase buoyancy at the
SCM and thus avoid further sinking with the decline of the spring bloom or naturally iron
fertilized blooms. These SCMs remain largely unobserved by satellites and it seems that
ship-based sampling may not be able to fully capture their biomass. In the context of
the Marine Ecosystem Assessment of the Southern Ocean it is important to consider
that this phenomenon is missing in our current understanding of Southern Ocean
ecology and future climate scenarios. The broader implications of SCMs for Southern
Ocean ecology will only be revealed through basin-wide observations. This can only be
achieved through an integrated observation system that is able to harness the detailed
information encapsulated in ship-based sampling, with the increased observational
capacity of fluorometers on autonomous platforms such as those in the biogeochemical
Argo (BGC-Argo) and the Marine Mammals Exploring the Ocean Pole to pole (MEOP)
programs. The main challenge toward achieving this is the uncertainties associated with
translating fluorescence to chlorophyll-a concentrations. Until this translation is resolved,
the reporting of subsurface fluorescence maxima (SFMs) in place of SCMs could still
yield valuable insights with careful interpretation.

Keywords: Southern Ocean, phytoplankton, chlorophyll-a, chlorophyll fluorescence, subsurface chlorophyll
maxima

INTRODUCTION

Southern Ocean phytoplankton are essential for Antarctic food-webs and the regulation
of global climate through the marine carbon cycle (Deppeler and Davidson, 2017). Here,
phytoplankton blooms are dominated by large silica-forming diatoms which have unique
physiology that is adapted to the low iron, light and temperature conditions they live in
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(Cermeño and Falkowski, 2009; Soppa et al., 2014; Arteaga
et al., 2018, 2019; Tréguer et al., 2018; Schallenberg et al.,
2019; Strzepek et al., 2019). Residing in the mixed layer of the
surface ocean, phytoplankton stocks can be observed from space
using satellites due to the visibility of chlorophyll-a (McClain,
2009; Johnson et al., 2013). Satellite chlorophyll-a composites
are routinely used in Southern Ocean ecosystem assessments
of primary production, downward carbon export and food
availability (Boyd et al., 2012; Siegel et al., 2014; Lee et al., 2015;
Constable et al., 2016).

In the Southern Ocean, ship-based studies have presented
evidence of subsurface chlorophyll-a maxima (SCMs), observing
a build-up of chlorophyll-a below the penetration depth of
satellites (10–40 m; Parslow et al., 2001; Holm-Hansen et al., 2005;
Carranza et al., 2018). This phenomenon can be sustained by
several ecological processes, although most of what is currently
known comes from observing the tropical oceans (Cullen, 1982,
2015). In the tropics high irradiances, warm temperatures and
low supply of macro-nutrients lead to the dominance of smaller
picoplankton communities (Acevedo-Trejos et al., 2013, 2015).
Most commonly tropical SCMs are associated with a typical
stable water structure which persists through both summer and
winter (Cullen, 1982, 2015). This SCM forms just above the
pycnocline and is directly related to an increase in phytoplankton
abundance (and biomass) that is stimulated by changes in light
and macro-nutrients with depth (Figure 1). This mechanism of
SCM formation – as a niche specialization in a stratum that
receives just enough light from above and nutrient supply from
below – is well understood and widely studied in the tropics and
the Mediterranean Sea (Cullen, 1982; Furuya, 1990; Estrada et al.,
2016; Barbieux et al., 2019).

Southern Ocean SCMs are often located at or deeper than the
pycnocline, rather than above it, making them distinguishable
from those of the tropics (Quilty et al., 1985; Bathmann et al.,
1997; Fiala et al., 1998; Kopczynska et al., 2001; Parslow et al.,
2001; Garibotti et al., 2003; Armand et al., 2008a; Gomi et al.,
2010; Westwood et al., 2011; Demidov et al., 2013; Tripathy et al.,
2015). The deeper SCM coupled with the macro-nutrient replete
surface ocean, suggest that Southern Ocean SCMs are different
to that of the tropics (Figure 1; Louanchi and Najjar, 2000;
Moore et al., 2001; Arteaga et al., 2019). These deeper SCMs are
characterized by a marked community shift toward large diatoms
across the pycnocline and are referred to as “diatom SCMs”
herein (Bathmann et al., 1997; Cailliau et al., 1997; Kopczynska
et al., 2001; Parslow et al., 2001; Quéguiner, 2001; Armand et al.,
2008a; Gomi et al., 2010; Westwood et al., 2011; Tripathy et al.,
2015). Similar diatom SCMs have also been observed in other
stratified regions including northern-temperate and coastal areas
(Estrada et al., 1993; Kemp and Villareal, 2013, 2018). The study
of how SCMs form in the Southern Ocean will help to reveal
the distribution of deep phytoplankton communities which are
currently hidden from satellites.

We provide a comprehensive Review of what is currently
known about Southern Ocean SCMs (those that form south of the
circumpolar Sub-tropical front). This includes (1) methods for
their observation (2) their reported occurrences (3) the ecological
processes responsible for their formation and (4) the role of SCMs

in Southern Ocean ecology. In doing so, we highlight how ship-
based data have been able to capture annually recurrent and
widespread Southern Ocean SCMs and the ocean properties that
together distinguish them from the SCMs observed in the tropics.
The ecological implications of this deep phytoplankton biomass,
which are not captured in satellite chlorophyll-a composites, are
further discussed to inform the Marine Ecosystem Assessment of
the Southern Ocean (MEASO).

This Review is timely in the wake of the increased sampling
of chlorophyll-a by autonomous platforms such as those in the
biogeochemical Argo (BGC-Argo) and the Marine Mammals
Exploring the Ocean Pole to pole (MEOP) programs in the
Southern Ocean. These programs have the capacity to fill
the limited spatiotemporal resolutions of ship-based sampling
(Figure 2; Guinet et al., 2013; Claustre et al., 2020). From
this new wealth of data, the large-scale processes that control
the formation of Southern Ocean SCMs can be delineated,
complementing the detailed understanding of the phenomenon
presented in this Review.

DEFINING SOUTHERN OCEAN SCMs

We define an SCM by the existence of a local maximum in
chlorophyll-a concentrations (i.e., chlorophyll-a concentration
in subsurface > chlorophyll-a concentration at surface). An
SCM should form over spatial scales greater than one meter
and be maintained on the timescales of a day or longer. This
definition is adapted from Cullen (2015), who defines SCMs as
subsurface chlorophyll-a maximum layers which are maintained
by ecological processes. We do not follow this exact definition,
since we have found some SCMs in the Southern Ocean that
may be maintained by purely physical processes (see Along-
shelf subduction). See Cullen (2015) for further discussion on
terminology and its variants.

METHODS FOR OBSERVATION

Seawater Samples From Ships
Most Southern Ocean ship-based studies measure ex situ
chlorophyll-a by the direct determination of extracted
chlorophyll-a pigments from vertical seawater samples. SCMs
are then identified subjectively, by plotting depth profiles of
chlorophyll-a (Wright and van den Enden, 2000; Parslow et al.,
2001; Gomi et al., 2007; Whitehouse et al., 2008; Tripathy
et al., 2015). Usually this is feasible based on the experience
of the investigator as the presence (or absence) of an SCM is
often visually clear.

In these studies, seawater samples are filtered through
glass fiber filters to remove phytoplankton cells. Pigments
are subsequently extracted from these cells using an organic
solvent for measurement in the laboratory (Valente et al., 2016;
Davies et al., 2018) and analyzed by either high-performance
liquid chromatography (HPLC) (Shoaf, 1978; Valente et al.,
2016), fluorometry or spectrophotometry (Yentsch and Menzel,
1963; Holm-Hansen et al., 1965; Strickland and Parsons, 1972;
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FIGURE 1 | A comparison of typical upper water column structure between the macronutrient limited tropical ocean and the iron limited Southern Ocean over
summer and winter. Distributions of downward irradiance (yellow), macronutrients (red) and iron (brown) are shown on a low (L) to high (H) scale. Also shown are
indications of mixed layer depths (dashed gray line) – note that mixed layer depths are highly variable and are dependent on the thresholds used to define them.
Phytoplankton distributions (green) are shown for the picophytoplankton (circular) community of the tropical ocean and the high silicate community (diamond) of the
polar Southern Ocean. The optimum depth of phytoplankton growth (solid black line) is determined by the distribution of light and the limiting nutrient according to
the theory of nutrient light co-limitation. Supplementary Table S1 lists supporting information used in the construction of this graphical summary.

Zeng and Li, 2015). These methods relate the absorption spectra
of extracted pigments to that of chlorophyll-a. The HPLC method
is the most accurate method, as pigments are first separated
through a chromatographic column (Figure 3). Pigments are not
separated before analysis in fluorometry or spectrophotometry
and thus chlorophyll-a measurements are subjected to the
additive effects of pigments that absorb (or emit) at similar
wavelengths (Davies et al., 2018). Fluorometry is the method that
has been most widely used in the Southern Ocean. This method
often significantly underestimates chlorophyll-a concentrations
which is reportedly due to the presence of chlorophyll-b pigments
(Daemen, 1986; Murray et al., 1986; Pinckney et al., 1994;
Davies et al., 2018). This underestimation has no consequence
for detecting SCMs and can be corrected for by regressing
measurements against coincidental HPLC derived chlorophyll-a.

In situ Fluorometers
Recent Southern Ocean studies have used in situ deployments
of fluorometers on elephant seals and BGC-Argo floats to
observe SCMs over larger spatial scales. These studies have
had to adapt to automatically detecting SCMs using preselected
criteria to accommodate a new wealth of data (Grenier et al.,
2015; Carranza et al., 2018). Supervised classification methods
applied to chlorophyll fluorescence have offered a solution for
studying thousands of chlorophyll fluorescence profiles and can
provide an added advantage of distinguishing between different

types of SCMs. They can do this by automatically identifying
characteristic features of a vertical structure using prescribed
algorithms. These methods have only been applied in two
Southern Ocean studies (Grenier et al., 2015; Carranza et al.,
2018), the Mediterranean Sea (Lavigne et al., 2015; Barbieux et al.,
2019) and the Arctic (Ardyna et al., 2013).

In situ fluorometers measure chlorophyll fluorescence
from live phytoplankton cells. As measurements are not
performed ex situ on extracted pigments, yields of chlorophyll
fluorescence (i.e., the ratio of emitted light to absorbed
light) become important by controlling fluorescence to
chlorophyll-a concentration ratios (Falkowski and Kolber,
1995; Chekalyuk and Hafez, 2011; Ostrowska et al., 2012). Shifts
in phytoplankton communities, photophysiological state or
nutrient regimes lead to variations in chlorophyll fluorescence
yields of up to 7-fold over the global ocean (Behrenfeld et al.,
2009; Cheah et al., 2013; Roesler et al., 2017). In addition, a
physiological process whereby phytoplankton under light stress
divert energy from their photosynthetic systems, called non-
photochemical quenching (NPQ), introduces a further challenge
for determining chlorophyll-a concentration by decreasing
chlorophyll fluorescence yield by up to 100% in surface
measurements (Behrenfeld et al., 2009; Doblin et al., 2011;
Thomalla et al., 2018; Xing et al., 2018; Schallenberg et al., 2019).

Correcting fluorescence-derived chlorophyll-a in the
Southern Ocean for observed variations in chlorophyll
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FIGURE 2 | The distribution of available fluorescence-derived chlorophyll-a data collected (blue dots) south of 30◦S overlaid on bathymetry, alongside images of
autonomous platforms used in two programs that facilitate large deployments of fluorometers in the Southern Ocean; (A) the biogeochemical Argo (BGC-Argo) and
(B) the Marine mammals Exploring the Oceans Pole to pole (MEOP) programs. The distribution plots correspond to BGC-Argo data (produced by Kimberlee Baldry)
that is freely available and MEOP data (produced by Professor Mark Hindell) available from the Integrated Marine Observing System through program leaders
(Professor Mark Hindell and Dr. Christophe Guinet). Data shown was that available on the 28/03/2020. Credits for instrumentation images go to Christoph Gerigk
at© Sea-Bird Electronics for BGC-Argo and Clive McMahon for MEOP.

fluorescence yields is done by applying a regional scaling known
as the Roesler factor (Haëntjens et al., 2017; Roesler et al., 2017).
The application of a single scaling factor to the entire Southern
Ocean does not seem viable considering the recent observations
from Schallenberg et al. (2019) which show large changes in
chlorophyll fluorescence yields across the Sub-Antarctic front.
The use of satellite-derived chlorophyll-a as a surface reference
to correct fluorescence-derived chlorophyll-a may be a more
promising approach, although consideration that the two
measurements are made on vastly different spatiotemporal scales
is needed (Guinet et al., 2013). This approach comes possibly
at the expense of accuracy, as the accuracy of Southern Ocean
satellite-derived chlorophyll-a algorithms has repeatedly been
questioned (Figure 3; Mitchell and Holm-Hansen, 1991; Sullivan
et al., 1993; Dierssen, 2010; Johnson et al., 2013).

NPQ decreases chlorophyll fluorescence yield toward the
surface, causing a subsurface fluorescence maximum (SFM)
measured by a fluorometer to appear where an SCM may
not exist (Falkowski and Kolber, 1995; Biermann et al., 2015;
Carranza et al., 2018; Thomalla et al., 2018; Xing et al., 2018).
In the Southern Ocean, NPQ is widespread likely due to iron
limitation and high summertime light levels which have led to
communities lacking the nutrients to photosynthesize when light
is readily available (Roesler et al., 2017; Strzepek et al., 2019;
Schallenberg et al., 2020). Many methods have been suggested
to correct surface fluorescence in the presence of NPQ, but an
evaluation of these corrections across the Southern Ocean has not
been performed. NPQ corrections have been shown to perform
differently and most fail to accurately correct fluorescence when
an SCM is present in the Southern Ocean (Carranza et al., 2018;
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FIGURE 3 | A schematic of (A) the different methods of measuring chlorophyll-a in the ocean discussed within this review and (B) a representation of differences in
precision and accuracy for these methods. The gray concentric circles illustrate targets, where the center is indicative of an accurate and precise measurement, with
the red dots illustrating the differences between accuracy and precision. Four targets are presented to illustrate varying degrees of precision and accuracy.

Thomalla et al., 2018; Xing et al., 2018). The comparison of day-
time corrected fluorescence with night has been used in studies as
a good test of the performance of an NPQ correction (Carranza
et al., 2018; Thomalla et al., 2018; Xing et al., 2018). However,
this test could be subject to the effects of diurnal controls on ‘real’
SCM formation which are largely unknown, as well as differences
in situ sampling locations between day and night (Cullen, 2015;
Carranza et al., 2018).

As a consequence of variable chlorophyll fluorescence yields,
Southern Ocean in-situ fluorescence measurements are not
inter-comparable with measurements derived from extracted
chlorophyll-a (i.e., HPLC, fluorometry, spectrophotometry) and
are best interpreted in terms of subsurface fluorescence until
disparities are quantified and better understood (Carranza
et al., 2018). From an alternative perspective, chlorophyll
fluorescence has the potential to provide further insight on the
photophysiological state of phytoplankton and could be used to
distinguish the amount of light energy being used in primary
production. This would allow a more accurate representation
of basin primary production in ecosystem assessments, rather
than assuming a constant photosynthetic efficiency per unit
chlorophyll-a for in estimates (Behrenfeld et al., 2009; Boss et al.,
2018; Schallenberg et al., 2019, 2020).

The type of supervised classification method chosen, the
post-processing method for fluorescence measurements (e.g.,
despiking, smoothing), sampling resolution and measurement
error are all expected to affect the detection of SCMs (Grenier
et al., 2015; Carranza et al., 2018). To remain comparable,
future studies should clearly consider the effect of these variables
on their results. Furthermore, targeted study on the accuracy
of fluorometers in the Southern Ocean is needed to assess
the impacts of chlorophyll fluorescence yields and NPQ on
ecosystem assessments of primary production, downward carbon
flux and food-webs made through large scale deployments
of fluorometers.

REPORTED OCCURRENCES

Southern Ocean SCMs were suggested to be both prevalent and
annually recurrent by two early studies. Parslow et al. (2001)
reported the first evidence of annually recurrent SCMs south
of Australia around the Polar front, along the WOCE SR3 line
(140◦E). Here, SCMs form in late spring around 50 m and deepen
to 100 m by early autumn (Parslow et al., 2001). Following
this Holm-Hansen et al. (2005) reported geographically wide
occurrences of SCMs in the Southern Ocean by synthesizing ship-
based studies. The authors associated SCMs with low surface
chlorophyll, iron limitation and with the temperature minimum
layer of Antarctic waters.

A more recent study by Carranza et al. (2018) confirmed both
the earlier reported annually recurrent and widespread SCMs.
Their study identified SCMs using SFMs collected by an array
of in situ fluorometers on BGC-Argo floats and elephant seals.
SFMs begin to form in late-spring and decline from late-summer
to early-autumn. At the peak of summer SFMs are detected in
60% of the dataset which is constrained mostly to the open
Southern Ocean around the Polar front. These SFMs appear to
show synergies with episodic wind events, forming only during
calm conditions, and may coincide with increased phytoplankton
biomass. This study demonstrated the capabilities of fluorometers
to provide a basin-wide view of SCMs from the interpretation of
SFMs, despite the widespread day-time NPQ of fluorescence, by
considering only measurements made at night.

In addition to SCMs in the vicinity of the Polar front
(Kopczynska et al., 2001; Parslow et al., 2001; Armand et al.,
2008a; Westwood et al., 2011; Tripathy et al., 2015; Rembauville
et al., 2016a), ex situ measurements have found summer SCMs
around the continental slopes of Antarctica and Southern Ocean
islands (Garibotti et al., 2003; Holm-Hansen and Hewes, 2004;
Demidov et al., 2007; Armand et al., 2008a; Whitehouse et al.,
2008; Erickson et al., 2016), around eddies (Clementson et al.,
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1998; Daly et al., 2001) and in the Seasonal Ice Zone (Mikaelyan
and Belyaeva, 1995; Bathmann et al., 1997; Cailliau et al., 1997;
Wright and van den Enden, 2000; Gomi et al., 2007; de Villiers
et al., 2015). During summer, a recurrent and notable absence
of SCMs has only been reported in the permanently open ocean
zone of Antarctic waters (Cailliau et al., 1997; Gomi et al., 2007;
Rigual-Hernández et al., 2015a,b) and the Sub-Antarctic zone
south of Australia (Figure 4; Clementson et al., 1998; Parslow
et al., 2001; Westwood et al., 2011).

This is the limited viewpoint that the literature to date
offers on the prevalence and persistence of Southern Ocean
SCMs. The field is at a tipping point of observational power
through the BGC-Argo and the MEOP programs (Figure 2;
Guinet et al., 2013; Claustre et al., 2020). This power will see
an unprecedented increase in reported observations of SFMs and
SCMs (Carranza et al., 2018).

PROCESSES THAT MAINTAIN
SOUTHERN OCEAN SCMs

Identifying the ecological and physical processes (sensu
Cullen, 2015) that maintain SCMs is difficult. Ancillary
environmental data are required to disentangle these processes
and to test hypotheses. Eighteen Southern Ocean studies
have been identified to contain ancillary data that could be
used to evaluate processes that form SCMs (Figure 4 and
Supplementary Table S2).

The studies were identified through a literature search that
revealed 145 scholarly articles published between 1991 and
2019. The search was performed using the Web of Science
Core Collection and Scopus databases together with the key
search terms “Subsurface chlorophyll-a maxima” and “Southern
Ocean.” Derivatives of “subsurface chlorophyll-a maxima” were
also implemented (Supplementary Text S1). Results from these
studies are discussed below in the context of Southern Ocean
biogeochemistry. We have summarized this information in new
conceptual models for Southern Ocean regions to guide future
research (Figure 5).

Nutrient-Light Colimitation in an Iron
Limited Ocean
The stability of the tropical SCM relies on vertically mixed
inputs of a limiting nutrient across a pycnocline into the
base of the mixed layer combined with a light field that
decreases exponentially with depth. This creates a depth of
optimum growth for phytoplankton, at the SCM, usually just
above the pycnocline (Figure 1). Below the SCM, growth
is limited by light, and by nutrients above the SCM. At
the SCM community shifts can occur due to low rates of
mixing as different phytoplankton groups respond differently
to changing light, nutrient availability and disproportionate
grazing pressures (Strom, 2001; Cullen, 2015; McKie-Krisberg
et al., 2015; Latasa et al., 2016, 2017). Despite these shifts, the
community is dominated by picoplankton through the water
column (Furuya, 1990; Estrada et al., 2016; Latasa et al., 2017).
In the darker environment of the SCM phytoplankton may also

undergo photo-acclimation, increasing intracellular chlorophyll-
a concentration (Cullen, 2015; Estrada et al., 2016; Latasa et al.,
2017). If there are high rates of surface mixing, the SCM is
destroyed (see Cullen, 2015 for further discussion).

Sufficient subsurface inputs of the limiting micro-nutrient
iron are not widely present across the Southern Ocean to sustain
the light-nutrient co-limitation characteristic of tropical SCMs.
Iron-depleted mixed layers have been shown to coincide with
SCMs in the open Southern Ocean (Boyd et al., 2001; Holm-
Hansen et al., 2005), but iron concentrations are still remarkably
low below the mixed layer from late-spring to summer leading
to small diffusive fluxes (Sohrin et al., 2000; Tagliabue et al.,
2012, 2014; Klunder et al., 2014; Bowie et al., 2015). This can
be attributed to the rapid use of winter iron repositories as the
mixed layer shoals during the initial spring bloom (Tagliabue
et al., 2014). The presence of SCMs at or deeper than the
pycnocline and a consistent, marked community shift toward
large diatoms at the SCM are further features which do not fit
with the conceptual model of the tropical SCM (Kopczynska
et al., 2001; Parslow et al., 2001; Holm-Hansen et al., 2005;
Westwood et al., 2011; Moore et al., 2013; Carranza et al., 2018).
Instead we find that an assortment of Southern Ocean processes
may be important for maintaining diatom SCMs including
stratification, buoyancy regulation by large diatoms, persistent
iron limitation and grazing.

Theoretically, iron fertilization could relieve iron limitation in
the mixed layer to induce an SCM sustained by light-nutrient co-
limitation, by allowing silicate or nitrate, which have vertically
mixed inputs, to become the limiting nutrient. The primary
sources of iron to the Southern Ocean are coastal margins,
shallow bathymetry, dust, hydrothermal venting and sea-ice melt
(Blain et al., 2008; Raiswell et al., 2008; Boyd and Ellwood, 2010;
Boyd et al., 2012; Graham et al., 2015; Ardyna et al., 2019).
Coastal inputs of iron and sea-ice melt have been associated with
the development of SCMs which we explore further (see Iron
fertilization by land masses and Sea-ice retreat), however the role
of other iron sources in SCM formation is purely speculative due
to a lack of coincident observations.

Diatom SCMs
Large diatoms find an environmental niche in the pycnocline
under severe iron limitation and high stratification, remaining
in the upper ocean when other phytoplankton taxa cannot. This
leads to their accumulation forming the diatom SCM which
have been observed around the Polar front (Bathmann et al.,
1997; Kopczynska et al., 2001; Parslow et al., 2001; Armand
et al., 2008a; Gomi et al., 2010; Westwood et al., 2011; Tripathy
et al., 2015), on the Kerguelen Plateau (Armand et al., 2008a),
off the continental slope of Antarctica (Quilty et al., 1985; Fiala
et al., 1998; Garibotti et al., 2003) and in the Seasonal Ice zone
(Cailliau et al., 1997; Wright and van den Enden, 2000; Gomi
et al., 2007). The most striking observation of this phenomenon
was made in the Seasonal Ice Zone by Quilty et al. (1985)
who encountered a diatom SCM of remarkably high biomass,
dominated by Thalassiothrix antarctica.

The tendency of large diatoms to dominate the diatom
SCM has been revealed by microscopy and CHEMTAX analysis
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FIGURE 4 | The number of studies that identify a mechanism of formation discussed in this review presented by region of the Southern Ocean. The evidence each
study has given for these mechanisms is given in Supplementary Table S2. Regions are as defined in Deppeler and Davidson (2017), however, note that the
location of fronts and sea-ice extent are highly variable. ACZ, Antarctic Coastal Zone (including continental slope to 2000 m); SIZ, Seasonal Ice Zone; POOZ,
Permanently Open Ocean Zone; PFZ, Polar Frontal Zone; SAZ, Sub-Antarctic Zone; SOI, Southern Ocean Islands. The 2000 m isobar is shown as a gray line.
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FIGURE 5 | Proposed conceptual models for the formation of Southern Ocean SCMs and diatom SCMs (dSCMs) (A) in the oceanic HNLC regions, (B) downstream
of Southern Ocean Islands (SOI), (C) following sea-ice retreat, (D) in warm-core eddies in the Sub-Antarctic Zone, (E) in cold-core eddies in the Sub-Antarctic Zone
and (F) by subduction along the continental shelf (as in Erickson et al., 2016). Conceptual models are presented as schematics, with examples of what vertical
measurements of chlorophyll-a and limiting nutrients might look like.
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of accessory pigments (Quilty et al., 1985; Bathmann et al.,
1997; Fiala et al., 1998; Wright and van den Enden, 2000;
Kopczynska et al., 2001; Gomi et al., 2007, 2010; Armand et al.,
2008a; Westwood et al., 2011). Further measurements of the
accessory pigment fucoxanthin and biogenic silica have indicated
increased diatom dominance at the SCM compared to coincident
surface communities (Parslow et al., 2001; Quéguiner, 2001;
Armand et al., 2008a).

Diatom SCMs only appear to form in the absence of a surface
bloom and have been linked to severe iron depletion of surface
waters (Parslow et al., 2001; Holm-Hansen and Hewes, 2004;
Holm-Hansen et al., 2005). Further, the taxa that dominate
diatom SCMs are found in upstream surface blooms, where
upstream refers to island or coastal blooms (Armand et al., 2008a;
Gomi et al., 2010; Westwood et al., 2011; Tripathy et al., 2015).
We speculate that the diatom SCM is formed following the
decline of the surface bloom as conditions fade under persistent
iron or silicate limitation (Figure 5A). This could explain the
regime shifts from a well-mixed surface bloom to a diatom
SCM across continental shelves (Fiala et al., 1998; Garibotti
et al., 2003; Holm-Hansen and Hewes, 2004), downstream from
Southern Ocean Islands (Armand et al., 2008a) and with sea-ice
retreat (Cailliau et al., 1999; Wright and van den Enden, 2000;
Gomi et al., 2007).

The connectivity of phytoplankton communities between
coastal and oceanic regions is most evident from studies
conducted in the Indian sector of the Southern Ocean. Around
the Polar front diatom SCMs were found to consistently contain
significant communities of the large diatoms Fragilariopsis
kerguelensis and Dactyliosolen antarcticus, which are both
observed to bloom in the surface waters around the Kerguelen
Plateau (Kopczynska et al., 2001; Armand et al., 2008a; Gomi
et al., 2010; Westwood et al., 2011). In the Seasonal Ice Zone
community composition is significantly different to that around
the Polar front. While Fragilariopsis kerguelensis is often present
in the mixed layer (downstream from the Kerguelen plateau),
large diatoms Pseudo-nitzschia prolongatoides, Pseudo-nitzschia
spp., Corenthon pennatum and Chaetoceros spp. dominate in the
Seasonal Ice Zone (Fiala et al., 1998; Gomi et al., 2007, 2010).
The decline over time and dominance in the diatom SCM of
Pseudo-nitzschia spp. and Chaetoceros spp. (sea-ice diatoms),
over Fragilariopsis kerguelensis suggests that SCMs formed in the
Seasonal Ice Zone are most likely short lived and independent of
SCMs formed around the Polar front (Gomi et al., 2007).

Ecological and physiological adaptions of large diatoms must
be responsible for the ability of these taxa to survive for long
periods at the pycnocline when conditions are not suitable for a
surface bloom. The ability of large diatoms to regulate buoyancy
over nutrient gradients, using vacuolar control of solute balance,
should play a large role in sustaining their dominance at the
SCM and prevent their export into the mesopelagic ocean (Waite
et al., 1992; Fisher and Harrison, 1996; Kemp and Villareal, 2013).
Interestingly, Southern Ocean large diatoms have been observed
to increase their buoyancy under bloom conditions, iron addition
and decreased light, leading to reduced downward carbon export
(Waite et al., 1992; Fisher and Harrison, 1996; Waite and Nodder,
2001; Acuña et al., 2010). Diatoms efficiently use nutrients, due

to their ability to take up nutrients rapidly and maintain large
nutrient reserves (Lomas and Glibert, 2000; Litchman et al., 2006;
Kemp and Villareal, 2013, 2018; Hansen and Visser, 2019). This
coupled with adaptions to low-light environments – including
optimized photosystems and photonic crystals that enhance light
harvesting - allows large diatoms to be active producers in the
pycnocline which receives pulses of nutrients via internal waves
(Holligan et al., 1985; Kemp and Villareal, 2013; Strzepek et al.,
2019; Goessling et al., 2020).

Heavy silicification and large spines to resists heavy grazing
pressure also confer some protection against the depletion of
these aggregations (Smetacek et al., 2004; Assmy et al., 2013).
A disproportionate grazing pressure across species may also aid
bloom-decline and contribute to the maintenance of the diatom
SCM in the open ocean (Assmy et al., 2013). However the diatom
SCM is not immune to grazing pressure as targeted grazing by
microzooplankton, copepods and heterotrophic dinoflagellates is
indicated by the presence of empty frustules and a maximum
of zooplankton abundance (Froneman and Perissinotto, 1996;
Kopczynska et al., 2001; Parslow et al., 2001; Armand et al., 2008;
Gomi et al., 2010; Rembauville et al., 2016).

It is unknown if silicate, iron or light is most important
in buoyancy regulation of Southern Ocean large diatoms. It
may depend on the limiting nutrient of these communities
which is not completely resolved (Waite et al., 1992; Fisher and
Harrison, 1996; Boyd et al., 2005). Shallow bathymetry could
support large subsurface reservoirs of lithogenic silica, potentially
aiding in the persistence of diatoms at depth as they are carried
around with the Antarctic circumpolar current (Parslow et al.,
2001; Quéguiner, 2001; Robinson et al., 2016). Hopkinson et al.
(2007) is the only study that has conducted an iron-addition
experiment to observe iron limitation in an oceanic Southern
Ocean SCM. This study found that the SCM community in the
West-Antarctic Peninsula was iron limited and in situ iron was
still remarkably low below the pycnocline. Unfortunately, few
studies that observe an SCM have reported vertical profiles of iron
and silicate concentrations.

The stratification of the water column to form a shallow
pycnocline over spring and summer is important for the
maintenance of diatom SCMs (Figure 5A). In late-autumn the
deepening of the pycnocline leads to the destruction of the
diatom SCM and a “fall dump” event leads to the export of the
community as light levels become too low for survival (Smetacek,
1985; Kemp et al., 2000). Observations of SFMs further suggest
that disturbing the pycnocline via episodic storms likely leads
to the re-suspension of communities and the subsequent re-
formation of the diatom SCM when calm conditions prevail
(Carranza et al., 2018). If these SFMs correspond to diatom SCMs
around the Polar front, this may point toward the survival of the
diatom SCM community during episodic storm events.

Iron Fertilization by Land Masses
In the high-energy environments of Southern Ocean islands in
the path of the Antarctic circumpolar current, lateral flow is
strongly zonal. A persistent supply of iron in the vicinity of
and downstream of these islands is observed to be in excess of
the demand of phytoplankton growth (Blain et al., 2001, 2008;
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Planquette et al., 2007; Chever et al., 2010; Bowie et al., 2015;
Robinson et al., 2016; Schlosser et al., 2018). This iron supply
facilitates large oceanic surface blooms that decline with distance
from a land mass, as a limiting nutrient becomes depleted in
the surface layer (Graham et al., 2015; Robinson et al., 2016).
SCMs have been observed to form above the pycnocline in the
wake of high chlorophyll plumes around the Kerguelen Plateau
and South Georgia Island (Blain et al., 2001; Armand et al.,
2008a; Whitehouse et al., 2008; Grenier et al., 2015). These
SCMs are likely a result of a transient light-nutrient co-limited
state as the surface bloom declines (Figure 5B; Whitehouse
et al., 2008; Grenier et al., 2015). The limiting nutrient is silicate
downstream from South Georgia Island, but may be silicate or
iron downstream from the Kerguelen Plateau (Blain et al., 2007;
Mongin et al., 2007; Whitehouse et al., 2008; Closset et al., 2014;
Robinson et al., 2016).

Over the Antarctic continental shelf, high levels of iron persist
through the water column due to high inputs of iron from
sediments and the movement of circumpolar deep water to the
surface (Blain et al., 2008; Tagliabue et al., 2012; Klunder et al.,
2014; Dinniman et al., 2020). Even in this iron rich region surface
waters can exhibit persistent iron limitation due to the demands
of rapid phytoplankton growth in spring and summer (Martin
et al., 1990; Coale et al., 2003; Bertrand et al., 2007). There is an
absence of SCMs above the pycnocline in these surface waters
which suggests that phytoplankton deplete subsurface sources of
iron over shallow bathymetry more quickly than it is supplied
(Martin et al., 1990; Coale et al., 2003; Bertrand et al., 2007;
Alderkamp et al., 2015). This is further evident from records
of iron limitation near the pycnocline in the Amundsen Sea
(Alderkamp et al., 2015). This key difference from Southern
Ocean Islands near the ACC is likely due to relatively weak
surface currents in the low-energy, sheltered region and the
transient nature of sea-ice as an iron source (Fahrbach et al., 1992;
Dinniman et al., 2011, 2020; Stewart and Thompson, 2013; Park
et al., 2014; Robinson et al., 2016).

Southern Ocean studies have often suggested iron-light co-
limitation as a driver of SCM formation over the continental
shelf due to decreasing iron supply by land masses (Garibotti
et al., 2003; Holm-Hansen et al., 2005; Kahl et al., 2010). These
oceanic SCMs develop below the pycnocline, suggesting that
light-nutrient co-limitation plays no part in facilitating their
formation. We reframe these observations by acknowledging
that while iron limitation may play a role in maintaining these
SCMs, the distribution of nutrients through the water column
does not control their formation, leading us to suggest that these
are diatom SCMs.

Sea-Ice Retreat
Sea-ice retreat facilitates intense phytoplankton blooms in surface
waters (Raiswell et al., 2008; Death et al., 2014; Duprat et al.,
2016). These blooms are thought to be initiated by seed
phytoplankton released from sea-ice (Grossi et al., 1987; Suzuki
et al., 2001; Gomi et al., 2007; Mangoni et al., 2009; Lizotte,
2015), the release of light limitation from sea-ice cover (Lancelot
et al., 1993; Taylor et al., 2013) or the release of bio-available
iron as the ice melts (Lannuzel et al., 2016), or a combination of

all these mechanisms. Following surface blooms, diatom SCMs
have been observed to trail sea-ice retreat (Figure 5C; Cailliau
et al., 1999; Wright and van den Enden, 2000; Gomi et al., 2007).
These diatom SCMs could be related to the diatom SCMs that are
frequently observed over the continental slope of Antarctica.

Surface blooms at the sea-ice edge rapidly sink when nutrients
quickly become depleted from meltwater (Smetacek et al., 1992;
Wright and van den Enden, 2000; Ambrose et al., 2005; Wright
et al., 2010; Boetius et al., 2013) or and are heavily grazed
(Stretch et al., 1988; Smetacek et al., 1990; Scharek et al., 1994;
Michel et al., 1996; Gomi et al., 2007). After sea-ice retreat,
phytoplankton community composition is initially uniform with
depth and dominated by diatoms and Phaeocystis spp., as seen
by microscopy and pigment analysis (Cailliau et al., 1999; Wright
and van den Enden, 2000; Gomi et al., 2007). It is at this stage,
Gomi et al. (2007) detected sea-ice algae (Phaeocystis spp. and
Pseudo-nitzschia prolongatoides). Cailliau et al. (1999) used a
combination of pigment and lipid analysis to suggest that the
subsequent diatom SCM in a sea-ice zone was formed by a
selective export of nanoflagellates (inc. Phaeocystis spp.) due to
grazing, while diatoms are left behind in the SCM. The ability
of diatoms to regulate their buoyancy across nutrient and light
gradients, thus preventing their sinking could prevent their
immediate export and survival at the diatom SCM as bloom
conditions decline (Waite et al., 1992; Fisher and Harrison, 1996;
Moore and Villareal, 1996; Waite and Nodder, 2001; Kemp et al.,
2006; Acuña et al., 2010).

The fate and spatial extent of these diatom SCMs associated
with sea-ice retreat has not been explored. Further, the ability
of sea-ice to fertilize blooms is inconsistent, as demonstrated in
Bathmann et al. (1997). They followed the retreat of sea-ice for
6 weeks and observed little phytoplankton growth at the ice-edge,
even though ice-algae and meltwater were detected. This may
have been due to high wind conditions inhibiting the ice-edge
blooms (Lancelot et al., 1993; Fitch and Moore, 2007; Pellichero
et al., 2020) or intense zooplankton grazing at the ice-edge like
that exerted by large krill swarms (Stretch et al., 1988; Smetacek
et al., 1990; Scharek et al., 1994). Consequently, these diatom
SCMs may not be observed around the entire marginal ice zone.

Eddies
Eddies are abundant and ubiquitous in the Southern Ocean,
resulting from the instabilities at high energy fronts. Particularly
intense eddy activity occurs where fronts interact with shallow
bathymetry (Bryden and Heath, 1985). A small number of SCMs
have been attributed to eddies spinning off the Subtropical
front, the Sub-Antarctic front and the Antarctic Divergence
(Clementson et al., 1998; Wright and van den Enden, 2000; Daly
et al., 2001; Westwood et al., 2011; de Villiers et al., 2015). To date,
eddies are speculated to facilitate Southern Ocean SCMs by two
mechanisms; (1) nutrient-light co-limitation within warm-core
eddies from the Subtropical front and (2) increased growth at the
pycnocline cold-core eddies from the Sub-Antarctic Front, likely
due to the injection of nutrients (Figures 5D,E).

An SCM observed by Clementson et al. (1998) exhibited a
nitrate limited tropical SCM at the center of a warm-core eddy
that had come from the nitrate-poor Subtropical zone into the
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nitrate-rich Sub-Antarctic zone, where SCMs are consistently
not observed (Clementson et al., 1998; Wright and van den
Enden, 2000; Daly et al., 2001; Westwood et al., 2011). Westwood
et al. (2011) also detected an eddy associated SCM above the
pycnocline, revealing the warm-core eddy’s capacity to transport
iron-rich waters into the Sub-Antarctic zone. This study observed
higher concentrations of iron at the surface in the eddy,
compared to below which would allow a nitrate limited tropical
SCM to exist (Figure 5D). The fate of this type of eddy-associated
SCMs and their biogeochemical implications is unknown.

Another SCM that was uncharacteristically observed in the
sub-Antarctic zone at 120–160 m depth by Daly et al. (2001)
was in a cold-core eddy spun off the Sub-Antarctic front in
summer. The SCM community likely originated from near the
Polar front, where diatom SCMs can be observed at similar
depths. The SCM within the cold-core eddy was observed to
be of higher biomass than those around the Polar front, which
was speculated to be sustained by an injection of nutrients
from shoaled isopycnals (Figure 5E). This is supported by
evidence from diatom SCMs in the Arctic which thrive under
nutrient pulses via internal waves and eddies (Kemp and
Villareal, 2013). The fate of the SCM was likely to sink with the
weakening of the eddy, and contributing to downward carbon
export, as communities were not well sustained in the Sub-
Antarctic zone.

Detecting eddy-associated SCMs with autonomous platforms
could further reveal the fate of these SCMs and their significance
in the Southern Ocean, providing insight into this narrow view
displayed by the literature.

Along-Shelf Subduction
SCMs could be formed by the subduction of productive surface
waters off the coastal shelf (Figure 5F). Wright and van den
Enden (2000) observed a band of SCMs along a subduction
zone associated with the Antarctic Divergence. This mechanism
has merit but is difficult to prove with one dimensional ship-
based data.

Erickson et al. (2016) provided the strongest evidence that
productive waters move along isopycnals that are subducted
along the continental shelf to below the pycnocline as seen by
glider transects. This community was also speculated to remain
productive below the upper mixed layer. This leads to the
question of whether the large diatom aggregation (comprised
mostly of Thalassiothrix antarctica) observed by Quilty et al.
(1985) was also formed as a result of this subduction combined
with the ability of large diatoms to regulate buoyancy (Waite and
Nodder, 2001; Kemp and Villareal, 2013).

Photo-Acclimation
Photo-acclimation enables phytoplankton to harvest light more
efficiently in low light environments by increasing cellular
chlorophyll-a. This has been observed in the pycnocline in the
Seasonal Ice Zone and around the Polar front in the Southern
Ocean (Mikaelyan and Belyaeva, 1995; Rembauville et al., 2016a).
This process can also occur in the mixed layer if mixing rates are
slower than the rate of photo-acclimation (Cailliau et al., 1997;
Dusenberry et al., 2000).

Observations conducted at the cellular level under a
microscope by Mikaelyan and Belyaeva (1995) were made in the
absence of a deep diatom-dominated SCM, confirming photo-
acclimation by Southern Ocean phytoplankton communities.
Increased cellular concentrations of chlorophyll-a could be an
indication of a community shift (diatoms often have high
cellular chlorophyll-a), when chlorophyll-a concentrations are
compared to particulate organic carbon concentrations (as
in Rembauville et al., 2016a). Consequently, it is difficult
to distinguish photo-acclimation from community shift in
chlorophyll-a concentration profiles unless additional pigment or
microscopic analysis is performed.

Grazing
Evidence of SCM formation by top-down grazing pressure was
not evident in the key literature but has been explored through
models. Mixotrophs exert uneven grazing pressure through the
water column with higher grazing rates observed at the surface
due to light-aided digestion and photooxidative stress (Strom,
2001; McKie-Krisberg et al., 2015). Thus, it has been shown
through a model that this uneven grazing pressure could lead
to the formation of a SCM in the tropics (Moeller et al., 2019).
Mixotrophs may play a significant role in Southern Ocean
ecosystems, suggesting the validity of these hypothesis in this
region (Froneman and Perissinotto, 1996; Christaki et al., 2008;
Moorthi et al., 2009; Norbury et al., 2019). However, their relative
abundance is significantly less compared to the tropics and so
the importance of this process in controlling SCM formation as
revealed by the tropical model may be subdued (Edwards, 2019).

THE ECOLOGICAL ROLE OF SCMs IN
THE SOUTHERN OCEAN

Without extensive observations of SCMs, assessments of their
impact in Southern Ocean ecology is limited. Regional process
studies observed that SCMs contribute to water column primary
production (Parslow et al., 2001; Westwood et al., 2011; Tripathy
et al., 2014, 2015), facilitate large downward carbon export events
(Kemp et al., 2000; Llort et al., 2018), are sites of macrofauna
foraging (Dragon et al., 2010; Kahl et al., 2010; Williams et al.,
2011; Saijo et al., 2017; Rivière et al., 2019; Siegelman et al.,
2019) and are sites of intense zooplankton grazing (Atkinson
et al., 1992; Froneman and Perissinotto, 1996; Kopczynska et al.,
2001; Parslow et al., 2001; Gomi et al., 2010; Rembauville et al.,
2016a). The ecological significance of an SCM is enhanced when
they also represent a subsurface biomass maximum, or high
primary production, or both. SCMs can exist independently of
subsurface biomass maxima and increased primary production,
due to changes in cellular chlorophyll-a concentrations either by
photo-acclimation or a community shift (Cullen, 2015).

To date, diatom SCMs are the most widely observed type of
SCM in the pelagic Southern Ocean. They have been recurrently
observed south of Tasmania, Australia over several years (Parslow
et al., 2001) as well as in the Atlantic and Indian sectors
(Bathmann et al., 1997; Tripathy et al., 2015). From fluorometers
mounted on BGC-Argo profiling floats and elephant seals, mostly
around the Polar front, summertime SFMs occurring at the
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pycnocline have been found in 60% of observations (Carranza
et al., 2018). This begs the question; Are diatom SCMs responsible
for all SCMs/SFMs around the Polar front, and if so, what is the
significance of this seasonal and wide-spread persistence?

Southern Ocean SCMs often occur in very low light
environments so their contribution to water column integrated
primary production may be small. If formed above the
pycnocline, SCMs are expected to be active contributors to
water column production because they will likely be exposed
to sufficient light (Herbland and Voituriez, 1979; Estrada et al.,
1993; Cullen, 2015). It is difficult to discern if an SCM
that forms below the pycnocline is a productive or senescent
feature without measurements of primary production, because
communities shift, and communities below the pycnocline
function differently to those above (Parslow et al., 2001;
Westwood et al., 2011; Tripathy et al., 2014, 2015). Basin-wide
observations of SCMs, alongside a better understanding of the
photosynthetic efficiencies and biomass of deep communities,
are required to assess the potential impacts of SCMs on total
water column primary production and the regulation of the
global carbon cycle.

Regardless of their contribution to primary production and
biomass, diatom SCMs at the pycnocline in the Southern Ocean
support unique food webs and contribute to downward carbon
export. The ability of a diatom SCM to act as a subsurface
biomass maxima is variable and the subsequent relationship of
biomass to primary production is complex (Kopczynska et al.,
2001; Parslow et al., 2001; Armand et al., 2008; Gomi et al.,
2010). Diatom SCMs are active contributors to total summer
water column productivity around the Polar front (Parslow et al.,
2001; Westwood et al., 2011; Tripathy et al., 2014, 2015). This
productivity supports selective grazing by microzooplankton,
copepods and heterotrophic dinoflagellates at the SCM, creating
a unique trophic structure (Froneman and Perissinotto, 1996;
Kopczynska et al., 2001; Parslow et al., 2001; Gomi et al.,
2010; Rembauville et al., 2016a). While their growth may be
light limited for long periods, diatoms are a form of new
production with a high downward carbon export efficiency. Their
unique photosynthetic apparatuses have large light harvesting
complexes, enhancing their ability to photosynthesize at <1%
surface light (Parslow et al., 2001; Tripathy et al., 2015; Goessling
et al., 2020). These light levels are extremely low and would halt
primary production for most species of phytoplankton. Adding
to their remarkable photosynthetic capacities, some species can
survive long periods of darkness by forming a resting spore
(Ferrario et al., 1998; Armand et al., 2008a,b; Salter et al.,
2012). The mass formation of these resting spores off the
Kerguelen plateau is a source of large downward carbon export
events to the seafloor (Armand et al., 2008b; Salter et al., 2012;
Rembauville et al., 2016b). In addition to this, large “fall dump”
events occur as the deepening of the pycnocline in autumn
forces these deep diatom aggregates to sink (Kemp et al., 2000;
Rigual-Hernández et al., 2015b).

The diatom SCM is likely an ecological stage between the
coastal bloom and mass export event, apparently employing
unique physiological and ecological adaptions to survive in
turbulent, low-iron oceanic conditions, where other taxa cannot.

It is well established that this subsurface biomass only persists
in iron depleted waters where low surface chlorophyll-a is
observed (Parslow et al., 2001; Garibotti et al., 2003; Holm-
Hansen et al., 2005), but these communities may display
successional connectivity with coastal areas driven by ocean
physics (Kopczynska et al., 2001; Graham et al., 2015) and diatom
life stage (Ferrario et al., 1998; Armand et al., 2008b; Salter
et al., 2012). This is suggested by the common coastal occurrence
of phytoplankton associated with oceanic SCMs, their eventual
deposition on the seafloor (Kemp et al., 2000, 2006; Kemp and
Villareal, 2013) and regional differences in community structure
(Gomi et al., 2007, 2010).

Other observations of SCMs, not necessarily attributed to
diatom SCMs, have shown that Adelie penguins and elephant
seals target krill and mesopelagic fish that congregate around
SCMs (Dragon et al., 2010; Kahl et al., 2010; Williams et al.,
2011; Saijo et al., 2017; Rivière et al., 2019; Siegelman et al.,
2019). For elephant seals, this is true both in oceanic regions
around the Kerguelen plateau and around the ice-edge. Elephant
seals particularly target areas of high kinetic energy, and their
prey may be supported by high downward carbon export to the
mesopelagic zone via eddies (Saijo et al., 2017; Rivière et al., 2019;
Siegelman et al., 2019).

DISCUSSION

This Review presents evidence of Southern Ocean SCMs as a
widespread and recurrent summer feature. The formation of
these SCMs differs from the processes that form the better-known
tropical SCM (Figure 1). The most common Southern Ocean
SCMs are widespread diatom SCMs which potentially contribute
to downward carbon export and primary production. Satellite
composites of chlorophyll-a miss these features, introducing
biases toward surface communities in ecosystem assessments
of downward carbon export, primary production and food-
webs that will likely be used in MEASO. Going forward,
an integrated platform approach is needed that draws on
detailed understandings available from ship-based observations –
as presented in this Review – alongside the new wealth of
observations from widespread deployments of fluorometers
through the BGC-Argo and MEOP programs.

Diatom SCMs are not only missing from ecosystem
assessments of the present Southern Ocean but are also
missing in future biogeochemical trajectories. Paleo-sediment
records have identified increased deposits of opal (a proxy
for diatom concentration) around the Polar front, coincident
with periods of increasing atmospheric carbon dioxide as
seen in Antarctic ice cores (Gottschalk et al., 2016). This
negative feedback mechanism, which may be stimulated by
increased stratification promoted by warmer and fresher surface
waters, is not captured in current biogeochemical models used
to make ecosystem assessments of future ocean trajectories
(Kemp and Villareal, 2013, 2018).

Incorporating these diatom SCMs, and the processes that
lead to their formation, into models has been limited by past
observational capacities. These relatively thin features (1–10 m
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thick) are not fully captured by coarse ship-based observations
(Kemp et al., 2006; Kemp and Villareal, 2013, 2018). Further,
knowledge on the active buoyancy regulation of large diatoms
is fragmented with the ability to buoyancy regulate and active
sinking only recorded for experiments on a few species of
large diatoms (Villareal, 1988; Waite et al., 1992; Moore and
Villareal, 1996; Fisher and Harrison, 1996; Waite and Nodder,
2001; Boyd et al., 2005; Acuña et al., 2010; Gemmell et al.,
2016). Parameterizations for the control of light and nutrients
on buoyancy regulation in large diatoms are needed in order to
model the behavior of these communities and their interaction
with ocean mixing.

Translating widespread observations of SFMs made by
the BGC-Argo and MEOP programs to diatom SCMs is
essential to understanding the environmental controls of
these biogeochemical niches. Key studies discussed here
suggest that the composition and prevalence of diatom SCMs
communities may be delineated by bathymetry, fronts and
sea-ice (Figure 4). BGC-Argo can observe these deep diatom-
dominated communities as floats routinely samples at <2 m
resolution, whilst the ability of MEOP to capture these features
under the broken stick sampling method – which represents
profiles using a subsample of data based on points of high
variability - has not yet been assessed (Guinet et al., 2013).

With increased observation density in time and space, coupled
with ocean models, the role of environmental drivers including
ocean physics, bathymetry and sea-ice can be explored as it
has been for surface chlorophyll-a concentrations from satellites
(Grant et al., 2006; Graham et al., 2015; Ardyna et al., 2017;
Dawson et al., 2018). Connecting coastal processes to diatom
SCMs may also be possible by testing the possible links to
fertilization of iron by land-masses, sea-ice retreat and along-shelf
subduction that have been revealed in this Review. Further the
role of frontal structures, eddies, subduction and stratification in
controlling other types of SCMs can also be explored.

The greatest limitation in studying subsurface phytoplankton
distributions in the Southern Ocean is the translation of
chlorophyll fluorescence to chlorophyll-a and biomass
concentrations. Specifically, the presence of day-time NPQ
is the greatest source of inaccuracy to the study of SCMs, causing
a SFM to exist where an SCM may not. The variability of
fluorescence and chlorophyll to carbon also presents a challenge
for conversions to biomass estimates. Further uncertainties
introduced along with variations in surface community
Chl:C ratios (Behrenfeld et al., 2005; Thomalla et al., 2017),
are community shifts with depth to diatoms which contain
higher intracellular chlorophyll and more gradual increases of
intracellular chlorophyll due to photoacclimation (Mikaelyan
and Belyaeva, 1995; Kopczynska et al., 2001; Armand et al., 2008;
Gomi et al., 2010; Rembauville et al., 2016a). Understanding
these ratios is important for representing Southern Ocean SCMs
in biogeochemical models (Galbraith et al., 2010; Aumont et al.,
2015; Verdy and Mazloff, 2017).

Until the accuracy of fluorescence-derived chlorophyll-a has
been resolved, an integrated framework for carefully studying
SCMs, through SFMs measured at night is needed. Their
translatability to SCMs could be assessed using sparse ship-based

data possibly equipped with fluorometers for paired assessments.
The potential benefits of this is highlighted by our discussion
of Carranza et al. (2018), who may have observed widespread
deep diatom-dominated communities around the Polar front
through SFMs. When considering ship-based observations in the
literature it seems likely that these are oceanic diatom SCMs.
Combining the evidence from process studies and autonomous
platforms, the role of episodic storms in destroying the stability
of diatom SCMs and their subsequent re-formation under calm
conditions becomes apparent.

Consequently, ship-based observations will still play a large
part in the future discussion on subsurface distribution and
production of phytoplankton. Particularly, the role of iron
and silicate in mediating SCMs and subsurface production
at the pycnocline cannot be studied autonomously and we
have found this to be still largely enigmatic. Iron and silicate
addition experiments that include deep-diatom communities,
as well as cooccurring measurements of iron, silicate and
chlorophyll through the water column are needed in the future.
These measurements will be particularly important for resolving
the role of nutrients in sustaining stable diatom SCMs and
SCMs above the pycnocline found near retreating sea-ice and
Southern Ocean islands.

Southern Ocean SCMs can no longer be ignored in ecosystem
assessments. Our review presents evidence of widespread diatom
SCMs that may play an important role in Southern Ocean
ecology and climate. Further progress on this topic will only be
made through extensive data sharing and collaboration between
international researchers to achieve an integrated observation
framework (Brett et al., 2020). This framework must use both
ship-based studies and autonomous technologies.
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