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Sarah Coffinet5, Thorsten Dittmar4,6, James M. Fulton7, Valier Galy8, Kai-Uwe Hinrichs5,
Anitra E. Ingalls9, Boris P. Koch10, Elizabeth Kujawinski8, Zhanfei Liu11,
Helena Osterholz12, Darci Rush13, Michael Seidel4, Julio Sepúlveda14 and
Stuart G. Wakeham15*

1 Department of Microbiology and Department of Earth and Planetary Sciences, The University of Tennessee, Knoxville,
Knoxville, TN, United States, 2 CologneAMS, University of Cologne, Köln, Germany, 3 Department of Physical
and Environmental Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States, 4 Institute for
Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany,
5 MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany, 6 Helmholtz Institute for
Functional Marine Biodiversity (HIFMB), University of Oldenburg, Oldenburg, Germany, 7 Department of Geosciences, Baylor
University, Waco, TX, United States, 8 Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic
Institution, Woods Hole, MA, United States, 9 School of Oceanography, University of Washington, Seattle, WA,
United States, 10 Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany,
11 Marine Science Institute, University of Texas at Austin, Port Aransas, TX, United States, 12 Department of Marine
Chemistry, Leibniz Institute for Baltic Sea Research, Rostock, Germany, 13 Department of Marine Microbiology
and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Den Burg, Netherlands,
14 Department of Geological Sciences and Institute of Arctic and Alpine Research (INSTAAR), University of Colorado Boulder,
Boulder, CO, United States, 15 Skidaway Institute of Oceanography, University of Georgia, Savannah, GA, United States

Advances in sampling tools, analytical methods, and data handling capabilities have
been fundamental to the growth of marine organic biogeochemistry over the past four
decades. There has always been a strong feedback between analytical advances and
scientific advances. However, whereas advances in analytical technology were often
the driving force that made possible progress in elucidating the sources and fate of
organic matter in the ocean in the first decades of marine organic biogeochemistry,
today process-based scientific questions should drive analytical developments. Several
paradigm shifts and challenges for the future are related to the intersection between
analytical progress and scientific evolution. Untargeted “molecular headhunting” for
its own sake is now being subsumed into process-driven targeted investigations that
ask new questions and thus require new analytical capabilities. However, there are
still major gaps in characterizing the chemical composition and biochemical behavior
of macromolecules, as well as in generating reference standards for relevant types
of organic matter. Field-based measurements are now routinely complemented by
controlled laboratory experiments and in situ rate measurements of key biogeochemical
processes. And finally, the multidisciplinary investigations that are becoming more
common generate large and diverse datasets, requiring innovative computational tools
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to integrate often disparate data sets, including better global coverage and mapping.
Here, we compile examples of developments in analytical methods that have enabled
transformative scientific advances since 2004, and we project some challenges and
opportunities in the near future. We believe that addressing these challenges and
capitalizing on these opportunities will ensure continued progress in understanding the
cycling of organic carbon in the ocean.

Keywords: chemometrics, natural marine organic matter, FT-ICR-MS, analytical challenges, HR-NMR, marine
organic biogeochemistry

INTRODUCTION

The growth of marine organic biogeochemistry over the
past several decades has been largely driven by advances
in sampling tools, analytical methods and data handling
capabilities. Max Blumer, one of the founding fathers of marine
organic biogeochemistry, suggested in 1975 that limitations of
analytical techniques are the major roadblock to understanding
the chemical complexities of nature (Blumer, 1975). He
asked whether we can conduct “realistic studies of nature
that acknowledge the limitations of our present analytical
powers and gaps in our understanding.” It is therefore not
surprising that every symposium, workshop or review on marine
organic biogeochemistry since (reviewed by Wakeham and
Lee, 2019) has repeated one theme – continuing development
of analytical capabilities is necessary to affect progress in
the future.

There has always been a strong feedback between analytical
advances and scientific advances, but analytical technology
should not be the driving force. Rather, process-based scientific
questions should drive analytical developments. Several of the
challenges identified at the 2004 symposium honoring the late
John Hedges (Lee et al., 2004) remain. At the same time,
the impressive growth of ‘omics technologies since 2004 have
changed the context in which marine organic biogeochemistry
operates. For our purposes, we define ‘omics as the set of
analytical technologies and associated algorithms and databases
that shine light on the internal workings of ecosystems via
the sequences of biological molecules such as DNA, RNA, and
protein, and the concentrations and structures of lipids and small
organic molecules that are essential to life. Accordingly, we used
the following themes to guide the discussions of this working
group on analytical methodologies:

(i) Multidisciplinary investigations generating diverse data.
Integration of disparate data sets, including better global
coverage and mapping, is critical to understanding
processes in the ocean.

(ii) “Molecular headhunting,” or attempts to characterize the
structures present in marine organic matter for their own
sake, are being subsumed into process-driven targeted
investigations requiring new analytical capabilities.

(iii) There are still major gaps in characterizing the composition
and behavior of macromolecules – the molecularly
uncharacterized component of marine organic matter
after Hedges et al. (2000).

(iv) Improvements are needed in protocols for making in situ
rate measurements of key biogeochemical processes.

Here, we present a perspective review on advances in
analytical methods since 2004 derived from a 2019
Hanse-Wissenschaftskolleg Workshop on Marine Organic
Geochemistry, and on some pressing analytical needs for the
next decade or two. We do not attempt to create a totally
comprehensive review of advances and needs; such an effort
would require a book. Rather, we highlight advances and
needs that workshop participants found particularly important,
exciting, or underappreciated, as summarized in Figure 1. We
hope that this review will serve as a guide and inspiration to
those attempting to expand the limits of analytical chemistry to
better understand the cycling of organic matter in the ocean.

ADVANCES IN ANALYTICAL
INSTRUMENTATION

Nano-Elemental Analysis
Advances in continuous flow elemental analysis-isotope ratio
mass spectrometry (EA-IRMS) have facilitated the tandem
isotopic analysis of carbon and nitrogen in suspended, sinking,
and sedimentary organic matter for describing C and N cycling
processes in the ocean. Modifications to EA-IRMS systems
allow for small samples of ca. 10–100 nmol, termed “nano-
EA” (Polissar et al., 2009; Ogawa et al., 2010; Langel and
Dyckmans, 2014), and have been applied to the study of
isolated biomarker compounds (Junium et al., 2015; Fulton
et al., 2018; Isaji et al., 2020) and samples with low content
of organic matter (Junium et al., 2018; Cui et al., 2019;
Murray et al., 2019).

Other techniques to minimize sample size include the spooling
wire microcombustion (SWiM) method. SwiM has been applied
to the C isotope analysis of sorted microbial cells (Eek et al.,
2007), biomarkers (Pearson et al., 2016), and diatoms from
sediments (Hansman and Sessions, 2016). The “denitrifier
method” (Sigman et al., 2001) has been applied to the N isotopic
analysis of biomarker compounds, phytoplankton, and dissolved
organic matter (Robinson et al., 2004; Knapp et al., 2005;
Higgins et al., 2009).

Chromatography
Gas chromatography (GC) and high-performance liquid
chromatography (HPLC) are common in the analysis
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FIGURE 1 | Schematic illustrating the state of analytical methodologies available for marine organic biogeochemistry prior to 2004 and at present. Abbreviations are
described in the text.
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of molecular biomarkers in marine biogeochemistry
(Wakeham et al., 2007, 2009). GC and HPLC systems are
coupled to a range of detectors, but most compound
identifications are made by mass spectrometry (MS).
Chromatographic methods generally target specific compound
classes useful in biogeochemical proxy development, and
recent developments have increased the analytical capacity to
resolve previously intractable components. Comprehensive
two-dimensional GC (GC × GC) has been applied to
biomarker studies and unresolved complex mixtures in
petroleomics (reviewed by Eiserbeck et al., 2014) and non-
targeted marine contaminant research (Hoh et al., 2012).
It also has great potential in the study of metabolomics
(Higgins Keppler et al., 2018).

Relatively large (m/z 500-2000) polar molecules (pigments
and intact polar lipids) are most effectively separated by HPLC,
with some of the most recent analytical advances summarized by
Wörmer et al. (2015). Garrido et al. (2012) reviewed methods for
pigment analysis, and Higgins et al. (2012) summarized pigment-
based phytoplankton chemotaxonomy. Intact polar lipid analysis
by HPLC is used in environmental proxy development (e.g.,
Rütters et al., 2002; Sturt et al., 2004; Van Mooy et al., 2009;
Hopmans et al., 2016; Schubotz et al., 2018), and the range of
compounds that can be detected during an individual analysis
has expanded (Collins et al., 2016). Underivatized small polar
metabolites are also analyzed by HPLC (Genta-Jouve et al., 2014;
Johnson et al., 2017). Most of the recent technical improvements
include Ultra-HPLC (UHPLC or UPLC) systems operating at
higher pressure than conventional HPLC systems to rapidly
resolve molecular peaks, in addition to chromatographic columns
containing sub-2-µm solid-core particles that enable large
increases in efficiency. UHPLC has been applied to the analysis of
pigments (Zhang et al., 2016), intact polar lipids (Besseling et al.,
2020), lipid biomarkers in temperature proxy calculations (de Bar
et al., 2017), and organic ligands (Wichard, 2016).

The introduction of hydrophilic interaction liquid
chromatography (HILIC) columns resulted in enhanced
peak resolution and reduced analysis time of IPLs using normal-
phase chromatography, which separates molecules according
to their polar headgroups (Wörmer et al., 2013). On the other
hand, intact polar lipid (IPL) analysis using reverse-phase
chromatography provides compound separation by alkyl chain
hydrophobicity (Wörmer et al., 2013), which improves the
separation of compounds with the same headgroup and slight
differences in the core lipid structure, and also allows for the
simultaneous analysis of less polar compounds such as glycerol
dialkyl glycerol tetraethers (GDGTs), pigments, alkenones,
bacteriohopanepolyols (BHPs), and quinones. Core and intact
archaeal isoprenoidal GDGTs can be now analyzed in a single
run using reversed-phase chromatography (Zhu et al., 2013),
while the analysis of core bacterial and archaeal GDGTs has
been improved by the use of ethylene bridged hybrid (BEH)
HILIC columns (Hopmans et al., 2016). The detection of
BHPs has been improved by the analysis of non-derivatized
compounds using either atmospheric pressure chemical
ionization (APCI) (Talbot et al., 2016) or electrospray ionization
(ESI) (Rush et al., 2019).

Fourier-Transform Ion Cyclotron
Resonance Mass Spectrometry
(FT-ICR-MS)
Fourier-transform ion cyclotron resonance mass spectrometry
(FT-ICR-MS), with its unsurpassed mass resolution and mass
accuracy (UHRMS – ultrahigh-resolution MS), provides the
primary tool to study the composition of complex mixtures
of organic compounds not accessible via other methods
(Comisarow and Marshall, 1974; Kujawinski et al., 2004; Koch
et al., 2005; Marshall and Chen, 2015). FT-ICR-MS provides
elemental formulae, involving primarily C, H, and O and
lesser amounts of N, S, and P. Elemental formulae may be
converted into molecular formulae, and elemental compositions
are visualized in van Krevelen plots of H/C and O/C ratios
where they may be compared with the same ratios in potential
biochemical precursors (lipids, proteins, carbohydrates), between
samples, and across various spatial scales. H/C and O/C ratios
that diverge from precursors indicate organic matter (OM)
that has been degraded or transformed. FT-ICR-MS as a
semi-quantitative fingerprinting method can be combined with
targeted assays quantifying specific fractions of the natural
organic matter (NOM) pool such as amino acids, carbohydrates
or lipids. The unconventional type of information derived from
FT-ICR-MS analyses – relative intensities of up to tens of
thousands of peaks – warrants the use and development of new
tools for data evaluation and interpretation. We discuss these
needs in more detail below, in the section labeled “Untargeted
high-resolution analysis: FT-ICR-MS and Orbitrap.”

FT-ICR-MS has enabled detailed analysis of dissolved organic
matter (DOM) composition across gradients from marine to
freshwater biomes (Medeiros et al., 2015; Osterholz et al., 2016)
and ocean basins (Lechtenfeld et al., 2014; Hansman et al., 2015;
Martínez-Pérez et al., 2017) to sediment porewaters (Schmidt
et al., 2011; Seidel et al., 2014) to understand its biotic and
abiotic turnover. The detection limit below femto-or even sub-
attomolar concentrations enabled the description of bacterial
metabolites (Kujawinski, 2011; Schwedt et al., 2015; Noriega-
Ortega et al., 2019; see further description below), trace metal-
DOM complexes (Lechtenfeld et al., 2011; Waska et al., 2015), or
anthropogenic contaminants (Wagner et al., 2015b; Powers and
Gonsior, 2019).

A critical caveat for FT-ICR-MS analysis is that a single
chemical formula could represent structurally distinct
compounds, which may potentially exhibit divergent chemical
properties. The extent to which this is a problem in practice is
a subject of substantial controversy. Coupling FT-ICR-MS to
trapped ion mobility mass spectrometry (TIMS-FT-ICR-MS)
provides new insights into the presumed high structural diversity
of DOM. Lower limits of isomeric diversity could be established
(Tose et al., 2018; Leyva et al., 2019), while upper limit estimates
still range widely and are dependent on detection limit and
resolving power.

Orbitrap Mass Spectrometers
Orbitraps, a new type of Fourier-transform MS (Hu et al.,
2005), use an electrostatic field rather than the superconducting
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magnets of FT-ICR-MS. These are available to a much wider
range of labs than FT-ICR-MS because purchase prices as well
as maintenance expenses are much lower than for FT-ICR-MS.
Although maximum mass accuracy is slightly lower for Orbitraps
than for FT-ICR-MS, acquisition rates are faster (15 Hz vs. 1 Hz),
compatible with LC resolution allowing detection of multiple
mass spectra across a chromatographic peak. This provides
(ultra-) high-resolution accurate mass (HRAM) determination
with resolution of up to 1,000,000 at m/z 200 and mass accuracies
of <1 ppm and can be used for targeted and untargeted analyses.
Extended mass range Orbitrap systems now have analytical
windows of up to m/z 20,000 allowing, for example, for intact
protein analysis. Orbitrap also offers superior resolving power
at the low m/z end of the analytical window in comparison
to other HRAM instruments such as quadrupole time-of-flight
(Q-TOF), important for structural elucidation in metabolomics
and lipidomics. Thus, Orbitrap mass spectrometers provide the
potential to greatly expand the number of labs that can use
high-resolution mass spectrometry to characterize marine OM.
Coupled with UHPLC and ESI, Orbitrap technology has proven
to be a very powerful tool for proteomics, metabolomics, and
lipidomics in marine organic geochemical research (Poulson-
Ellestad et al., 2014; Saito et al., 2014; Hunter et al., 2015;
Cantarero et al., in press) and allows the deconvolution of
isotopic patterns of all common stable isotopes (compound-
specific isotope analysis; CSIA) and position-specific isotope
analysis (PSIA) of molecular fragment ions including multiply
substituted isotopologues (Eiler et al., 2017). PSIA holds promise
to intensively increase our understanding of biogeochemical
pathways, cell physiology and metabolic state, dietary patterns,
and degradation effects among other potential applications.

Analysis of Polar, Biologically Labile
Organic Molecules
A central goal of organic biogeochemistry has been to track
the composition of biologically relevant molecules as they
are produced, consumed or transformed by small and large
marine organisms (Moran et al., 2016). These molecules can
be categorized according to the major biochemicals within
cells (i.e., lipids, proteins, carbohydrates, and nucleic acids),
their monomeric counterparts (i.e., amino acids, sugars, and
nucleobases) and other metabolic intermediates. Small polar
intermediates in this last biochemical class have received
attention in the last 5 years as advances in sample acquisition,
liquid chromatography, and mass spectrometry have expanded
the analytical window of marine organic compounds. These
compounds can be detected and quantified in both dissolved
(Johnson et al., 2017) and particulate (Durham et al., 2019;
Johnson et al., 2020) pools, and include molecules such as
growth substrates, metabolic cofactors, and signaling molecules
(the collective is often referred to as “metabolites,” inferring a
biological origin and sink).

Methods for metabolite analysis couple liquid
chromatography to high-resolution mass spectrometry (LC/MS),
thus targeting molecules that are polar and soluble in aqueous
solution. The two most popular LC-column materials are

reversed-phase C18 (or C8) and hydrophilic-interaction liquid
chromatography (HILIC) and can be used in parallel to detect
the largest suite of compounds within a single sample (Boysen
et al., 2018). Detection limits with triple-quadrupole or Orbitrap
mass spectrometry fall within the femtogram to picogram range
(per 5–10 µL injection). Thus, reasonable signals are achievable
with a few hundred mL to a few L of seawater for both dissolved
and particulate metabolites. Smaller volumes can be used for
metabolite analysis by gas chromatography (GC) MS (Sogin et al.,
2019) but fewer molecules are accessible to the derivatization
required for GC analysis.

Targeted and untargeted analyses of polar metabolites
generate large, complex data sets that require novel tools to
analyze. Many of these tools cross disciplinary boundaries from
biomedicine to marine science. Of interest to the marine science
community will be advances in programs for chromatographic
data analysis (MS-DIAL, Lai et al., 2018; MZmine, Pluskal
et al., 2010; XCMS, Smith et al., 2006), programs to make
existing tools easier to use (Li and Li, 2019; McLean and
Kujawinski, 2019), and improvements in websites used to
search and store mass spectrometry data (METLIN, Guijas
et al., 2018; MetaboLights, Haug et al., 2020; the Metabolomics
Workbench, Sud et al., 2016; MassIVE-KB, Wang et al., 2018).
Several computational tools increase our ability to identify
unknown compounds through searches and in silico calculations
(CSI:FingerID, Dührkop et al., 2019; ClassyFire, Feunang et al.,
2016; MetFrag, Ruttkies et al., 2019). The structural similarities
in MS2 spectra have proven especially useful in identifying
compounds (MolNetEnhancer, Ernst et al., 2019; MetDNA,
Shen et al., 2019; MS2LDA, van der Hooft et al., 2020),
which is evident in the expanded list of tools now available
at Global Natural Products Social Networking (Wang et al.,
2016; Aron et al., 2020). For example, users can search mass
spectrometry data using MASST (Wang et al., 2020) and
reuse publicly available data via ReDU (Jarmusch et al., 2019).
Collectively, these tools allow marine scientists to expand our
understanding of OM in seawater (Kharbush et al., 2016;
Hartmann et al., 2017; Longnecker and Kujawinski, 2017;
Petras et al., 2017).

Metabolite analyses offer a strong connection to
genome-based assessments of community metabolism,
both potential (diversity analysis or metagenomics) and
realized (metatranscriptomics or metaproteomics). Metabolic
capabilities can be inferred from diversity analysis while
metabolic pathways can be identified through metagenomics.
Pathway activity can be monitored through metatranscriptomics
and metaproteomics and their end result within elemental
cycles can be tracked through metabolomics. Early studies have
used diversity analysis to connect culture-based metabolic
inferences with metabolite analyses (Allen et al., 2008;
Johnson et al., 2016; Heal et al., 2017). Field studies are
connecting community composition (and inferred metabolic
potential) with metabolite concentrations to postulate
microbe-microbe interactions (Durham et al., 2019) and
OM-related processes (Johnson et al., 2020). This field is rapidly
expanding with new method developments presented at major
conferences; significant advances in our understanding of
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microbe–microbe interactions through chemical exchange are
likely in the near future.

Nuclear Magnetic Resonance (NMR)
Nuclear magnetic resonance spectroscopy (NMR) is a group of
analytical techniques that rely on measuring how NMR-active
nuclei (i.e., 13C, 1H, 15N, 31P) resonate in the presence of a strong
magnetic field. Within the same nucleus (e.g., 13C), the resonance
frequency differs slightly based on shielding of local electrons,
deshielding from adjacent chemical functional groups, and
coupling with other nuclei. These differences in resonance allow
identification of the chemical functional groups in which nuclei
reside, and in some cases larger-scale structural information.

In the 1980s and 1990s, cross-polarization (CP) and magic
angle spinning (MAS) techniques were coupled to allow
characterization of functional group abundance in marine DOM
isolate fractions such as XAD-resin-extracted DOM, ultrafiltered
DOM (Benner et al., 1992; Abdulla et al., 2010a,b), and DOM
concentrated by reverse osmosis–electrodialysis (Koprivnjak
et al., 2009), as well as ultrafiltered particulate organic matter
(POM) (particles 0.1–60 µm; Sannigrahi et al., 2005) and sinking
particles (Liu et al., 2009). One of the major drawbacks of CP-13C
NMR is underestimating de-protonated carbons (e.g., carbonyl
and substituted aromatic carbon), especially in the presence of
paramagnetic iron, which makes it a semi-quantitative technique
(Pfeffer et al., 1984; Mao et al., 2000; Abdulla et al., 2010a).
Direct polarization (DP-MAS-13C NMR) is more quantitative,
and has been used to measure changes in the composition of
DOM isolated from coastal and open oceans sites (Helms et al.,
2015; Cao et al., 2018). However, DP- 13C NMR requires a longer
acquisition time and its spectrum has a lower signal to noise (S/N)
ratio relative to CP-13C NMR.

Recently, many sophisticated solid-state spectra-editing
techniques (e.g., 13C chemical shift anisotropy filter, CH
selection, CH2 selection) have been applied to resolve
overlapping peaks within marine DOM (Helms et al., 2015; Cao
et al., 2018). Two-dimensional correlation spectroscopy analysis
techniques on CP-MAS-13C NMR spectra have been used to
track the changes of different DOM components under different
perturbations and to correlate 13C NMR with other spectroscopy
techniques such as Fourier-transform infrared spectroscopy
(FTIR) and FT-ICR-MS (Abdulla et al., 2010b, 2013a,b).

DOM has also been characterized by 1H NMR, but this
technique can be challenging due to interference from 1H in
water. Therefore, 1H NMR has typically required extraction,
drying, and redissolution in D2O (e.g., Repeta et al., 2002).
However, recent advances in high magnetic field NMR (currently
up to 900 MHz or 21 Tesla) and the development of water
suppression techniques allow analysis of marine DOM using 1H
NMR techniques without any isolation or pretreatment on open
ocean and sediment pore water samples (Lam and Simpson, 2008;
Zheng and Price, 2012; Fox et al., 2018).

Fewer studies have reported marine DOM and POM
spectra for 31P and 15N (McCarthy et al., 1997; Clark et al.,
1998; Kolowith et al., 2001; Aluwihare et al., 2005; Maie
et al., 2006; Sannigrahi et al., 2006). Chemical shifts from
multiple nuclei are measured in two-dimensional (2D) NMR

spectroscopy techniques, which allows resolution of overlapping
peaks, verification of the interpretation of the chemical shifts,
and identification of specific structures. These 2D-NMR
techniques include correlation spectroscopy (COSY), total
correlation spectroscopy (TOCSY), heteronuclear single-
quantum correlation spectroscopy (HSQC), heteronuclear
multiple-bond correlation spectroscopy (HMBC) and 1H-13C
heteronuclear correlation (HETCOR) (e.g., Repeta et al., 2002;
Hertkorn et al., 2006, 2013; Cao et al., 2018).

Natural-Level Radiocarbon Analysis
Advancements in accelerator mass spectrometry (AMS)
technology have dramatically reduced the cost and sample
size required for 14C analysis. It is now possible to measure
natural abundance 14C in samples containing as low as a
few tens to hundred µg C rather than the routine 1 mg C
(Pearson et al., 1998; Santos et al., 2007; Shah and Pearson,
2007). Compact low energy AMS systems (e.g., the Mini Carbon
Dating System; Synal et al., 2007) represent a milestone toward
(ultra-) small-scale 14C analyses (<10 µg C at a precision of
±2h for modern samples Wacker et al., 2010). At this point,
14C measurements are analytically no longer size-limited,
but rather by the sample pre-treatment methods and the
associated blank C contamination (Santos et al., 2010). These
improvements in sample size requirements have also allowed for
natural-level compound-specific radiocarbon analysis, which has
improved our understanding of carbon metabolisms of marine
organisms, sedimentary processes in the ocean, and continental
carbon cycling (Wakeham and McNichol, 2014; Druffel et al.,
2016; Van der Voort et al., 2018). Methods allowing for the
isolation of individual compounds, mostly based on preparative
gas chromatography or preparative liquid chromatography,
continue to be developed for multiple compound classes.
Compound classes for which compound-specific radiocarbon
analytic protocols have been established include alkanes,
alkanoic acids (Eglinton et al., 1996), benzene polycarboxylic
acids (BPCAs) (Gierga et al., 2014), PAHs (Reddy et al., 2002)
and phospholipid fatty acids (Druffel et al., 2010; Wakeham
and McNichol, 2014), aliphatic alcohols, sterols and hopanols
(Pearson et al., 2001), lignin phenols (Hou et al., 2010; Ingalls
et al., 2010), GDGTs (Ingalls et al., 2006; Birkholz et al., 2013),
amino acids (Bour et al., 2016; Ishikawa et al., 2018), pigments
(Kusch et al., 2010), and diatom bound organic compounds
(Ingalls et al., 2004).

Several recent developments suggest further improvements to
natural abundance 14C analysis. New CO2-accepting ion sources
allow peripheral instruments, such as elemental analyzers,
other oxidation or hydrolysis systems and potentially gas
chromatography, to interface directly to AMS (Bronk Ramsey
et al., 2004; Ruff et al., 2010; Haghipour et al., 2019). This
eliminates the need for an offline graphitization step, which is
labor-intensive and potentially introduces 14C contamination.
Moreover, positive ion mass spectrometry (PIMS) uses an
electron cyclotron resonance (ECR) plasma ion source generating
high ion beam currents, which may allow further reductions
in sample size. Finally, saturated absorption cavity ring-down
spectroscopy (SCAR), a technique based on optical absorption of
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CO2 gas, is now capable of measuring 14C at natural abundance
levels (Galli et al., 2016). The accuracy (±3%) and sample size
required (6 mg) are not currently acceptable for most marine
organic geochemical applications, but because this technique is
inherently simpler than mass spectrometry, it has the potential to
dramatically reduce the cost of natural abundance 14C analysis.

Improvements have also focused on peripheral
instrumentation. Ramped pyrolysis/oxidation (RPO) involves
progressively heating OM to 685◦C under helium, then oxidizing
the pyrolysis products to CO2 (Rosenheim et al., 2008). This
procedure exploits differences in stability of organic molecules
to quantify and characterize different pools of OM. Coupled
with radiocarbon dating, RPO is used to independently measure
the age and reactivity distribution of fresh autochthonous OC
and diagenetically stabilized allochthonous OM in terrestrial
and marine settings. Recent applications of RPO include
studies of riverine organic carbon (OC) (Rosenheim and Galy,
2012), oil-spill impacted sediments (Pendergraft et al., 2013),
permafrost OC cycling in the Arctic (Zhang et al., 2017),
weathering and recycling of petrogenic OC (Hemingway et al.,
2018), the fate of terrestrial OC in the marine environment
(Bao et al., 2019), soil OC preservation (Grant et al., 2019) and
a global assessment of the controls on OC persistence in the
environment (Hemingway et al., 2019). Because it characterizes
the reactivity and age distribution of the entire OC pool, RPO
is complementary to compound-specific 14C, which is much
more specific but characterizes only a small portion of the bulk
OC. Serial UV oxidation protocols aim at the separation of
distinct DOC subpools for 14C analysis (Beaupré et al., 2007;
Beaupré and Druffel, 2012). In both RPO and UV-oxidation,
sample size limits have been pushed in recent years and more
attention has been put toward minimizing potential blank
C contamination.

Enzyme Assays
Field measurements along spatial and temporal gradients have
been the mainstay for characterizing OM cycling in the
ocean. However, process-based measurements, such as on-
deck or laboratory incubations, are essential to deconvolute
environmental factors affecting OM decomposition, or to
quantify rates of distinct processes, although these rates should be
regarded as “potential.” An essential step along the pathway from
POM to DOM is extracellular enzymatic hydrolysis, in which
high molecular weight DOM is cleaved into fragments smaller
than ∼600–1000 Da, allowing for microbial uptake (Arnosti,
2011). Various simple substrate proxies, often fluorogenic or
with a fluorescent tag, are utilized to evaluate hydrolytic rates in
different aquatic environments (e.g., Hoppe, 1983; Somville and
Billen, 1983). Interpreting results requires caution since natural
OM is far more complex than these simple proxies in terms
of its structural diversity and three-dimensional conformation
and organic matter uptake mechanisms are complex (Reintjes
et al., 2017). Nevertheless, these simple substrates integrate
the activities of diverse enzymes reasonably well (Steen et al.,
2015). Substrate proxies better resembling NOM in terms of
structural complexity, such as polysaccharides and peptides
with fluorescent tags, provide further insight (Arnosti, 1995;

Pantoja et al., 1997). Extracellular enzymatic hydrolysis is often
instant and can outpace the uptake of hydrolysis products by
microbes (Arnosti, 2004; Liu et al., 2013), and hydrolysis rate is
highly dependent on substrate structure and environment (Liu
et al., 2010; Arnosti et al., 2011). These methods collectively
provide a bridge between genome/proteome-based methods to
understand microbial metabolism and methods for the analysis
of organic carbon composition.

Advances in Data Processing
The mandate for scientists to describe experiments in sufficient
detail that they could be reproduced by others dates to
at least the 17th century (Stodden, 2010). With respect to
obtaining and physically processing samples, clearly written
descriptions of analytical methods in manuscripts can suffice
to make methods reproducible. However, many of the new
analytical systems described above generate large quantities of
data which must be extensively transformed and reduced prior
to presentation, frequently requiring custom-written computer
code. Accordingly, an increasing number of analytical chemists
have learned to become programmers on the side. While this
opens exciting new opportunities for discovery, it also places
new burdens on analytical chemists to clearly describe the
computational methods by which we obtain our results. Such
descriptions are as essential to reproducibility as are descriptions
of the chemical conditions by which a sample was analyzed.

Fortunately, several trends have facilitated reproducible data
analysis. First, (relatively) user-friendly, free and open-source
software languages such as R and python, and to some extent
Julia, have been developed into sophisticated analytical platforms,
complete with packages for almost any type of statistical analysis
that is common in the literature and high-quality integrated
development environments. These languages have rapidly gained
popularity compared to closed-source platforms such as SAS and
SPSS (Muenchen, 2019).

Second, tools to integrate code with text, such as the
R Markdown document specification and JupyterLab allow
seamless integration of text, code, and code results (Baumer and
Udwin, 2015; Perkel, 2016, 2018). This makes it easy to relate
code to the results that it produces, and to annotate code and
results with a plain-language explanation of why the analysis
was done in the way that it was. Such tools have long been
available (Knuth, 1984; Ramsey, 1994; Leisch, 2002) but used the
cumbersome TeX/LaTeX document preparation system (Knauff
and Nejasmic, 2014) and did not support the languages most
often used for data analysis.

Third, the availability of version control systems such as git
and mercurial encourage integration of version control into the
process of writing data analysis scripts and packages. Version
control encourages a systematic approach to updating documents
and tracking contributions by multiple authors, a key aspect
of project management that scientists often manage informally
(Cham, 2012). Associated hosting services such as GitHub and
GitLab, each of which are commercial services that offer a free
tier, make it easy to share and collaborate on code. These tools
collectively take some time to learn (and can be frustrating even
for experienced users; Munroe, 2015) but once adopted, they
improve research productivity (Wilson, 2006; Ram, 2013).
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Fourth, systems to facilitate the preservation and sharing
of raw data have developed considerably. Repositories
such as PANGAEA, National Centers for Environmental
Information (NCEI), and Biological-Chemical Oceanography
Data Management Office (BCO-DMO) have grown rapidly
over the past decade. As of early 2020, PANGAEA has over
392,000 unique, publicly available data sets (Grobe et al., 2006).
Concurrently, academics have developed best-practices and
principles for data sharing and preservation, although there is
disagreement in the literature as to how best to reconcile ideals
of how best to share and preserve data with the practicalities of
doing so with limited time and resources (Wilkinson et al., 2016;
Tierney and Ram, 2020).

Finally, a broad ecosystem of support services for the
above three developments has emerged. Evidence-based short
courses such as Software Carpentry and Data Carpentry offer
low-cost, evidence-based lessons in computational skills aimed
specifically at scientific researchers (Wilson, 2014). Websites
such as stackoverflow.com host questions about programming,
and provide incentives for users to provide clear, accurate
answers. Integrated Development Environments such as R
Studio and JupyterLab, which are explicitly designed for data
analysists, make the process of code development and debugging
much easier (Gandrud, 2013). These trends have led to the
development of a range of open-source tools that are valuable
for marine organic geochemistry, particularly instruments that
generate large quantities of data such as ultra-high resolution
mass spectrometers, for instance XCMS (Smith et al., 2006)
and LOBSTAHS (Collins et al., 2016), and many of the tools
listed in the “Analysis of polar, biologically labile organic
molecules” section.

All of these trends have deep roots in computer science. For
instance, Donald Knuth coined the term “literate programming”
to describe the practice of mixing explanatory text with computer
code in 1984 (Knuth, 1984) and the idea of reproducible data
analysis has a long history in the computer science literature
(as reviewed in Stodden, 2010). The main advances since 2004
have stemmed from the fact that the tools for reproducible data
analysis have become much more widespread and accessible to
researchers, such as marine organic geochemists, whose primary
expertise lies outside of computer science. The new accessibility
of these tools, combined with an increased need for them to be
used by marine organic geochemists, suggests a bright future
for reproducible data analysis in our community. In any case,
increased transparency in data analysis is far preferable to what
Rossini et al. (2003) identified as the alternative: “blind faith in
our colleagues’ programming skills.”

Drawing From Other Fields
Progress in adjacent fields has also led to improved understanding
of marine organic geochemistry. Most notably, the explosive
progress in DNA and RNA sequencing technology, coupled
with advances in bioinformatic tools to process those data,
have led to a phase shift in our ability to draw inferences
from biological sequence data. Hedges et al. (2000) predicted
that “fast-developing capabilities [to identify marine microbes
by taxonomy] should help compensate for our inability to
culture most microorganisms.” Microbial taxonomy does offer

some insight into environmental function, but this insight is
severely limited (Royalty and Steen, 2019). However, it is now
routine for individual labs to assemble incomplete or even
complete, closed genomes of the most abundant microbes in
a marine environment, in the context of a single project.
Given microbial genomes, researchers can make reasonable
predictions about broad nature of microbial interactions with
organic matter (Rinke et al., 2013; Bird et al., 2019). It remains
the case that bacterial and archaeal cells in seawater and
sediments are only distantly related to microbes that have
been grown in culture (Lloyd et al., 2018), and that the most
common method of determining microbial abundance, surveys
of primer-amplified 16S gene abundance, are biased toward taxa
represented in culture collections (Steen et al., 2019). However,
new culturing techniques and a renewed focus on culturing
previously uncultured taxa have led to the culturing of quite
a few abundant, environmentally important marine microbes
(Könneke et al., 2005; Katayama et al., 2019; Imachi et al., 2020).
Studies of microbes in pure culture act as “ground truthing” for
inferences based on culture-independent techniques.

Other fields of ocean science have also impacted marine
organic geochemistry. Improved understanding of the
importance of mesoscale eddies to ocean physics have led
biogeochemists to look for, and discover, differences in OM
cycling in mesoscale eddies, for instance differences in D:L-
amino acid transformation rates apparently due to different
microbial communities within vs. outside of eddies (e.g., Zhang
et al., 2009; Sarma et al., 2019). Remote sensing techniques
have advanced substantially since 2001, due to improvements in
sensors, the recent availability of inexpensive research drones,
and improvements in the algorithms used to remove the
overprint of the atmosphere on light reaching satellites from
the ocean (e.g., Werdell et al., 2013). Coupled with improved
understanding of DOM optical characteristics (Coble, 2007;
Helms et al., 2008), this permits more accurate and robust
measurements of parameters such as DOC concentration,
chromophoric dissolved organic matter (CDOM) content, and
even indirect estimations of parameters such as methylmercury
concentrations (Fichot et al., 2016; Slonecker et al., 2016).

CHALLENGES AND OPPORTUNITIES
FOR THE NEXT DECADE(S)

The technical advances described create new challenges and
opportunities for the next decade-plus of marine organic
geochemistry research (Table 1). While a few of these challenges
and opportunities are specific to individual technologies, for
the most part they rely on integrating advances from different
analytical techniques and fields of knowledge. Below, we describe
some directions for future research that our working group
found most exciting.

New Lipid Biomarkers and New Uses of
Old Lipid Biomarkers
Biomarker lipids show the presence of particular source
organisms or biosynthetic pathways and can be proxies for past
environmental parameters, including temperature, pH, and input
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TABLE 1 | Summary of future challenges and opportunities.

Future challenge Opportunity

New lipid biomarkers Increase use of compound-specific isotope
analysis

Increase spatial sample resolution and
analytical sensitivity

Innovate software for high-throughput
analysis

Expand use of new chromatographic
front-ends (e.g., HILIC, 2D-HPLC)

Improve interpretation by better
understanding feedbacks between microbial
physiology and the environment

Data comparisons Expand repositories for raw and processed
data

Further multi-lab intercalibration studies for
specific technologies

Untargeted high-resolution
analysis: mass
spectrometry

Improve extraction and ionization methods for
specific analytes and matrices; better tailor
these methods for specific research
questions

Expand use of multi-dimensional
chromatographic separation and fragment
analysis

Improve algorithms to assign formulae

Untargeted high-resolution
analysis: coupled NMR-MS

Expand use of water suppression in 1H-NMR

Improve algorithms to compare NMR and
mass spectrometric data

Coupling untargeted
chemical and
microbiological assays

Expand stable isotope probing in coupled
chemical and microbiological assays

Expand use of coupled NMR and
ultrahigh-resolution mass spectrometry in
bioassay experiments

Consensus reference
materials

Better consensus on what constitutes
appropriate chemical and biological reference
materials

Reference materials beyond bulk marine
DOM: e.g., marine POM, sedimentary OM

References designed for specific techniques,
e.g., molecular fingerprinting

of soil organic matter to marine systems. Lipid chemical stability
enables their preservation in the geological record and thus, their
extensive use as paleo-indicators. Novel HPLC-MS techniques
have greatly widened the range of compounds amenable for
analysis, both in terms of size and polarity (Schouten et al.,
2000; Sturt et al., 2004), revealing a large diversity of microbial
lipids in their intact (polar) forms in marine environments
(e.g., Van Mooy and Fredricks, 2010; Schubotz et al., 2018)
and make possible environmental proxies (e.g., the GDGT-
based TEX86 sea surface temperature proxy; see Schouten et al.,
2013b). These techniques facilitate quantification of microbial
intact polar lipids, which provide high taxonomic resolution
(Schubotz et al., 2009), and which can yield insight into microbial
processes such as ammonia oxidation rates (Hurley et al., 2016).
Adding compound-specific isotope analysis in the context of
natural isotope abundances (e.g., Schubotz et al., 2009; Pearson

et al., 2016) or tracer experiments (e.g., Kellermann et al., 2016)
can give further insight into elemental flow within ancient or
currently active communities.

However, analytical refinements, along with extensive
large-scale environmental and laboratory-based surveys, have
highlighted the complexity in interpreting the biomarker record
solely from a single influencing parameter point of view (Hurley
et al., 2016; Sollai et al., 2019). Recent advances have focused
on increasing the resolution and sensitivity of lipid analysis.
Wörmer et al. (2014) introduced, for example, the use of direct
laser-ablation of lipids from sediment core surfaces drastically
improving spatial sampling resolution. High resolution mass
spectrometry technology, such as orbitraps, has decreased
detection limits and shown value as a tool to characterize and
identify novel lipid structures (Moore et al., 2016; see also
below). The identification of carboxyl-rich alicyclic material
(CRAM; Hertkorn et al., 2006; see also below), carotenoid
degradation products (CDP; Arakawa et al., 2017) and material
derived from linear terpenoids (MDLT; Woods et al., 2011;
Arakawa and Aluwihare, 2015) have shone a light on some of
the most abundant classes of recalcitrant NOM in seawater.
Although these structures have been inferred from NMR and
ultrahigh-resolution mass spectrometry, and they appear related
to biologically produced source molecules, there is not yet direct
proof of how those molecules are produced, whether biotically
or abiotically. Fractionation of DOM through hydrophilic
interaction chromatography (HILIC) and multidimensional
separation (2-D HPLC) coupled with ultrahigh-resolution mass
spectrometry or conjunction with NMR experiments (Woods
et al., 2011; Spranger et al., 2019) represent promising tools
to determine if these materials might be useful as biomarkers
or indicators of biogeochemical processes. At the same time,
the data produced by these high-resolution instruments have
highlighted the lack of pipelines for ‘omics’ data that are available
for environmental lipidomic work.

To fully exploit the potential of these techniques, high-
throughput methods need to be developed. For example,
LOBSTAHS is an open-source lipidomics workflow, written in
R, for high-throughput annotation and putative identification of
lipids in high-mass-accuracy HPLC-MS data that can identify
thousands of compounds (>14,000 unique entries) in a sample
(Collins et al., 2016). In our view, the improved accessibility
to high-resolution mass spectrometers and lipidomics workflow
for high-throughput annotation and putative identification of
lipids, not only enhance the number of structures that scientists
can identify for targeted lipidomics, but they also allow us
to explore the patterns of unknown compounds in sample
sets with contrasting conditions. The latter has the potential
of enhancing the amount of biologically and biogeochemically
relevant information obtained from non-targeted, exploratory
lipidomic analysis.

Future challenges require better comprehension of the
biomarker producers, through understanding the environmental
constraints and the biosynthetic origin of lipid biomarkers. For
example, targeting the diversity of lipid biosynthetic genes has
already helped us identify limitations of using long-established
hopane biomarkers (Welander et al., 2010). Lipid isotope
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probing assays, recently adapted to use radiotracer applications
(Evans et al., 2018), hold high promise in revealing lipid
biosynthetic pathways in pure cultures, but also in environmental
settings. By working together with microbiologists in the future,
we will fulfill the need for a better grasp of the effects of microbial
physiology on biomarker synthesis.

More and Improved Data Comparisons
State-of-the-art analytical techniques allow rapid chemical
measurements of small samples. Some of these techniques,
such as FT-ICR-MS, allow rapid measurements from small
samples that can generate large amounts of data, with
greater efficiency. Consequently, the amount of data available
is expanding, presenting new challenges for data analysis,
integration and intercalibration. Additionally, small variations
in sample collection, physicochemical experiments, extraction
protocols, fractionations, mass spectrometry analysis and data
processing can lead to challenges in intercomparing data from
multiple studies.

Differences in data processing algorithms can also impact
acquired data files. As described above, computational methods
to transform raw data should be understood as part of the
analytical method, not as something downstream of the analysis.
For example, comparison of three software tools and their
parameters for processing mass spectral data showed large
differences in the results depending on the tools and parameters
chosen, specifically for the degree of false positive or negative
peak detections (Cajka and Fiehn, 2016). This is especially
important in the area of peak picking and identification in
untargeted mass spectrometry analysis. There is a need to build
on existing, successful data intercomparison (Schouten et al.,
2013a) and sharing of information. Strengthened international
cooperation and connections between diverse research fields
could play a pivotal role in standardizing protocols and advancing
understanding in the field of marine organic biogeochemistry.

Untargeted High-Resolution Analysis:
Ultrahigh-Resolution Mass Spectrometry
Advances in sample preparation, analysis and interpretation
for FT-ICR-MS of NOM are ongoing and will aid in further
deciphering the structural diversity of NOM. Molecular analysis
of DOM from marine samples is hindered by the salt matrix in
which the compounds are present. Extraction with commercially
available PPL columns (Dittmar et al., 2008) and analysis of the
obtained methanol extract in ESI-negative mode represent the
most widely applied combination. Different isolation techniques
with variable efficiency have been proposed and compared
(e.g., Sleighter and Hatcher, 2008; Green et al., 2014; Schmidt
et al., 2014; Li et al., 2017; Stücheli et al., 2018). Because ESI
primarily ionizes polar to semi-polar compounds and in itself
represents a complex technique affecting compounds differently
based on polarity, molecular size, acid/base character and
concentration, no single ionization method captures the whole
suite of compounds present in NOM (Ohno and Bro, 2006;
Hertkorn et al., 2008; Reemtsma, 2009). Accordingly, extraction

and ionization methods need to be tailored to the scientific
question (Kido Soule et al., 2010; Sleighter et al., 2012).

FT-ICR-MS analyzers provide the highest accuracy and
resolving power (>1,000,000 at m/z 400, Junot et al., 2014)
for exact molecular formula determination. Direct infusion
techniques are able to produce detailed information on sample
composition in relatively short time, allowing fingerprinting of
complex mixtures in high throughput studies. As one molecular
formula can represent an unknown number of isomers (Hertkorn
et al., 2008; Zark et al., 2017) and co-suppression of signals may
occur when analyzing highly complex mixtures of organics such
as (marine) DOM (Patriarca et al., 2018). Chemical separation
techniques, such as liquid chromatography or electrophoresis,
are applied prior to sample injection to overcome these issues
and to provide more detailed structural information behind
molecular formula assignments (Hawkes et al., 2018). While these
techniques are commonly used in conjunction with tandem mass
spectrometers including Orbitrap, we expect one-dimensional
as well as multi-dimensional chromatographic separations prior
to FT-ICR-MS analysis to become more prevalent in the future
(Ghaste et al., 2016). However, the relatively slow acquisition rates
of FT-ICR-MS instruments limit their applicability to hyphenated
approaches often used in metabolomics and lipidomics research
(Junot et al., 2010). Coupling FT-ICR-MS to trapped ion mobility
mass spectrometry (TIMS-FT-ICR-MS) provided new insights
into the presumed high structural diversity of DOM. Lower
limits of isomeric diversity have been established (Tose et al.,
2018; Leyva et al., 2019), while upper limit estimates still range
widely and are dependent on detection limit and resolving power.
Additionally, fragmentation approaches have been applied to
confirm molecular formula attributions and to elucidate the
structural diversity of DOM (Wagner et al., 2015a; Kujawinski
et al., 2016; Zark et al., 2017).

The complex, high-dimensional information provided
by ultrahigh-resolution MS requires development of new
mathematical tools. The first, fundamental step is the assignment
of unique molecular formulas. All tools in one way or another
use mathematical transformations to improve resolving power,
mass accuracy and sensitivity (e.g., Kilgour et al., 2013), or apply
chemical and stochastic rules (Dittmar and Koch, 2006; Kind
and Fiehn, 2007). After formula assignment, elemental ratios,
molecular mass or mass defect analyses (Hughey et al., 2001)
can provide first insights into NOM composition. Due to the
high number of molecular formulae and increasing sample
throughput, the application of multivariate statistics has been
established in the field (Kujawinski et al., 2009; Sleighter et al.,
2010; Longnecker and Kujawinski, 2016).

Untargeted High-Resolution Analysis:
Coupled NMR and Ultrahigh-Resolution
Mass Spectrometry
The alliance of NMR and ultrahigh-resolution mass spectrometry
will continue to provide valuable insights into the sources of a
refractory DOM components (Hertkorn et al., 2006; Aluwihare
and Meador, 2008; Abdulla et al., 2013b; DiDonato and Hatcher,
2017). For example, combined NMR and FT-ICR-MS analyses
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show that the major components of the polysaccharide fraction
of HMW-DOM are acylated polysaccharides (APS; N-acyl amino
acids bound with neutral and amino sugars and non-acylated
heteropolysaccharides) and CRAM (Hertkorn et al., 2006) with
smaller amounts of aromatics and aromatic N-heterocyclics.
CRAM is the most abundant identified component of DOM.
Increasing depth in the water column conserves increasingly
branched CRAM and heteroatom-containing components at the
expense of carbohydrates, contributing to the resistance of DOM
to biodegradation (Hertkorn et al., 2013).

Additional information may be gained by utilizing different
NMR techniques. Higher magnetic field NMR instruments
will likely not advance solid-state NMR techniques. This is
because higher magnetic fields require a higher spinning
speed for the sample rotor to remove the spinning sideband,
which is not currently feasible (see Mopper et al., 2007 for
a more complete explanation). However, higher magnetic
field NMR and NMR Cryoprobes may allow the use of water
suppression 1H NMR techniques to analyze the entire marine
DOM composition even in the deep ocean (Lam and Simpson,
2008; Fox et al., 2018). Diffusion ordered spectroscopy (DOSY)
and 2D-NMR techniques (1H-1H-TOCSY and 1H-1H-COSY)
estimate the molecular weight of DOM components, resolve
overlapping peaks, confirm the interpretation of the chemical
shifts, and help to identify the structures of specific DOM
components. Coupling 1H NMR techniques with offline
chromatography and high-resolution mass spectrometry
techniques will advance our understanding of the entire marine
DOM transformation and cycling characterization of marine
DOM (Simpson et al., 2004).

Chemometric statistical methods allow combining NMR
data with mass spectrometry data using multivariate statistics,
for example to identify structural components and pathways of
metabolic perturbations or to determine the biotransformation
of metabolites on short timescales (Jaeger and Aspers, 2014).
These methods use the intrinsic covariance between signal
intensities in the same and related molecules measured
by different techniques across great numbers of samples
(Crockford et al., 2006). Another approach identifies single
metabolites by generating theoretical NMR and MS/MS
spectra for possible chemical structures and by comparing
them directly against experimental NMR and ultrahigh-
resolution MS2 spectra of the unknowns (Boiteau et al., 2018).
This approach does not require identified compounds from
experimental metabolomics databases, providing means for the
identification of unknown and uncatalogued metabolites in
natural DOM. Further development of chemometric tools will be
needed in the future.

Coupling Untargeted Chemical and
Microbiological Assays
Information on microbial metabolite transformations will
enhance our understanding of carbon cycling in the oceans.
Parallel trends between the complex, but closely connected
non-living and living worlds are established by combining
chemical with, e.g., untargeted microbiological assessments

(Kujawinski, 2011; Osterholz et al., 2016). The application of
stable isotope tracers will enable the delineation of causal links
(e.g., Biddle et al., 2006; Orsi et al., 2018; Seyler et al., 2018).
Understanding structural diversity as a meaningful property
of DOM adds a new facet to the interpretation of UHRMS
data. Borrowing on traditional ecological concepts, this approach
may increase the understanding of the long-term stability of
carbon compounds dissolved in the ocean, sustaining highly
diverse microbial communities (Dittmar, 2015; Osterholz et al.,
2016). Likewise, bioassay experiments employing metabolic
profiling via NMR and FT-ICR-MS show that bacterial DOM
has a chemical composition and structural diversity similar
to refractory natural DOM in seawater (Lechtenfeld et al.,
2015). In the future, including DOM fingerprint information
into numeric models such as ocean circulation models can
provide mechanistic explanations to observations and may enable
us to better place our findings within the bigger picture of
global carbon cycling.

Consensus Reference Materials
A broad range of chemical reference materials for ocean sciences
remains elusive, despite the recognition that accuracy of data
depends on calibration and intercomparison over time and
among laboratories. To that end, the US National Research
Council prepared a report identifying the most critically needed
reference materials and recommending the most appropriate
approaches for their development, with an emphasis on organic
materials (Committee on Reference Materials for Ocean Science,
2002). Some of the recommendations of this committee
remain unfulfilled.

The marine DOC community has adopted the consensus
reference material available from D. Hansell’s lab (University of
Miami) to determine reproducibility and accuracy of oceanic
DOC analyses (Sharp et al., 2002). When several researchers
promoted the need for a collection of humic and fulvic
acids to be made available to the scientific community, the
International Humic Substances Society (IHSS) was organized
in 1981. Since then, NOM research has benefited significantly
from sharing common standard and reference materials with
known elemental and stable isotopic ratios. Intercomparison of
UHRMS data is challenging, as the “true” result is not known.
A first interlaboratory comparison including 17 different high-
resolution mass spectrometers and NOM reference material from
the IHSS showed that while differences exist, common trends
in elemental ratios are reproduced (Hawkes et al., 2020). Efforts
such as this one will lead to the development of consensus values
for quality control of the complex analyses. However, a marine
reference material similar to the freshwater-sourced NOM from
IHSS suitable also for fingerprinting techniques such as FT-ICR-
MS or Orbitrap is missing to date, calling upon the community to
establish such a material.

Reference materials for biological, particulate, and
sedimentary OM are also conspicuously absent, in part
because of logistical difficulties in preparing and certifying them,
and perhaps more complex, a lack of consensus as to what
would best constitute an appropriate reference material and
what organic parameters should be targeted. Intercomparison
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exercises have been conducted for organic contaminants in
biological tissues (mussel) and sediments (New York/New Jersey
estuary) in the marine environment (Schantz et al., 2008),
but comparable exercises for marine biogeochemical materials
have generally not been carried out. These difficulties are
partially alleviated by targeting specific biomarkers or ratios of
biomarkers. Two successful small-scale round-robin laboratory
intercomparison exercises, in which a few kilograms of
sediment or extracts/isolates were distributed to a limited
number of laboratories, are the alkenone intercomparison
(Rosell-Melé et al., 2001) and the GDGT intercomparison
(Schouten et al., 2013a). It should be noted that in both
of these round robin exercises, the targeted parameters were
biomarker ratios (UK′

37 and TEX86 and BIT, respectively)
rather than a rigorous assessment of absolute concentrations.
Nonetheless, the marine organic biogeochemical community
needs to address this shortfall.

CONCLUDING REMARKS

Marine organic biogeochemistry has made significant
contributions toward a better understanding of the fundamental
processes that affect element cycles in the ocean, especially
for carbon and nitrogen. As new questions arise and new
paradigms are developed, there is a never-ending need
for novel analytical methodologies, ranging from advanced
instrumentation, cross-disciplinary field observations and
experimentation, to new thinking about how the massive
amounts of data generated by biogeochemists is handled and
interpreted (Figure 1). This review has summarized the state
of the art with respect to analytical instrumentation in use by
marine organic biogeochemists (e.g., chromatography, mass
spectrometry, NMR spectroscopy, radiocarbon analysis, enzyme
assays) and chemometrics for data handling. Key challenges

for the future are also highlighted. These include identifying
new biomarkers, employing advanced high-resolution mass
spectrometry and NMR spectroscopy for characterizing dissolved
organic matter and its behavior, and coupling chemical analyses
with microbiological assays. The review concludes with a plea to
move forward in the long-standing but as yet unrealized effort
to develop and distribute reference materials – whether certified
standard reference materials (SRMs) for intercalibration exercises
or consensus reference materials for intercomparisons – to the
biogeochemical community. Identifying and preparing reference
materials, while not an easy task, is critical to guarantee that data
generated by laboratories worldwide will truly be applicable and
useable worldwide.
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