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Over the last decade, glycerol dialkyl glycerol tetraethers (GDGTs) have become one
of the most investigated lipid classes in marine and terrestrial organic geochemical
research. GDGTs are microbial membrane core lipids biosynthesized as multiple
homolog series of isoprenoid or methyl-branched isomers [isoprenoid glycerol dialkyl
glycerol tetraethers (isoGDGTs) and Branched GDGTs (brGDGTs), respectively], whose
relative abundance depend on a range of environmental parameters, including
temperature. This has led to the development of GDGT-based temperature proxies.
A key aspect in the analysis of GDGTs and the further development of their use as
environmental proxies is good chromatographic separation of the full range of structural
and stereo-isomers, with potential for discovery of novel GDGT variants. Several HPLC
methods have been developed to this extent, but partial co-elution of GDGTs remains
an issue despite long run times. In this study, we investigate the effects of different
types of reverse phase (RP) chromatography on the separation of GDGT isomers. We
found that the use of a Kinetex C18-XB column gives good separation of isoGDGT
isomers in comparison to the recently developed double column HILIC analysis operated
in normal phase (NP) and has a shorter run time. In marine samples, the regularly
reported isoprenoid GDGTs separated in a similar way as in NP, however an earlier
eluting group was observed to elute with the crenarchaeol isomer used in the TEX86

proxy. In a Swedish peat bog sample, a large range of isoGDGT isomers were observed.
We observed a range of brGDGT isomers in several samples often with near baseline
separation. Exact identification of all these isomers remained elusive, due to the different
mechanism of separation in RP, and the complexity of the brGDGT family. The C18-XB
method is rapid and versatile and can be set up on either low-pressure HPLC systems
(max 400 bar) with a sample run time of 25 min for brGDGTs and 45 min to include
isoGDGTs. On UHPLC-MS systems (>600 bar) the sample run time is reduced to
15 min. Most importantly, the C18-XB method presented here gives unusual separation
of both isoprenoid and brGDGTs and could be a useful tool for the further elucidation
of the biological sources and environmental factors that play a role in the production of
different GDGT isomers.
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INTRODUCTION

Archaea, and more specifically Thaumarchaeota, are an abundant
and diverse group of prokaryotes, inhabiting a range of marine,
freshwater, terrestrial, and extreme environments (Brochier-
Armanet et al., 2012; Könneke et al., 2014). They have
a deeply branching phylogeny emanating from ancient hot
environments (de la Torre et al., 2008) and have evolved to
play a major role in oceanic CO2 fixation and nitrogen cycling
(Könneke et al., 2014; Tolar et al., 2016). Thaumarchaeal cell
membranes are predominantly comprised of isoprenoid glycerol
dialkyl glycerol tetraether (isoGDGT, Figure 1A) lipids which
are biosynthetically regulated in response to environmental
parameters like temperature, buffering capacity (Elling et al.,
2017) and the core lipids are typically recalcitrant after cell
death (Kuypers et al., 2001). The relationship between a ratio of
sedimentary isoGDGTs and sea surface temperature is described
in the TEX86 paleotemperature proxy (Schouten et al., 2002).
Global calibration of the TEX86 ratio in marine core top
sediments performed over the temperature range −2 to 30◦C
indicate that the relationship between the TEX86 ratio and
temperature is a global phenomenon (Kim et al., 2008). In
marine sediment cores TEX86 temperatures have been calculated
as far back as the early Jurassic (∼194 Ma), making the
TEX86 an important temperature proxy for understanding ocean
warming and global climate change over extended geological
time scales (Robinson et al., 2016). However, exceptions to
the TEX86 temperature response have been found in sediments
supporting the anaerobic oxidation of methane (Schouten et al.,
2002; Zhang Y. G. et al., 2016) and hot-spring environments
(Pearson et al., 2004; Zhang et al., 2006; Schouten et al.,
2007). These are not only related to different groups of
archaea being metabolically active, but also to the fact that
many different structural and stereo-isomers exist. Recently,
progress been made regarding the presence and relative
abundance of isoGDGT regio-isomers, i.e., the parallel or anti-
parallel glycerol configurations (Becker et al., 2013; Liu et al.,
2018), in part using selective sn2 ether cleavage after fraction
collection of the co-eluting isomers (Liu et al., 2019). Also,
the cyclopentane moiety adjacent to the cyclohexane ring in
crenarchaeol was found to exhibit the unusual cis stereochemistry
in contrast to the regular trans stereochemistry (Sinninghe
Damsté et al., 2018). Lastly, structural isomers of isoGDGTs
now also include examples with cyclohexane rings (so-called
S-GDGTs) and with double bonds instead of rings (Liu et al.,
2016). The structural and stereochemical variations found in
glycerol dialkyl glycerol tetraethers (GDGTs) affect their packing
as membrane lipids, which provide biophysical explanation
for their variety.

Branched GDGTs (brGDGTs) (Figure 1B) were originally
attributed to a terrestrial source as they were hypothesized
to be produced by an unknown group of soil bacteria
(Weijers et al., 2009). Increasing evidence now shows brGDGTs
are also produced in situ in aquatic systems (De Jonge
et al., 2014a,b; Liu et al., 2014; Zhang Z. H. et al., 2016;
Naafs et al., 2017). The distribution of brGDGTs in soils,
peats and lacustrine sediments has been found to relate to

mean annual air temperature and pH (Weijers et al., 2007;
Tierney et al., 2012; Schoon et al., 2013), leading to the
development of the terrestrial paleoclimate proxies based on
the MBT and CBT ratios (Weijers et al., 2007; De Jonge
et al., 2014a). Exactly how other environmental factors like
alkalinity, salinity, and euxinity (presence of H2S) influence
the distributions of both isoGDGTs and brGDGTs is yet
to be properly understood and can only be investigated
efficiently if GDGT isomers are resolved sufficiently by HPLC-
MS chromatography.

Glycerol dialkyl glycerol tetraethers have traditionally been
analyzed using normal phase (NP) chromatography (Hopmans
et al., 2004; Schouten et al., 2013b). The separation of
individual isoprenoid GDGTs occurs in the order of increasing
cyclopentane rings and the NP chromatography is selective
enough to allow separation of the crenarchaeol isomer (m/z
1292) as a rider peak. More recently developed methods
have successfully baseline separated the crenarchaeol isomer
from crenarchaeol (Becker et al., 2013; Hopmans et al.,
2016). The standard set of isoprenoid GDGTs elutes first in
NP followed by H-shaped and hydroxylated GDGTs (OH-
GDGTs). In NP chromatography, brGDGTs elute after the
isoprenoid GDGTs with the higher masses eluting first. Due
to a lack of resolution it was difficult to discriminate between
individual methyl-branched isomers. Recently, brGDGTs have
been identified as 5-methyl, 6-methyl, and 7-methyl isomers
using lengthy HPLC fractionation and subsequent isomer
identification using Gas Chromatography/Mass Spectrometry
analysis of the hydrocarbons formed after ether cleavage of the
GDGTs (Liu et al., 2012b; De Jonge et al., 2013; Ding et al.,
2016). Separation of brGDGTs using Cyano columns was then
superceded using tandem silica hydrophobic interaction liquid
(HILIC) chromatography columns run in NP mode (Hopmans
et al., 2016). This method successfully separates the 5- and 6-
methyl-brGDGTs isomers but still has the disadvantage of a
90 min (plus 20 min re-equilibration) run time. The improved
peak resolution of brGDGT isomers has further evolved the
MBT and CBT proxies to include or exclude the 5- and 6-
methyl-branched isomers (De Jonge et al., 2014a; Naafs et al.,
2017; Russell et al., 2018), but clearly more diversity exists as
suggested by co-eluting 5/6 isomers (Liu et al., 2012b; Weber
et al., 2015).

Other studies have successfully used RP chromatography
columns (ACE3 C18, Agilent Eclipse XDB-C18, Nucleodur
C18 ISIS, Waters Acquity UPLC BEH C18, Waters XBridge
C18) for separating GDGTs (Wörmer et al., 2013; Zhu et al.,
2013, 2014; Liu et al., 2016, 2018, 2019). The wide range of
phases available for reverse phase (RP) chromatography gives
the possibility to combine with ultra (U)-HPLC conditions
(>600 bar), important for high resolution analysis and
keeping the cost of analysis low. Different stationary phases
potentially allow for a range of interaction mechanisms that
can separate GDGT isomers, making this an interesting
avenue for further method development in GDGT research.
This paper builds on previous research into RP GDGT
chromatography (Wörmer et al., 2013; Zhu et al., 2013; Liu
et al., 2016, 2018) by investigating GDGT chromatography
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FIGURE 1 | Structures of (A) isoprenoid and (B) branched GDGTs including masses and common annotation found in the literature (Schouten et al., 2013b; De
Jonge et al., 2014a). Note that this overview is not extensive and a large range of additional isomers are not shown (Liu et al., 2012b).
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using four different RP core-shell particle column phases;
C18-XB, PFP, C8, phenyl-hexyl. Subsequently the optimal RP
method using the C18-XB column, hereafter termed C18-XB
method, is compared with results from the conventional
NP separation using a Cyano column (original GDGT
method; Hopmans et al., 2004) and existing literature on
RP to better understand GDGT isomer peak separation and
distribution.

MATERIALS AND METHODS

Sampling and Lipid Extraction
In this study a total of 12 marine sediments (4 sites), 11
lacustrine sediments (2 sites), 22 peat bog soils (3 sites), and 1
sample of pre-purified GDGTs “Extract E” were used. Sample
metadata are listed in Supplementary Table S1. Due to the
often low quantities of sample extracts, not all samples were
analyzed using every type of chromatography or column type,
details of what samples are analyzed by the different methods
are also found in Supplementary Table S1. All sediments were
frozen and freeze dried after sampling and stored at −20◦C
until extraction. For total lipid extraction, solid samples were
ground prior to weighing and ultrasonically extracted 3 × using
methanol (MeOH), 3 × dichloromethane (DCM)/MeOH (1:1,
v:v) and 3 × DCM or using 5 × 2:1 DCM:MeOH. Extracts
were combined to produce a total lipid extract which was
subsequently dried using a vacuum concentrator or under a
stream of N2. The Black Sea sample was extracted by Automated
Solvent Extraction (ASE) as described by Birkholz et al. (2013).
Extract E was provided as a pre-purified lipid extract as part of
an international calibration study (Schouten et al., 2013a) and
was stored at −20◦C until analysis. We also tested a British
peat and marine extract (Figures 2, 3 and Supplementary
Table S1) provided by David Naafs from the University of
Bristol (Naafs et al., 2018). Lastly, we analyzed a sample
from the lake sediment of a soda lake in central Myanmar
(Taum Pyauk), which was extracted using ultrasonication as
described above.

For NP analysis the dried lipid extract was reconstituted
in 99:1 v/v Hexane:propan-2-ol and placed in an ultrasonic
bath for 10 min to ensure proper mixing. The extract was
then filtered using a 0.45 µm, 4 mm diameter PFTE syringe
filter. For RP analysis samples were re-dissolved in 9:1 MeOH:
DCM (Zhu et al., 2013). Specifically, DCM was added first
and vortexed to ensure lipids were brought into solution then
MeOH was added. The samples were placed in an ultrasonic bath
for 10 min before filtering through 0.45 µm, 13 mm diameter
PFTE syringe filters prior to analysis. We tested using ethyl
acetate as a cheaper and lower toxicity alternative to DCM
(Graeve and Janssen, 2009) by dissolving a Baltic Sea lipid extract
aliquots into varying percentages of ethyl acetate and methanol
(EtOAc:MeOH 99:1, 9:1, 8:2, and 6:4). The largest crenarchaeol
peak area was obtained using either 99:1 or 6:4 EtOAc:MeOH
(v/v) solution. However, repeat injections showed there was a
large variation in peak area (range 8–15% RSD, n = 3). In
comparison, the average crenarchaeol peak area was less using the

9:1 MeOH:DCM solution but reproducibility was significantly
higher (range 3–5% RSD, n = 3), therefore we selected this
solvent mixture.

Analytical Instrumentation
A Dionex Ultimate 3000RS quaternary pump stack including
auto-sampler, column compartment and switching device were
coupled via either an atmospheric pressure chemical ionization
(APCI) ion source or a heated electrospray ionization interface
(HESI used in ESI mode), to a Thermo Scientific TSQ quantum
access MAX triple stage quadrupole max mass spectrometer.
Both APCI and ESI (electrospray ionization) interfaces were
tested and the APCI interface was selected because it gave
repeatedly higher signal intensities and a lower background
signal (Supplementary Figure S1).

The conditions used for APCI-MS were: discharge current
12 µA, vaporizer temperature 384◦C, sheath gas 0.4 l/min, ion
sweep gas pressure 0.6 l/min, auxiliary gas pressure 1.5 l/min
and capillary temperature 250◦C. Conditions of ESI-MS were:
spray voltage 3 kV, vaporizer temperature 384◦C, sheath gas
pressure 0.4 l/min, ion sweep gas pressure 0.6 l/min, auxiliary
gas pressure 1.5 l/min and capillary temperature 229◦C. Branched
and isoprenoid GDGTs were detected using positive ion spectra
generated by scanning with selective ion monitoring over the
following ranges: m/z 741.2-744.8 (in 0.1 s), m/z 1016.5-1023.5
(in 0.2 s), m/z 1030.5-1037.5 (in 0.2 s), m/z 1044.5-1051.1 (in
0.2 s), m/z 1287.2-1304.8 (in 0.5 s).

Reverse Phase Chromatography
An overview of the different analytical parameters of various
NP and RP methods are given in Supplementary Table S2. To
investigate the effect of different core-shell polymer phases on the
isomer elution of GDGTs we selected columns from the same
manufacturer (Phenomenex) to avoid any variation caused by
the type of base silica used in HPLC column assembly. Four
phase coatings were chosen for study: (1) A Kinetex C18-XB
with iso-butyl side chains and TMS endcapping and a core
shell silica solid support, 1.7 µm, 100 Å, 150 × 2.1 mm; (2) A
Kinetex C8, 1.7 µm, 100 Å, 150 × 2.1 mm; (3) A Kinetex PFP
(pentafluorophenyl), 1.7 µm, 100 Å, 150× 2.1 mm; (4) A Kinetex
phenyl-hexyl, 1.7 µm, 100 Å, 150 × 2.1 mm. The separation of
GDGTs was achieved using mobile phase A: MeOH with 0.04%
formic acid and mobile phase B: propan-2-ol with 0.04% formic
acid (formic acid was used as a solvent additive for both ESI and
APCI ionization methods) selected from previously described
RP methods (Lanekoff and Karlsson, 2010; Zhu et al., 2013).
The method used a flow rate of 0.2 ml/min and gave a typical
pressure of around 300 bar at a column oven temperature of
45◦C. The initial composition of the mobile phase gradient was
60%:40% A:B was held for 1 min and then ramped to 50% B at
20 min. This mix was held for 15 min then changed back to 40%
B for column re-equilibration. The total run time was 45 min
An injection volume of 10 µl sample was used and samples
were kept at ambient temperature to prevent coagulation of the
sample which can cause higher back pressure if injected onto the
column. We further created a UHPLC method by increasing the
pump pressure and heating the column oven to 60◦C. A flow
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rate of 0.43 ml/min was used which gave a pressure of 600
bar. The initial composition of the mobile phase gradient was
60%:40% A:B, which was held for 1 min and then ramped to
50% B at 10 min. This blend was held for 4 min and decreased
back to 40% B. The total run time was 15 min. An injection
volume of 2 µl sample was used and samples were kept at
ambient temperature during analysis. Lower injection volumes
are necessary for UHPLC due to the small (1.7 µm) silica pore
size which requires a decreased loading capacity to reach optimal
analyte peak shape and retention. Sharp peaks created in UHPLC
methods mean a lower limit of detection and quantification can
be achieved because small broad peaks are difficult to integrate
and discriminate from the baseline.

Normal Phase Chromatography
Normal phase chromatography used a single Grace Prevail
Cyano 3 µ column (150 × 2.1 mm; Grace Discovery Sciences,
United States) similar to the method described by Hopmans et al.
(2004). Gradient chromatography was hexane with 1% propan-2-
ol (mobile phase A) followed by a linear gradient to 10% propan-
2-ol (mobile phase B) over 45 min using a flow rate of 1 ml/min.
After each analysis the column was cleaned by back-flushing
hexane/propanol (99:1, v/v) at 1 ml/min for 10 min. The total
run time was 60 min with an injection volume of 10 µL, samples
were kept at ambient temperature during analysis. In addition,
samples were run using a NP HILIC method as described in detail
by Hopmans et al. (2016) except that our UHPLC pump was
operated at a flow rate of 0.3 ml/min to give a faster gradient
and higher backpressure. The system was monitored to ensure
optimal peak resolution was achieved with each analysis.

Fraction Collection
To better understand the exact position and type of isoGDGT
isomers on the C18-XB column we extracted large amounts of
Baltic Sea sediment, for the brGDGT isomers we extracted Nong
Thale Prong (NTP) lacustrine sediment and Swedish bog soil.
Freeze dried ground soil or sediment (±60 g) was extracted
using 5 × 2:1 DCM:MeOH. The total extract was separated
over an Al2O3 column and the polar fraction eluted with 95:5
DCM:MeOH. The eluent was dried under a constant stream of
nitrogen, re-dissolved in 9:1 MeOH:DCM (initially dissolving
in DCM and vortexing then adding MeOH and vortexing),
and filtered over a 0.45 µm PTFE filter. The polar fraction
was separated using a semi-preparative C18-XB column (100 Å,
150 × 2.1 mm 2.6 µm) fitted to a Dionex Ultimate 3000RS
HPLC connected to a Dionex AFC-3000 automated fraction
collector with splitting device. The flow rate was 0.2 ml/min with
the following eluent gradient; 60%:40% A:B for 1 min, linear
gradient to 50% B at 20 min. Hold for 15 min then 40% B for
9 min for column re-equilibration. Eluent A is MeOH/HCO2H
(100/0.04 v/v) and B is Propan-2-ol/HCO2H (100/0.04 v/v).
Fractions were collected in 1 min intervals between 5 and 45 min
and then re-analyzed for brGDGTs using the RP method. Selected
isoGDGT fractions (collected 25–30 min) were also analyzed
using the NP method. Where possible, isomers were identified
by direct injection of the fractions and performing MS/MS
experiments. GDGT fragmentation patterns were compared with

those published by Knappy et al. (2009), Liu et al. (2012b), De
Jonge et al. (2014a), and Ding et al. (2016).

RESULTS AND DISCUSSION

The Influence of Core-Shell Polymer
Coatings on the Analysis of GDGTs
Isomer retention and separation was investigated using repeat
injection of GDGT lipids extracted from the Black Sea sediment.
An environmental sample was used for column comparison due
to the lack of commercially available standards for GDGT analysis
and had the advantage of letting us understand environmental
sample matrix effects at the start of method development. NP
analysis using the cyano column (Figure 2A) eluted isoprenoid
GDGTs in three separate series and the early eluting series
contained peaks with the largest areas. Due to the more recent
setup of the NP HILIC method and a lack of sample material, the
HILIC method was tested at a later date using the Bristol marine
standard extract which elutes the “standard set” of isoprenoid
GDGT compounds between 17 and 26 min (Figure 2E and
Supplementary Figure S6). Isoprenoid GDGT isomers in the
early eluting “standard set” are used in TEX86 proxy calculation.
The second eluting group in the NP method consists of H-shaped
GDGTs which have an approximately double retention time
compared to the regular GDGTs (Naafs et al., 2018), and the
third group OH-GDGTs.

On the C8 and PH columns (Figures 2B,C), three groups of
GDGTs are observed (Figure 2), on the C18-XB (Figure 2D)
two groups are seen, eluting between 17–22 (Group 1), and 27–
35 min (Group 2). The PFP column gave no retention of GDGTs
so it was excluded from further study. On all three RP columns
an undefined hump of non-retained compounds elutes at the
start of the run (before 5 min) and gives the largest peak area
when using the C8 and PH column methods. After the analysis
of different sediment and soils (Supplementary Table S1) it was
found that non-retained compounds from the sample matrix
appeared variable with sample type but elute prior to 2.5 min
(in RP) and do not significantly affect the first group of GDGTs.
Baseline separation of peaks from each other or undefined humps
is essential for proper peak integration. In our experiments
the best separation was observed using the C8 and C18-XB
columns (Figures 3B,D) and the sharpest peaks were observed
using the C18-XB column. On the C18-XB column retention
time was tested for reproducibility. The standard reproducibility
of the retention time of the largest and best resolved peak in
the chromatogram (m/z 1292, n = 10) using repeat injections
from different vials in the same sequence was 6 s and of repeat
injections made in different runs (i.e., on different days) was 37 s
(m/z 1292, n = 5). Comparing critical pairs calculated for the
main GDGTs used in proxy calculation (Supplementary Table
S3) shows the C18-XB method gives good separation of isoGDGT
isomers in comparison to the recently developed double column
HILIC analysis operated in NP.

Branched GDGT chromatography was investigated using
a Swedish bog lipid extract. They were found to elute as
a single series on all column types (Figure 3). Using NP
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(Figure 3A), brGDGTs elute later than the isoprenoid GDGTs
and this is converse for the RP analysis (Figures 3B–D) as
previously reported by Zhu et al. (2013) for RP chromatography.
The tetramethylated (I) elute before the pentamethylated (II)
and hexamethylated (III) homologs in RP, in contrast to the
NP method where the order is III-II-I. Using a longer NP

method gives the largest retention time difference between
isomers I-III (De Jonge et al., 2013; Hopmans et al., 2016;
Figure 3F). The PH column (Figure 3C) showed less retention
of the brGDGTs and as a result was influenced by the hump
of injection material. On both the C8 and C18-XB columns
(Figures 3B,D) brGDGTs elute at similar retention times
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as sharp peaks which create, in some cases, near baseline
separation of a range of isomers. Based on the good isomer
separation and the added advantage that it can be used for
UHPLC applications, the C18-XB column was selected for
further testing.

GDGT and Isomer Separation
Isoprenoid GDGTs in Marine Sediment
To identify the GDGT structures on the C18-XB chromatogram,
we fractionated a large quantity of the Baltic Sea total lipid extract
using semi-preparative RP chromatography and (re-)injected
the total extract (Figure 4A) and two fractions (18–21 min
and 25–29 min) on the NP cyano column (Figures 4B,C). The
fraction of isoprenoid GDGTs in group 1 on the C18-XB column
(eluting 18–20 min) elute later, between 35 and 40 min, when
re-injected on the NP column (Figure 4B). The retention of the
RP 18–20 min fraction in NP suggests that the m/z 1300, m/z
1298, m/z 1296 are OH-GDGTs (Liu et al., 2012a), however,
the inclusion of m/z 1302 in the series and the placement of
the m/z 1292 isomer at 13 min suggests that these are a mix
of OH-GDGTs with stereoisomers or isotopologs of the “regular
isoGDGTs” (Figure 4B). Comparing the C18-XB elution pattern
of the marine sediment isoGDGTs with published GDGT-RP
methods (Zhu et al., 2013; Liu et al., 2019) also supports the
earlier elution of OH-GDGTs in comparison to the regular set

of GDGTs. GDGT group 2 (25–29 min, C18-XB column) elute
between 9 and 15 min on the NP column and are the “regular”
isoGDGTs used to calculate the TEX86 proxy. The m/z 1292
isomer is not present in the RP 25–29 min fractions as a typical
NP shoulder peak where the regular m/z 1292 elutes at 13 min.
Sinninghe Damsté et al. (2018) concluded that the 1292′ isomer
is in fact a stereo-isomer of the regular crenarchaeol where the
cyclopentane ring next to the characteristic cyclohexane ring has
a cis-configuration instead of the regular trans. This suggests that
separation using the C18-XB method is sensitive to structural
and stereo-isomeric differences of the biphytanyl chains of the
GDGTs, on top of polarity. It also indicates that early eluting
(group 2) GDGTs could be stereo-isomers of the regular trans
isomers. Further work is needed to resolve the exact nature of the
early eluting GDGTs on our RP method, although it is clear that
the m/z 1292′ crenarchaeol isomer used in the TEX86 elutes at the
end of this group. An extracted ion chromatogram overview of
isoprenoid and brGDGT isomers both identified and tentatively
identified (based on comparison with other RP methods (Zhu
et al., 2013; Liu et al., 2019), from the Baltic Sea extract is shown
in Figure 4D.

Isoprenoid GDGTs in a Peat Bog Lipid Extract
Unusual separation of isoGDGTs was found when analyzing the
Swedish peat bog extract using the C18-XB column. Multiple
isomers were observed, especially for m/z 1300, 1298, 1296
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(Figure 5 and Supplementary Figure S2). The same group
2 observed for the marine sample described above (eluting
25–29 min) corresponds to the regular set of GDGTs. The
crenarchaeol isomer m/z 1292′ (observed at 19 min in the marine
sample), was not detected in the peat bog sample but the lack
of crenarchaeol and its isomer has often been observed in peat
samples (Schouten et al., 2000; Pancost and Sinninghe Damste,
2003; Weijers et al., 2004; Huguet et al., 2010; Zheng et al., 2015)
and is attributed to the low abundance of ammonia-oxidizing
Thaumarchaeota. A number of peaks of m/z 1300 and m/z
1298 were observed between 10 and 24 min. Our results show
a similar pattern as those observed by Liu et al. (2016) using
a different C18 RP method, who identified series of GDGTs
with double bonds, cyclopentyl rings, and cyclohexyl rings (“S-
GDGTs”) for m/z 1300, 1298, and 1296, where more unsaturated
bonds generally lead to shorter retention times and cyclohexyl
rings to longer ones (Zhu et al., 2014); for structures see Liu
et al. (2016). MS/MS fragmentation experiments on the m/z 1300
GDGT isomers at 15.8, 17.1, 23.4, 25.4 min (Supplementary
Figure S2) all showed the typical fragmentation of the intact
core GDGT and the product ion (m/z 743) formed from the
loss of the 1,31-biphytadiene from the main molecule (Knappy
et al., 2009). However, fragments <m/z 743 in spectra (i-iv)
display varied fragmentation patterns, which are suspected to be
caused by the structural differences of the various biphytane units

within the m/z 1300 GDGT family. Our methods did not allow
for further elucidation of the various GDGT structures, which
requires the use of standards as well as ether cleavage experiments
and subsequent analysis of the products by GC-MS. Isomers
likely include unsaturated, hydroxyl and ring containing GDGTs
as well as stereo-isomers but this needs to be experimentally
verified. Liu et al. (2016) investigated the differences of NP
and RP GDGT separation in detail. The NP double column
method (Becker et al., 2013; Hopmans et al., 2016) gave improved
separation of the GDGT isomers in comparison to the RP single
column method (Zhu et al., 2013). While the isomers were
less resolved using the RP method, an abundance of unusual
GDGT isomers were identified, including variants containing
unsaturated, cyclopentyl and cyclohexyl moieties.

Branched GDGTs
In order to attempt to identify the position of the brGDGT
isomers eluted during the C18-XB method (Figure 3) we
extracted a large quantity of Swedish bog material and subjected
it to fraction collection using a semi-preparative C18-XB
column, focusing on the pentamethylated (m/z 1036, IIa) and
hexamethylated (m/z 1050, IIIa) GDGTs, which were most
dominant (Figure 6). Interestingly there were two different
sets with retention times at 7.5 and 12 min (Figure 6A). The
two sets were collected and at each instance first a fraction
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containing predominantly IIa (labeled i) and then a fraction
with mainly IIIa (labeled ii). Collected fractions were subjected
to ether cleavage and hydrogenation, and individual fractions
were analyzed by GC/MS. Figure 6B shows the partial GC/MS
total ion chromatograms of the (i)-fractions collected at 7.5 and
12 min; Figure 6C(a–d) and Supplementary Figures S3, S4
show mass spectra. We compared hydrocarbons a, b, c and d to
previously reported chromatographic retention times and mass
spectra (De Jonge et al., 2013; Ding et al., 2016). The relative
amounts of 5,13,16- and 6,13,16-trimethyloctacosanyl (5-tmo
and 6-tmo, respectively) analyzed using GC/MS can be used to
back-calculate the relative abundance 5’ and 6’ isomers of IIa
and IIIa within the collected fractions. The mass spectrum of

GC/MS peak b contains the pair m/z 98/365 deriving from 6-
tmo, while m/z 379 indicates 5-tmo for peak c. Peak d shows
the characteristic fragments m/z 210, 250 and 195 indicative the
ringed structures observed by Ding et al. (2016), where m/z 378
indicates that this would be a 5-methyl isomer. However, the
series of m/z 83/97/101 instead of the regular 85/99/103 does
not agree with earlier published spectra. Concentrations were
too low to further investigate the exact structure of peak d. In
both the 7.5 and 12 min group there is one major isomer peak
for IIa which, unlike the IIIa, has no small peaks or shoulders
eluting prior to or after the main peak. Fractions i and ii eluting
around 12 min had a higher percentage of 5-tmo (95% and 93%)
than earlier eluting fractions at 7.5 min (74%, 72%). For both
collection time windows the initial fraction (i) contained slightly
more of the 5-methyl isomer than the subsequent fraction (ii).
The ratio of 5-tmo to 6-tmo of IIa at 7.5 min suggests a mixed
signal of 5′, 5′/6′ and/or 6′ isomers (i.e., IIa5, IIa5/6, IIa6) and
thus that these isomers are not well separated. Given the large
percentage of the 5-tmo in the 12 min fractions, we infer that
the here mainly 5-methyl isomers elute, however still with a small
admixture of 6′ or 5′/6′ isomers. The question why there are two
sets of isomers remains unresolved. Possibly, the earlier eluting
set are OH-brGDGT isomers; future analysis using an ESI source
could provide evidence for this.

To verify our experimental procedure and to attempt to get
more evidence for the elution order of the 5′ and 6′ isomers,
HPLC fractions were collected, ether cleaved and hydrogenated
from sediments of a tropical lake NTP, southern Thailand.
Because of the tropical temperatures, the brGDGT distribution
was dominated by the tetramethylated GDGTs (I), while the
hexamethylated GDGTs (III) comprised less than 10%. In the
base peak chromatogram of the NTP extract IIIa isomers
(1050) elute as five near-baseline separated peaks and there
are at least two isomers of II (Figure 7A). Unfortunately, low
recovery of material from the fraction collection experiment gave
unsatisfying results but we could still draw some conclusions,
also by comparing retention times with those from the peat
bog analysis (Figure 7B). The fraction collected between 11 and
12 min was dominated by 13,16-dimethyloctadecosyl deriving
from I and II. We tentatively assigned one peak to 5,13,16-
tmo but 6,13,16-tmo was not detected. Instead we observed
another hydrocarbon that likely derived from a variety of
I, but this remains speculation as the mass spectra were
inconclusive (Supplementary Figure S5). The fraction eluting
at 12–13 min resulted in peaks both of 5,13,16- and 6,13,16-
tmo, the former around twice as large as the latter. This
suggests that the largest peak of III (1050) is the 5′ isomer,
while the subsequent peak could be the 6′ isomer or even
the mixed 5/6 isomer, followed again by the 6′ isomer, in
the same order as seen during the HILIC/NP separation (De
Jonge et al., 2014a; Ding et al., 2016; Hopmans et al., 2016).
For this sample, we clearly show that C18-XB method is
capable of separating various structural isomers of the brGDGTs.
The laborious method of identifying the exact structures of
the alkyl groups complicates identification. Moreover, one
needs to count on the possibility of asymmetric brGDGTs,
i.e., combinations of di/tetra-methylated octacosanyl chains
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FIGURE 10 | UHPLC analyses of Baltic Sea surface sediment extract showing the base peak chromatogram of (A) isoprenoid GDGTs and (B) branched GDGTs.
The arrow indicates the crenarchaeol isomer.

within the GDGT structures, and the potential for mixed 5/6,
5/7, 6/7 isomers.

As a last test to explore the differences between the RP
C18-XB and the NP methods, we analyzed GDGTs extracted
from sediment recovered from a soda lake (with a water pH
of ca. 10) in Myanmar, using both the HILIC and the C18-
XB methods (Figure 8). Of note here is that the NP HILIC
analysis was performed 2 years after the C18-XB method; the
GDGT fractions were stored at −18◦C. Also, this sample comes
from an extreme environment with reducing (euxinic) conditions
at very high pH. With the C18-XB method we found a large
suite of brGDGT isomers of especially Ia, IIa and IIIa, eluting
between 7 and 14 min, while the NP HILIC method gave some
peaks at the “normal” retention time, but also several late eluting
peaks. This suggests some of the early eluting brGDGTs (on RP)
might be OH-GDGTs, which would elute late with HILIC/NP
chromatography. We did not further pursue identification the
compounds in this sample.

To conclude, the C18-XB method appears capable of
separating a large range of brGDGT isomers, including 5′ and
6′ methyl isomers, although further work is needed to come
to conclusive evidence of the exact order or chromatographic
separation. Our results clearly indicate that the mixtures
of brGDGTs in various settings are highly variable and of
different complexity. The RP method presented here provides an
additional tool to investigate the family of brGDGTs, a task that
clearly is not finished yet.

The Impact of the RP Method on the Calculation of
the TEX86 and BIT Proxies
TEX86 values of multiple environmental samples run on both
the C18-XB and the Cyano column compared well (r2 = 0.96,
n = 11, Figure 9A). BIT indices measured on a small suite
of environmental samples both using RP and NP methods
also compared well (r2 = 0.98, n = 10, Figure 9B). Despite
tentative assignment of 5-methyl GDGTs, we refrain from

discussing the MBT(5Me) and CBT(5Me) proxies as we could
not always account for all isomers when comparing our
results with the HILIC method. More sample comparisons
are needed to further substantiate the transferability of the
GDGT-based proxy results between the different methods.
However, we argue that final results of any study using
GDGT proxies will likely depend more on the choice of
calibration, and the extent to which that calibration is evaluated
and validated for a particular site or setting, than on the
chromatographic method used.

Adaption to UPLC
UHPLC (>600 bar) has the advantages of fast run times and
low injection volume, in this case 2 µl, which is essential for
creating sharp peaks to improve baseline resolution (Figure 10).
The run time of the UHPLC method is ultimately limited
by the tailing hump of unresolved compounds which is
eluting soon after injection. The isoprenoid and brGDGTs elute
within 10 min and the total run time is 15 min including
column flushing. Comparing Figure 10 with Figures 3, 4
shows that GDGT peak distribution remains the same in the
UHPLC and RP 45 min run. The TEX86 values calculated
for a Black Sea surface sediment after analysis using the NP,
RP HPLC, and RP UHPLC methods gave the same results
(Supplementary Table S4), and corresponded also with the
value published by Wakeham et al. (2003). BIT values were
also comparable for the three methods (Supplementary Table
S4) when applied to Extract E from the TEX86 and BIT
intercalibration study performed by Schouten et al. (2013a).
Tentative assignment of the various brGDGTs and subsequent
calculation of MBT′5Me, CBT5Me and CBT′ proxies gave
identical results when comparing the 45 min RP method
(see Supplementary Figure S7 for the HPLC chromatogram)
with the 15 min UHPLC method (Supplementary Table S4).
These initial tests suggest a good agreement of the different
proxy calculations indicating that both the RP HPLC and
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UHPLC methods provide proxy calculation comparable to the
original NP method.

CONCLUSION

The chromatography of four different core-shell polymer phases
on the elution of isoprenoidal and brGDGT isomers has
been investigated. The C18-XB column was ultimately chosen
based on good peak elution, acceptable runtime and the
capability to run under UHPLC conditions. The C18-XB column
separated isoGDGTs into two groups. The first group consisting
of OH-GDGTs appears to contain admixtures of structural
isomers of the “normal” isoGDGTs, which predominantly
elute in group 2. Surprisingly, the crenarchaeol isomer used
in the TEX86 proxy eluted at the end of the first group.
BrGDGTs elute before the isoGDGTs, which makes the RP
chromatography more time efficient for these compounds
compared to the regularly used NP methods. Besides a
swapped elution order based on mass (i.e., the compound with
m/z 1050 elutes before the m/z 1036 compound and before
the m/z 1022 compound) compared to NP chromatography
(where compounds elute in the order m/z 1022, m/z 1036,
m/z 1050), the RP method appears to separate the various
structural isomers with different methyl-group positioning on
the octacosanyl chains in the same way as NP (i.e., 5-methyl
brGDGTs elute before 6-methyl brGDGTs). However, we did
not manage to arrive at unequivocal evidence for the exact
positioning of these isomers. Moreover, in some samples we
found a larger variety of apparent isomers than observed
in the regular analytical window of NP chromatography,
while in others we found less. Comparison of a limited set
of samples run both on the RP method using the C18-
XB column, and the traditionally used NP method using
a Cyano column, gave virtually the same BIT index values
and highly similar TEX86 values. Besides being a possible
alternative to the existing NP methods, the unusual isoprenoid
and brGDGT isomer separation on the C18-XB column
could aid further elucidation of the biological sources and
environmental factors that play a role in the production of the
different GDGT isomers.
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