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Extensive studies in the 1980s–1990s led to the characterization of latitudinal variations
in sea surface δ13C values of particulate organic carbon (δ13CPOC), and relationships
were found with CO2 concentrations, temperature, growth rates, and cell geometries.
Surprisingly, no large-scale efforts have been made to describe variations in δ13CPOC

values over depth in the water column. Here we compile published examples
demonstrating a widespread isotopic pattern in particulate organic carbon (POC) of
the upper water column. In 51 vertical profiles, δ13CPOC values in the lower euphotic
zone on average are 1.4h lower than δ13CPOC values in the upper euphotic zone of
open ocean settings. In a majority of locations this vertical decrease in δ13CPOC values
is >2h and up to 5h, larger than the commonly recognized vertical δ13C variation
in dissolved inorganic carbon over the same depths. We briefly review hypotheses
and supporting evidence offered by previous studies of individual water columns:
The observed patterns could result from vertical differences in photosynthetic growth
rates or community composition, biochemical composition of organic matter due to
degradation, isotopic disequilibrium within the dissolved inorganic carbon pool, particle
dynamics, or seasonal vertical mixing. Coordinated isotopic, biological, and seawater
chemistry data are sparse, and consistent drivers of this widespread isotopic pattern are
currently elusive. Further work is needed to adequately characterize the environmental
conditions coinciding with this pattern, to test its origins, and to determine if the
magnitude of upper water column δ13CPOC variations could be a useful marker of upper
ocean carbon cycle dynamics.

Keywords: carbon isotopes, particulate organic carbon, water column, marine organic carbon, phytoplankton

INTRODUCTION

Particulate organic carbon (POC) is the major carrier of carbon from the surface to the deep
ocean (the biological pump); therefore, quantifying POC and understanding its origins and
degradation are important priorities. POC is defined as all combustible carbon captured on
filters of pore size ∼0.7 µm and remaining after removal of carbonates by acidification. POC
therefore encompasses diverse organic structures contained in the biomass of phytoplankton,
heterotrophic and chemoautotrophic microbes, and detrital materials such as dead cells,
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cell fragments, fecal pellets, other aggregated material, and
terrigenous or resuspended allochthonous organic matter. The
naturally occurring stable carbon isotope ratio of POC (δ13CPOC)
is one of the only chemical characterizations that captures
the entire POC pool, since individual, measurable chemical
components constitute only a small proportion of the total
(Kharbush et al., 2020; this issue). Accordingly, δ13CPOC
values preserved in seafloor sediments are important factors in
interpreting earth’s past carbon cycle (Kump and Arthur, 1999).

δ13CPOC values in the surface ocean have been relatively
well-characterized, largely motivated by the possibility of using
preserved δ13CPOC values as an indicator of photosynthetic
responses to past and evolving sea surface CO2 concentrations
(e.g., Rau et al., 1989; Freeman and Hayes, 1992; Francois et al.,
1993; Goericke and Fry, 1994; Young et al., 2013). Open-ocean
δ13CPOC values vary from −35h at high latitudes to −16h at
low-mid latitudes (Goericke and Fry, 1994). In contrast, the δ13C
value of dissolved CO2 used as a substrate for photosynthesis only
varies by ∼2h across surface waters (Rau et al., 1989). To explain
the δ13CPOC variations, the expressed isotopic fractionation (εP)
between CO2 (δ13CCO2) and photosynthetic biomass (δ13CP)
(Hayes, 1993, 2001) was found to correlate to some degree with
CO2 concentration, but also with phytoplankton growth rates
and cell geometry (Laws et al., 1995; Popp et al., 1998, and others).
Additional influence on εP can arise from the use of carbon
concentrating mechanisms and the active uptake and/or fixation
of bicarbonate (see Wilkes and Pearson, 2019).

In contrast, relatively few studies have focused explicitly
on vertical patterns of δ13CPOC extending below near-surface
depths (Jeffrey et al., 1983; Saino, 1992), and to our knowledge
no global data compilation exists. Individually, several studies
have noted large (2–5h) decreases in δ13CPOC values between
the near-surface ocean and the lower euphotic zone or upper
pycnocline in open ocean settings, a depth range over which the
values of δ13CCO2 usually vary by only 0.5–2.0h (Schmittner
et al., 2013; Meyer et al., 2016). Hypothesized mechanisms for
creating vertical δ13CPOC patterns include both photosynthetic
and degradative processes. In this short review we compile data
from published studies reporting δ13CPOC values in the upper
250 m of open-ocean water columns in order to explore whether
global patterns or environmental drivers can be detected, briefly
review existing hypotheses for the observed vertical patterns, and
make suggestions for future work.

DATA COMPILATION OF GLOBAL
OCEAN δ13CPOC PROFILES

Average δ13CPOC Minimum in the Lower
Euphotic Zone or Local Pycnocline
We compiled suspended δ13CPOC data from 11 published studies
representative of the global open ocean and containing 51
vertical profiles of δ13CPOC extending from near-surface waters
to depths of 250 m. Study locations spanned latitudes from −53◦

to 50◦ (Figure 1A and Supplementary Tables S1, S2) in the
oligotrophic Atlantic (Pedrosa-Pàmies et al., 2018), equatorial

Atlantic (Bishop et al., 1977; Jeffrey et al., 1983), Gulf of
Mexico, Caribbean Sea, Eastern Tropical Pacific (Jeffrey et al.,
1983), South Atlantic (Hurley et al., 2019), Southern Ocean
(O’Leary et al., 2001; Trull et al., 2008), and North Pacific
(Saino, 1992; Minagawa et al., 2001; Hernes and Benner, 2002;
Druffel et al., 2003). Non-tabulated data points (Saino, 1992) and
coordinates locations (Trull et al., 2008) were extracted using
a built-in MATLAB function (ginput); data are compiled in
Supplementary Table S2. We excluded some published studies
from our numerical analysis due to a scarcity of depths sampled
in the upper water column or due to likelihood of terrigenous
inputs, low-oxygen metabolisms, or experimental manipulations
(Williams and Gordon, 1970; Eadie and Jeffrey, 1973; Druffel
et al., 1996; Benner et al., 1997; Trull and Armand, 2001; Hernes
and Benner, 2006; Close et al., 2014; Krishna et al., 2018; Liu et al.,
2018). We also did not include data from the Arctic region due to
the prevalence of terrigenous or advected POC in these areas (e.g.,
Griffith et al., 2012; Xiang and Lam, 2020).

To compare across sites, we standardized reported sampling
depth in two different ways: as a proportion of total euphotic zone
depth, defined as 0.1% surface PAR (Ez, Figure 1B), and relative
to the monthly and maximum annual mixed layer depths (MLD,
Figure 1C). For the Ez standardization we retrieved global 1%
surface PAR depths from the mapped MODIS-Aqua satellite data
product (NASA Goddard Space Flight Center, 2018) produced
using the method of Lee et al. (2007); determined to be within
∼14% of in situ measured values). The 4 × 4 km grid location
closest to each published study site was extracted; results were
similar (within 0.3 ± 1.7 m) when using an average of the
surrounding data points. Ez was calculated based on first-order
attenuation from 1% PAR at each location and ranged from 61 to
187 m. We retrieved monthly and maximum annual MLD from
Holte et al. (2017), who compiled data from Argo float profiles
and used a hybrid density algorithm to find MLD. We found the
nearest points on the resulting 1 × 1◦ grid and used an average of
the values at these points.

To account for known latitudinal variations in absolute values
of δ13CPOC, the δ13CPOC data for each individual vertical profile
were normalized to the minimum δ13CPOC value anywhere
within the upper 250 m of the water column, i.e., the local
minimum value was subtracted from each data value in an
individual profile to calculate 1δ13CPOC (Figures 1B,C). After
depth and isotopic data were normalized, we compiled all data
to assess global vertical trends. We compared the distribution
of all 1δ13CPOC values in the upper 0–50% and lower 50–
100% of the Ez and below (Figure 1B and Supplementary
Figure S2A). For the MLD standardization we compared all
1δ13CPOC values above the monthly MLD, between the monthly
and annual maximum MLD (local pycnocline), and below
the annual maximum MLD (maximum pycnocline; Figure 1C
and Supplementary Figure S2B). Due to normalization of
the isotopic data to a zero value, the distributions were
skewed and statistical tests were chosen accordingly for non-
normally distributed data. A Wilcoxon rank sum test was
used to assess significance pair-wise between the different
depth ranges (Supplementary Table S3). δ13CPOC values were
found to be significantly lower in the lower euphotic zone

Frontiers in Marine Science | www.frontiersin.org 2 September 2020 | Volume 7 | Article 540165

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-540165 September 6, 2020 Time: 20:46 # 3

Close and Henderson Lower Euphotic Organic 13C Minimum

FIGURE 1 | (A) Data locations (open circles) shown over mapped annual climatological surface ocean chlorophyll concentrations from Melin (2013). Symbols are
color-coded according to the ranges in 1δ13CPOC values observed in the upper 250 m (overlying maximum minus underlying minimum; see Figure 2). Insets show
examples of four vertical profiles of δ13CPOC values (filled black circles): each inset spans from the surface down to 250 m on the vertical axis and a δ13C range of
−27 to −21h on the horizontal axis (see also Supplementary Figure S1); horizontal lines indicate depths of the mixed layer and euphotic zone as indicated in the
legend. (B,C) Normalized 1δ13CPOC values among all compiled data: medians (center vertical lines), interquartile range (boxes), 99% intervals (brackets), and outliers
(individual points); (B) when grouped by standardized euphotic zone depth intervals (100% Ez, depth at which irradiance is 0.1% of surface values); (C) when
grouped by local mixed layer depth (MLD) and maximum annual mixed layer depth (MLDmax). 1δ13CPOC indicates δ13CPOC values normalized to the minimum
δ13CPOC value found within the upper 250 m at each station, as described in the text. Depth ranges and statistical results are further outlined in Supplementary
Table S3.

compared to the upper euphotic zone, with a difference in
median 1δ13CPOC values of 1.4h (p < 10−8; Figure 1B and
Supplementary Table S3). δ13CPOC values were also significantly
lower in depths between the monthly and maximum MLD when
compared to those above the monthly MLD, with a difference
in median 1δ13CPOC values of 0.9h (p < 0.01; Figure 1C and
Supplementary Table S3).

Generalizing the statistical results above, within the 51
compiled profiles, δ13CPOC values in the lower euphotic zone
and/or below the local mixed layer are significantly lower than
values in the upper euphotic zone and/or above the local mixed

layer. Further, when considering data distribution in relation to
the euphotic zone depth, δ13CPOC values in the lower euphotic
zone (50–100% of Ez) defined a local minimum; they are lower
than δ13CPOC values both above and below this depth range
(p< 0.02; Figure 1B and Supplementary Table S3).

Comparison of Individual δ13CPOC
Vertical Profiles to Environmental Data
The analysis above considered the compiled global data as a
whole and examined differences between median δ13CPOC values

Frontiers in Marine Science | www.frontiersin.org 3 September 2020 | Volume 7 | Article 540165

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-540165 September 6, 2020 Time: 20:46 # 4

Close and Henderson Lower Euphotic Organic 13C Minimum

within coarse divisions of the upper water column. We also
examined the overall magnitude of variation in δ13CPOC values
found within individual water columns, i.e., the upper water
column max-min range in δ13CPOC values (1δ13CPOC max-
min). We calculated this range as the difference between the
minimum δ13CPOC value found anywhere in the upper 250 m
of individual water columns and the maximum δ13CPOC value
found above this depth in order to focus on the pattern of
higher δ13CPOC overlying lower δ13CPOC values. We found that
63% of individual water columns had a max-min range > 2h,
with the largest ranges >5h (Figure 2A). We attempted to
assess whether the observed1δ13CPOC max-min range correlated
with broad scale environmental features extracted from global
datasets. Using linear regressions (MATLAB function polyfit),
no correlation was found between the local max-min range
and the absolute depth of the euphotic zone, chlorophyll a,
nor modeled surface phytoplankton size or fecal pellet export
(Melin, 2013; Siegel et al., 2014; linear regression, r2 < 0.1).
The only linear regressions resulting in r2 >0.15 were those
comparing the local 1δ13CPOC max-min range to net primary
production (Figure 2B) and maximum annual mixed layer
depth (Figure 2C).

Where possible, we extracted coinciding in situ vertical
profiles of concentrations of POC, dissolved inorganic carbon
(DIC), O2, chlorophyll, and nutrient concentrations from the
published studies, as well as C:N ratios. We also obtained annual
climatological DIC concentrations, alkalinity, salinity, pH, and
temperature data mapped at 1 × 1◦ resolution from GLODAP
and World Ocean Atlas databases (Key et al., 2004), and we
calculated CO2 concentration profiles for each δ13CPOC data
location using the CO2SYS tool (Lewis and Wallace, 1998).
We tested for pair-wise correlations between vertical profiles of
these variables and δ13CPOC values (both absolute values and
1δ13CPOC values) where possible, and we did not find any
significant relationships. Measured in situ δ13CDIC values were
available from O’Leary et al. (2001) and Hurley et al. (2019). We
normalized δ13CDIC and δ13CPOC to near-surface values, using
the data point closest to the surface to account for the known
latitudinal variation in surface ocean δ13CDIC and δ13CPOC
values. In the nine individual profiles where this comparison
was possible, we found that the vertical range in δ13CPOC values
was on average approximately four times larger than the vertical
range in δ13CDIC over the same depths (slope = 4.17, r2 = 0.53,
linear regression).

DISCUSSION

Data Availability and Quality
While our compilation of published data here is likely not
exhaustive, it is to our knowledge the first global examination
of vertical profiles of δ13CPOC in the upper water column.
Global mapped 3-dimensional oceanographic data products for
δ13CPOC currently do not exist, and most major oceanographic
programs do not include vertical δ13CPOC as a standard
parameter. Anecdotally, vertical δ13CPOC values might be
measured much more frequently than they are published or

interpreted (e.g., Bishop et al., 1999). The scarcity of published
data and lack of a database for δ13CPOC values were barriers
to identifying environmental commonalities underlying the
observed patterns. We also note that low vertical resolution in
many profiles likely means that the true minimum and maximum
δ13CPOC values in a given water column were not captured
(Supplementary Figure S1).

Of the 11 studies from which we compiled data, 6 collected
POC using in situ or submersible pumps to filter large volumes
of water (>70 L). Jeffrey et al. (1983); Saino (1992), Wu et al.
(1999); Minagawa et al. (2001), and Hernes and Benner (2002)
instead collected seawater in large volumes (10–30 L) from
Niskin bottles and filtered the water shipboard. Filtering POC
from large volumes of water helps in obtaining a statistical
sampling of the particle population; small sample volumes
are subject to interference from the inconsistent capture of
sparse large particles as well as a larger proportional blank
contribution from dissolved organic matter (DOM) sorbed to the
filter when POC loading is low. Discussion of DOM sorption
and differential particle retention based on filtration media or
pressures has been extensive in terms of effects on POC and
pigment concentrations (e.g., Gardner et al., 2003; Nayar and
Chou, 2003; Bishop et al., 2012). However, the effects of sampling
methods and blank correction on δ13CPOC values are under-
discussed (Lorrain et al., 2003) and are of particular importance
in the subsurface where POC concentrations are lower and
blank contribution is proportionally higher. In addition, the
most common, elemental analysis-based methods for bulk
carbon isotope analysis are >99% inefficient, necessitating
large sample quantities; broader use of “nano-scale” analytical
methods could improve our ability to obtain better three-
dimensional data coverage for oceanic δ13CPOC measurements
(see Close, 2019).

The size fraction(s) of particles studied also can be important.
Most studies described here collected total POC onto 0.45,
0.7, 0.8, or 1.0 µm glass or quartz fiber filters, but the
studies of Bishop et al. (1977) and Hurley et al. (2019) in
the mid-latitude Atlantic included a prefilter of 53 µm mesh
size. In these cases, the observed patterns of δ13CPOC in
the lower euphotic zone were a particular feature of small
particles (∼0.7–53 µm), which constituted the majority of
POC. Trull et al. (2008) included measurements of several
particle size classes in a study of the Southern Ocean –
where large phytoplankton and particles are more abundant
that the above studies – and found heterogeneities in the
δ13C values across both size and depth, possibly relating to a
combination of physiological effects on εP, different sinking rates,
and temporal offsets between surface production and deeper
particles (see below).

Photosynthetic Hypotheses for Origins
of Low δ13CPOC Values in the Lower
Euphotic Zone or Upper Pycnocline
Several physiological, community, and environmental features
of in situ photosynthesis have been suggested as drivers of
systematic variations in δ13CPOC values between the upper
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FIGURE 2 | (A) Distribution of upper water column ranges in 1δ13CPOC values in the 51 individual water columns in this study, calculated as the overlying maximum
δ13CPOC value minus subsurface minimum δ13CPOC value (i.e., maximum values occurring at depths below the minimum are not considered here). Negative values
indicate profiles in which the minimum δ13CPOC value was found at the shallowest data point. (B) Comparison of 1δ13CPOC max-min ranges in (A) to climatological
net primary production (NPP) at each location. (C) Comparison of 1δ13CPOC max-min ranges in (A) to maximum annual mixed layer depth (MLDmax) at each
location. One extreme outlier was omitted from (B) with an NPP value of 1250 mg m−2 d−1 and 1δ13CPOC max-min range of 1.8h.

and lower euphotic zones. Saino (1992) noted “a subsurface
minimum near the base of the euphotic zone” when examining
δ13CPOC values at study sites adjacent to the Kuroshio
Current and suggested photosynthetic mechanisms. Models
and culture studies (e.g., Popp et al., 1998; Cassar et al.,
2006) have demonstrated that εP depends on an interplay
between the growth rate of an organism and the supply
rate of CO2; higher CO2 supply rates and/or slower growth
rates will lead to a larger εP, and therefore lower values
of δ13CP. Saino (1992) suggested that both conditions likely
exist in the lower euphotic zone: CO2 concentrations here
are higher than the surface due to the net removal of CO2
by photosynthesis at the surface and the net respiration of
CO2 in the lower euphotic zone, and growth rates are likely
lower due to light limitation. O’Leary et al. (2001) also found
low δ13CPOC values in the lower euphotic zone in a study
of the subantarctic water column, and their model results
pointed to slow photosynthetic growth rates as the cause.
Decreases in photosynthetic growth rate with increasing depth
in the euphotic zone are frequently observed in the open
ocean (e.g., Laws, 2013), and relationships between growth rates
and photosynthetic fractionation of carbon isotopes have been
demonstrated in culture (Laws et al., 1995; Bidigare et al., 1997;
Popp et al., 1998).

A smaller average cell size of phytoplankton in the lower
euphotic zone/upper pycnocline than in the upper euphotic
zone/mixed layer also is a frequent observation in open-
ocean settings (e.g., Poulton et al., 2006; Barone et al., 2015).
Trull and Armand (2001) demonstrated that a smaller average
cell size (higher surface area: volume ratio) of phytoplankton
in the lower euphotic zone could result in lower δ13CPOC
values, an isotopic relationship previously established in
phytoplankton cultures and models by Rau et al. (1996);
Popp et al. (1998), and others, stemming from faster CO2
diffusion rates.

Conversely, targeted studies of individual photosynthetic taxa
or biomarkers have sometimes suggested a pattern of increasing
or unchanging δ13C values over increasing depth in the euphotic
zone (Prahl et al., 2005; Popp et al., 2006; Tolosa et al., 2008;
Radabaugh et al., 2014). The recent model of Wilkes and Pearson
(2019) suggests that increasing δ13C values over depth could
be a phenomenon specific to eukaryotic phytoplankton with
intracellular CO2 partitioning or carbon concentrating strategies,
with carbon isotopic fractionation varying according to whether
growth is limited by low nutrient concentrations (upper euphotic
zone/mixed layer) or other factors such as light [lower euphotic
zone/upper pycnocline; also explored by Laws et al. (2002) and
Cassar et al. (2006)]. Some phytoplankton also employ active
uptake and/or fixation of bicarbonate (HCO3

−), thereby also
complicating relationships between cell size, CO2 concentrations,
and δ13CP (e.g., Bentaleb et al., 1998; Cassar et al., 2004). Due
to such variations in photosynthetic physiologies, the isotopic
sensitivity of a whole phytoplankton community to its local
seawater environment (CO2 concentrations, light and nutrient
availability) will depend also on the taxonomic composition of
photosynthesizing organisms present (e.g., Leboulanger et al.,
1995; Bentaleb et al., 1998; Trull et al., 2008).

Saino (1992) also discussed how slow isotopic equilibrium
relative to chemical equilibrium within the DIC system could
lead to relatively high values of δ13CCO2 in the mixed layer
compared to the lower euphotic zone. Notably, δ13CCO2 usually
is calculated from measured δ13CDIC using constants that
assume the system is at both chemical and isotopic equilibrium
(Freeman and Hayes, 1992).

Some compound-specific isotope analyses of lipids have
supported a photosynthetic origin of low δ13CPOC values in the
lower euphotic zone. Close et al. (2014) found that δ13C values of
lipid biomarkers for in situ production paralleled δ13CPOC values
throughout the euphotic zone in the Eastern Tropical North
Pacific, which ruled out the degradative accumulation of lipids
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(see section “Degradative or Dynamical Hypotheses for Origins
of Low δ13CPOC Values in the Lower Euphotic Zone or Upper
Pycnocline”) as a driver behind low δ13C values in the lower
euphotic zone. Similarly, O’Leary et al. (2001) demonstrated that
δ13C values of photosynthetic sterols paralleled vertical profiles of
δ13CPOC in subantarctic waters.

Degradative or Dynamical Hypotheses
for Origins of Low δ13CPOC Values in the
Lower Euphotic Zone or Upper
Pycnocline
Equally common in published interpretations of upper
water column δ13CPOC variations are hypotheses relating to
degradation or alteration processes. Jeffrey et al. (1983) noted
that “the upper part of the pycnocline (i.e., below the local
mixed layer) is marked by lighter POC-δ13C values at almost
all the stations occupied” in a broad-ranging study of the
Eastern Tropical North Pacific, Gulf of Mexico, Caribbean, and
western south Atlantic. These authors suggested a degradative
mechanism, following the interpretations of Eadie and Jeffrey
(1973) and based on the results of Degens (1969): below the local
mixed layer POC concentrations decrease rapidly due to high
rates of respiration. Amino acids and sugars comprise quickly
degrading, 13C-enriched components of POC, potentially leaving
remaining POC at these depths with a relatively high abundance
of 13C-depleted lipids. This explanation was cited by Druffel et al.
(2003), who noted relatively low δ13C values of POC in the upper
200 m at study sites in the North Central Pacific and Sargasso Sea.

Bishop et al. (1977) noted “a depletion in 13C of 4h over the
depth interval between 32 and 50 m,” but could not attribute
this to the degradative explanation of Eadie and Jeffrey (1973)
because a preponderance of lipids should result in an increase
in C:N ratios. Instead C:N ratios were invariant over these
depths, and the authors suggested that secondary production by
bacteria could lead to low δ13C values. However, the proportional
contribution of lipids may increase without being accompanied
by an increase in C:N, if proteinaceous (low C:N) material is
also abundant, as suggested by Pedrosa-Pàmies et al. (2018).
There are few broad organic compositional studies of POC that
are accompanied by carbon isotopic data. One such study by
Sannigrahi et al. (2005) did not find a strong relationship between
organic composition and δ13CPOC values in the upper water
column at Station ALOHA [isotopic data previously reported by
Hernes and Benner (2002)]; in particular the lipid composition
was not proportionally higher at the lower euphotic δ13CPOC
minimum than it was at shallower depths.

Hernes and Benner (2002, 2006) suggested that low subsurface
δ13CPOC values in the oligotrophic subtropical Pacific and
Sargasso Sea were the result of an advected source of terrigenous
organic matter, based on a correlation with lignin concentration.
However, this correlation existed mainly in POM below
the euphotic zone. The local minimum in δ13CPOC values
observed in the lower euphotic zone did not correlate with the
proportional contribution of lignin to total POC at that depth.
Advection of POC from adjacent waters often cannot explain
the range of δ13CPOC values observed in a single water column

(e.g., Lourey et al., 2004), although this is more commonly cited
in the Arctic (Griffith et al., 2012; Xiang and Lam, 2020).

Overall, organic compositional effects on δ13CPOC values
seem to be more apparent at advanced stages of organic
matter degradation that occur below the euphotic zone, in
deep mesopelagic and bathypelagic waters. Here decreases in
δ13CPOC values are more clearly related to increasing C:N
ratios or changing biochemical composition than they are in
the upper water column (see Minagawa et al., 2001; Hwang
and Druffel, 2003; Sannigrahi et al., 2005). Analogous to the
patterns recognized for particulate δ15N values (Altabet et al.,
1991), shallower, earlier degradation of macromolecules may lead
first to increases in δ13CPOC values as bonds containing 12C
are more quickly hydrolyzed or respired in upper mesopelagic
waters (e.g., Bishop et al., 1977; Jeffrey et al., 1983; Wu et al.,
1999). Accordingly, slightly higher δ13CPOC values were found
below Ez compared to the lower euphotic zone in our data
compilation (Figure 1B and Supplementary Table S3), and this
pattern is more apparent in individual water column profiles
(Supplementary Figure S1; see also Cavagna et al., 2013).

Particle, seasonal, and water column dynamics also may lead
to vertical variations in δ13CPOC. Studies of size-fractionated
POC or plankton frequently find size-based differences in δ13C
values. Typically large particles are assumed to sink more
quickly through the euphotic zone; those originating in the
surface can carry their δ13CPOC values below the mixed layer,
possibly also being disaggregated into small particles therein.
Large phytoplankton often have higher δ13CPOC values than
small phytoplankton and therefore would tend to contribute 13C-
enriched rather than 13C-depleted material into the subsurface
through such a mechanism (Bishop et al., 1977; Fry and
Wainright, 1991; Wu et al., 1999; Trull and Armand, 2001;
Trull et al., 2008). Heterogeneous sinking rates and δ13C
values have also been used to explain temporal offsets in the
origins of upper and lower water column δ13CPOC values,
especially in locations with strong seasonality. That is, POC in
the subsurface may represent export from the surface ocean
during growth conditions (growth rates, CO2 concentrations,
phytoplankton community composition) typical of preceding
seasons (Lourey et al., 2004; Cavagna et al., 2013). In high
latitude areas seasonal changes in MLD can also distribute surface
biomass throughout the euphotic zone and create temporal and
spatial offsets between the formation and observation of POC
(Grenier et al., 2015).

Zooplankton egesta and/or methane production by gut
microbiota also have been cited as possibly affecting δ13CPOC
values (Cavagna et al., 2013). Fecal pellets can be highly
13C-depleted in comparison to zooplankton diet (Tamelander
et al., 2006). In addition, relatively 13C-depleted methane
has been observed reaching maximum concentrations in the
pycnocline of oxygenated open-ocean water columns (Holmes
et al., 2000; Sasakawa et al., 2008), likely linked to bacterial
degradation of dissolved organic compounds (Repeta et al.,
2016). Bacteria may incorporate this methane into biomass
during oxidative metabolism (Sasakawa et al., 2008), but it is
unclear if biomass quantities would be sufficient to affect overall
δ13CPOC values.

Frontiers in Marine Science | www.frontiersin.org 6 September 2020 | Volume 7 | Article 540165

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-540165 September 6, 2020 Time: 20:46 # 7

Close and Henderson Lower Euphotic Organic 13C Minimum

Unique Geochemical Signatures of the
Lower Euphotic Zone or Upper
Pycnocline: Potential Implications
One objective of this review is to motivate wider measurement
and/or reporting of vertically resolved δ13CPOC data. Regardless
of the underlying primary or degradative drivers of this pattern,
better data coverage – especially at higher vertical resolution –
will allow more precise definition of the depths at which δ13CPOC
minima occur and the overall magnitude of variation in upper
water column δ13CPOC values; both could prove to be a useful
diagnostic of underlying ecosystem processes or carbon dynamics
as described above.

The current data compilation suggests that there is a
widespread pool of POC in the ocean with δ13C values that
are significantly different from those modeled as “source”
photosynthetic values in the surface ocean. POC in the
lower euphotic zone or upper pycnocline is abundant and
serves as a food source for subsurface biota; studies such as
Liu et al. (2018) have discussed how variations in δ13CPOC
values in deep chlorophyll maxima can influence how δ13C
values are interpreted in food web studies. The depths of
the lower euphotic zone or upper pycnocline, which usually
include deep chlorophyll maxima when present, can also
be a location of net particle formation and export (Kemp
et al., 2000; Benitez-Nelson et al., 2001; Umhau et al.,
2019). Recognizing subsurface sources for exported material
can be important to the interpretation of the sedimentary
geochemical record (e.g., Luo et al., 2014; Hurley et al., 2018).
Interestingly, an analog exists in terrestrial systems; plant matter
growing in the upper canopy of forests consistently has higher
δ13C values than plant matter growing below (the “canopy
effect”; Van der Merwe and Medina, 1991). The differential
preservation and dietary usage of these two signatures can
affect the interpretation of terrestrial soil records and food webs
(e.g., Bonafini et al., 2013).

Finally, global biogeochemical models include the carbon
isotope fractionation of photosynthetic organisms according
to relationships with growth rate and CO2 concentrations
established in culture (Tagliabue and Bopp, 2008; Schmittner
et al., 2013). However, it is unclear whether current models
already can adequately reproduce observed vertical δ13CPOC
patterns; these models have instead focused on validation of
surface ocean δ13CPOC values or vertical δ13CDIC patterns.
A more comprehensive dataset of vertical δ13CPOC values could
help validate such isotope-enabled carbon cycle models.

CONCLUSION

Existing published works demonstrate that δ13CPOC values can
be significantly lower in the lower euphotic zone or upper
pycnocline compared to the upper euphotic zone or local
surface mixed layer in a wide range of global open-ocean
locations. While individual studies have offered hypotheses
for the origin of this vertical pattern, a global compilation
of δ13CPOC profiles with coinciding oceanographic data is

necessary to test whether there are consistent environmental
drivers. We suggest that high-quality isotopic data coverage
of the global open ocean is needed, particularly with better
data density throughout the euphotic zone and with coinciding
CO2 system data, cell size characterization, and δ13CDIC
data. The large water sample volume needed to obtain
sufficient material for δ13CPOC measurements is currently
a barrier to including this parameter in many global-scale
oceanographic programs, but improvements in the efficiency
of isotopic measurement could mitigate this issue. Compound-
specific isotope approaches, autotrophic and heterotrophic
rate measurements (including substrate-specific photosynthetic
uptake, bicarbonate vs. CO2), particle dynamics characterization,
and relevant enzyme expression data all would aid in discerning
between potential hypothesized mechanisms. Further, we suggest
that an isotope-specific database such as the emergent IsoBank
(Pauli et al., 2017)1 would be an appropriate place to aggregate
both published and unpublished δ13CPOC data that currently may
be dispersed across various oceanographic databases.
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