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Dissolution of anthropogenic CO2 into the oceans results in ocean acidification (OA),
altering marine chemistry with consequences for primary, secondary, and tertiary food
web producers. Here we examine how OA could affect the food quality of primary
producers and subsequent trophic transfer to second and tertiary producers. Changes
in food quality induced by OA are often related to secondary metabolites in primary
producers, such as enriched phenolics in microalgae and iodine in brown algae. These
biomolecules can then be transferred to secondary producers, potentially affecting
seafood quality and other marine ecosystem services. Furthermore, shifts in dominant
functional groups of primary producers under the influence of OA would also impact
higher trophic levels through food web interactions. It is challenging to understand
how these complex food chain effects of OA may be expressed under the influence
of fluctuating environments or multiple drivers, and how these effects can be scaled up
through marine food webs to humans.
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INTRODUCTION

The oceans have absorbed about one-third of the CO2 released into the atmosphere by humans,
altering marine carbonate chemistry with a continuous decline of pH, resulting in ocean
acidification (OA) (Caldeira and Wickett, 2003). The pH of the surface ocean has dropped by
∼0.1 since pre-industrial times, which is a rate tenfold higher than in the past 300 million years
(Hönisch et al., 2012). By the end of this century, proton concentrations in the surface ocean will
be more than twice those of the pre-industrial period (IPCC, 2014; Gattuso et al., 2015). Carbonate
chemistry changes associated with OA include increases in concentrations of CO2 and bicarbonate
and decreases in levels of carbonate ions and pH. Although a wide range of altered carbonate
chemistry effects have been observed at each trophic level of marine food webs (Kroeker et al.,
2013; Nagelkerken and Munday, 2016; Hutchins and Fu, 2017; Hurd et al., 2018; Gao et al., 2019),
how OA affects the food quality of primary producers and trophic transfer to secondary and tertiary
producers is still controversial. Here, we present an overview of the up-to-date advances regarding
this specific issue and highlight the challenges for future research in this area.
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FOOD CHAIN EFFECTS ASSOCIATED
WITH FATTY ACID CHANGES

Primary producers synthesize lipids, fatty acids (FA), and in
particular polyunsaturated FA (PUFA). These biomolecules are
crucial cellular components of marine organisms, in that they
play critical roles in cell membrane function, physiological
processes for energy storage, and trophic interactions in aquatic
food webs (Dalsgaard et al., 2003; Guschina and Harwood,
2009). PUFA cannot be synthesized de novo by metazoans,
which therefore must acquire these compounds via their diet
(Hixson et al., 2015). In aquatic food webs, PUFA are exclusively
synthesized by phytoplankton, and thus algal PUFA composition
is an important determinant of food quality, consequently
affecting the health and optimal functioning of marine and
freshwater ecosystems (Dalsgaard et al., 2003).

Ocean acidification is likely to affect all of these interactions;
for instance, it has been reported that the FA composition
of phytoplankton is highly dependent on CO2 concentrations.
PUFA content decreased by ∼3% in the diatom Cylindrotheca
fusiformis grown at a pCO2 of 750 µatm (representing OA),
compared to a contemporary pCO2 treatment of 380 µatm CO2
(Bermúdez et al., 2015). This suggests a decline of food quality
in primary producers under future OA conditions. However, it
is worth noting that there is strong spatiotemporal variability in
marine carbonate chemistry. This is especially true for coastal
seawater due to multiple drivers such as tidal cycles (Dai
et al., 2009; Jiang et al., 2011; Wang et al., 2014), upwelling
(Capone and Hutchins, 2013), anthropogenic nutrient inputs,
aquaculture activities, and changes in ecosystem structure and
metabolism (Duarte et al., 2013; Waldbusser and Salisbury, 2014).
Elevated photosynthesis and respiration also drive large diel pH
fluctuations in coastal and coral reef ecosystems (Santos et al.,
2011), and it has been suggested that OA-induced effects on the
food quality of primary producers can be dampened in these
waters with major natural pCO2 fluctuations (Bermúdez et al.,
2016). Moreover, OA is likely to impact different phytoplankton
taxa differently in terms of their growth, metabolic activity, and
organism size (Flynn et al., 2012). Therefore, investigation of OA
effects on food quality has to take into account phytoplankton
species of various taxonomic groups and natural fluctuations in
pCO2 (Flynn et al., 2012).

Approximately 10–20% of essential biomolecules in primary
producers are incorporated into new biomass at the next
trophic level, and thus the decline of food quality in primary
producers will have potential impacts on the zooplankton
which prey on them. In one striking study by Rossoll et al.
(2012), declines in both total FAs and the ratio of long-
chain polyunsaturated to saturated FAs, constrained growth
and reproduction of the copepod Acartia tonsa fed the diatom
Thalassiosira pseudonana grown under OA conditions. Further
support for this food chain effect of OA was provided by a
mesocosm experiment using a natural plankton community.
A declining proportion of PUFA in the natural phytoplankton
assemblage was mirrored by a reduction in the relative
PUFA content of the dominant copepod Calanus finmarchicus
(Bermúdez et al., 2016). Another study found that changes

in ratios of lipid to protein and/or lipid to carbohydrate in
phytoplankton under the influence of OA decreased trophic
transfer efficiency from phytoplankton to zooplankton by about
50%, and caused a commensurate decrease in zooplankton
recruitment (Cripps et al., 2016). On the other hand, OA has
sometimes been shown to increase food availability, and thus
help alleviate the negative effects of acidification on invertebrates
(Thomsen et al., 2013).

Besides the indirect effects of OA on zooplankton via
trophic transfer (bottom up effects), it can also directly
affect zooplankton differentially according to gender and/or
developmental stage (Cripps et al., 2014). In addition, it
is not only the food quality of primary producers that
can be altered by OA. Higher trophic levels such as some
commercially valuable oysters can become less nutritious
due to lower levels of proteins, lipids, carbohydrates, and
caloric content under OA conditions (Lemasson et al.,
2018). Overall, the available data suggest that FA and PUFA
in phytoplankton can be influenced by OA, and these
compositional changes will also affect transfer to higher
trophic levels which rely on their prey as a source of these
essential macromolecules.

PHENOLICS AND IODINE CHANGES IN
ALGAE AND THEIR GRAZERS

Besides lipids and FA, other secondary metabolites in primary
producers such as phenolic compounds can also be affected by
OA. As reported in pioneering work by Arnold et al. (2012),
polymeric phenolics decreased in the seagrasses Cymodocea
nodosa, Ruppia maritima, and Potamogeton perfoliatus under
OA conditions. In contrast, phytoplankton species (diatoms and
coccolithophores) increased their phenolic compounds when
grown in acidified seawater (Jin et al., 2015). This accumulation
of phenolics under OA has been suggested to be caused
by alterations in β-oxidation metabolic pathways (Figure 1).
Upregulation of β-oxidation and the Krebs cycle, with enhanced
degradation of phenolics, may provide extra energy to cope with
acidic stress caused by OA. Since phenolic compounds are highly
toxic to most grazers, an increase in their content in primary
producers has the potential to drive significant consequences
for food webs (Boyd and Carlucci, 1993; Ianora et al., 2006).
Interestingly, Jin et al. (2015) demonstrated that copepods fed
with OA-grown phytoplankton had higher phenolics content
compared to the control (Figure 1), suggesting a food chain
effect of OA from primary to secondary producers. The increased
phenolic compounds in primary producers associated with
FA metabolism via β-oxidation would further decrease the
nutritional value of these organisms. This might provide a
tentative explanation for the observation that shrimp grown
under OA in the presence of natural phytoplankton and
zooplankton tasted bitter (Dupont et al., 2014). In addition,
as phenolics are known to possess antimicrobial properties
(Arnold and Targett, 2002), biogeochemical cycles in the oceans
may be affected as well. Food chain effects of OA were also
observed in the brown alga Saccharina japonica, in which
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FIGURE 1 | Left panel: Ocean acidification (OA) up regulates (red) or down regulates (green) metabolic pathways of the calcified phytoplankton species
Emilianiahuxleyi. The cells up regulate several metabolic pathways such as Îš-oxidation, the TCA cycle, and glycolysis which is required for the degradation of
phenolics, in order to gain more energy to resist OA. Right panels: OA significantly increased the concentrations of phenolics of phytoplankton assemblages in 30-L
microcosm (A) and in 4000-L mesocosm experiments (B). Content of phenolic compounds (Îijg per individual) in zooplankton assemblages that were fed on high
CO2 (HC, 1000 Îijatm, Red bar) or low pCO2 grown (LC, 395 Îijatm, Blue bar) phytoplankton cells collected from the microcosms (C) or mesocosms (D) (Jin et al.,
2015). Vertical lines represent standard deviation of the means. *Significance at the p < 0.05 level. (reconstructed from Jin et al., 2015).

OA increased the accumulation of iodide and the amounts of
iodine released into seawater, while abalone fed on the kelp,
exhibited increased levels of iodine (Xu et al., 2019). Altogether,
a limited number of studies show that OA can influence
accumulation of secondary metabolites and their transfer to
higher trophic levels, thereby producing cascading impacts
on marine food webs.

CONSEQUENCES OF ALTERED
COMMUNITY COMPOSITION OF
PRIMARY PRODUCERS

In addition to biochemical changes in primary producers, the
influence of OA on their composition may also impact energetic
and nutritional transfer to higher trophic levels. For instance,
OA may selectively favor an increase in the growth rates of
larger versus smaller phytoplankton species (Wu et al., 2014;
Bach and Taucher, 2019). OA-driven shifts toward larger diatoms
have been observed in natural phytoplankton communities
(Tortell et al., 2008; Feng et al., 2010; Eggers et al., 2014;
Bach et al., 2017; Taucher et al., 2017). Such phytoplankton
community shifts to larger species may increase the trophic
transfer of energy to marine animals by shortening food chains
(Sommer et al., 2002) and promote production in higher
trophic levels. At a natural CO2 seep in the North Pacific

Ocean, the large chain-forming diatom Biddulphia biddulphiana
greatly increases in abundance as CO2 increases along a
seawater concentration gradient. Along this same gradient,
the abundance of calcified grazers such as gastropods and
sea urchins decreased (Harvey et al., 2019). This observation
suggests that OA can alter the food-web structure and
ecosystem productivity by shifting the community composition
of primary producers.

In a mesocosm experiment with an oligotrophic plankton
community in the subtropical North Atlantic Ocean, the toxic
microalga Vicicitus globosus increased its abundance at CO2
levels higher than 600 µatm and developed into blooms above
800 µatm CO2. This strongly inhibited the development of the
zooplankton community, thereby disrupting the trophic transfer
of organic matter from primary producers (Riebesell et al., 2018).
This food chain alteration prolonged the residence of particulate
matter in the water column and caused a strong decline in export
flux. In another mesocosm study in a sill fjord located on the
Swedish west coast, enhanced primary production under OA
increased the survival rate of Atlantic herring (Clupea harengus)
larvae (Sswat et al., 2018). Similarly, a positive bottom-up effect
of OA from primary to secondary producers and from secondary
producers to secondary consumers has been reported in benthic
fish (Goldenberg et al., 2017).

Together with other climate change drivers, coastal
eutrophication can promote harmful algal blooms
(Fu et al., 2012; Gao et al., 2012), which may lead to seawater
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FIGURE 2 | Conceptual diagram showing the food chain effects of ocean acidification (OA). OA increased the contents of phenolic compounds and iodine in the
primary producers (phytoplankton and kelp), and these changes lead to accumulation in the secondary producers that feed on them. Whether these food chain
effects can scale up in multiple trophic levels (e. g. primary to secondary to tertiary producers) needs further investigation. The orange arrows indicate increased and
red ones indicate decreased levels of the compounds, growth or reproduction.

basification (increase in pH) and thus override the signal from
OA (Flynn et al., 2015). Basification during bloom development
would act independently or interactively with other factors to
influence algal growth and blooms succession (Macedo et al.,
2001; Hansen, 2002; Hinga, 2002; Flynn et al., 2015). Therefore,
the impacts of OA on phytoplankton community composition
and thus on trophic transfer are somewhat dependent on
levels of eutrophication in coastal waters. Moreover, these
responses may also vary across different seasons and/or in
different regions (Tortell et al., 2002; Rost et al., 2003; Hare
et al., 2007; Grear et al., 2017). It is apparent that changes
in phytoplankton community succession and/or primary
productivity caused by OA will inevitably impact higher trophic
levels through food-web interactions, although these effects may
differ spatiotemporally with different levels of adaptation to
regionally unique environments.

While marine secondary producers such as zooplankton and
tertiary producers such as fish can be indirectly affected by OA,
through trophic transfer or food-web interactions, additional
direct effects of OA often cannot be ruled out. As summarized in
the comprehensive review by Nagelkerken and Munday (2016),
behaviors of secondary and tertiary producers such as olfaction,
phototaxis, lateralization, shelter, and escape can be altered
by OA through multiple, non-exclusive mechanisms (also see
recent studies by Schunter et al., 2016, 2018; Spady et al., 2018;
Jarrold and Munday, 2019; Clark et al., 2020). This in turn will

affect species interactions, population dynamics, community
structure, and ultimately, biodiversity (Nagelkerken and Munday,
2016). Changes in species interactions are most commonly
implicated as proximate causes of population declines and
extinctions due to ocean climate changes.

PERSPECTIVES

A lot of progress has been made in understanding how OA affects
marine primary, secondary, and tertiary producers directly, yet
we are still far from understanding how these effects may
transfer across multiple trophic levels (Figure 2). There have
been only a handful of studies that investigated how the
deterioration in nutritional values of primary producers due
to OA may affect secondary producers via food chain effects.
Considering that fish are a critical natural resource (Food and
Agriculture Organization of the United Nations [FAO], 2014),
there is a potential that the food chain effects of OA can reach
humans, who rely on fisheries as an important protein source.
However, this has not yet been examined in detail, especially
with full consideration of how food chain effects could scale
up through multiple trophic levels (e.g., primary to secondary
to tertiary and then to humans) (Figure 2). Because our
understanding of the effects of multiple marine environmental
changes on phytoplankton from different functional groups is
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still poor, more studies from monocultures to community levels
are expected. Furthermore, since primary producers are known
to exhibit evolutionary responses to OA (Jin et al., 2013; Hutchins
et al., 2015; Collins et al., 2020), how these responses will alter the
trophic transfer in food webs should also be considered.
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