
fmars-07-546587 October 14, 2020 Time: 17:7 # 1

ORIGINAL RESEARCH
published: 20 October 2020

doi: 10.3389/fmars.2020.546587

Edited by:
Zhiyu Liu,

Xiamen University, China

Reviewed by:
Debora Bellafiore,

National Research Council (CNR), Italy
Ru Chen,

Tianjin University, China
Soo-Jin Sohn,

APEC Climate Center, South Korea
Kewei Lyu,

Oceans and Atmosphere (CSIRO),
Australia

*Correspondence:
Takeshi Doi

takeshi.doi@jamstec.go.jp
orcid.org/0000-0002-7342-9145

Specialty section:
This article was submitted to

Physical Oceanography,
a section of the journal

Frontiers in Marine Science

Received: 29 March 2020
Accepted: 22 September 2020

Published: 20 October 2020

Citation:
Doi T, Nonaka M and Behera S

(2020) Skill Assessment
of Seasonal-to-Interannual Prediction

of Sea Level Anomaly in the North
Pacific Based on the SINTEX-F

Climate Model.
Front. Mar. Sci. 7:546587.

doi: 10.3389/fmars.2020.546587

Skill Assessment of
Seasonal-to-Interannual Prediction
of Sea Level Anomaly in the North
Pacific Based on the SINTEX-F
Climate Model
Takeshi Doi* , Masami Nonaka and Swadhin Behera

Application Laboratory (APL), Research Institute for Value-Added-Information Generation (VAiG), Japan Agency
for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Japan

Extreme sea level rise seriously impacts habitation and is indicative of changes in
primary production in the North Pacific. Because of its rising trend associated with global
warming, skillful seasonal-to-interannual predictions have become increasingly valuable
to guide the introduction of suitable adaptation measures that help us reduce the risks
of socioeconomic losses. Here, we have used a dynamical coupled ocean–atmosphere
model called “SINTEX-F” to revisit the potential predictability of sea level anomalies at
a lead of up to about 2 years. Skillful prediction is found mainly in the tropical Pacific
as shown in previous work. Here, we found a new skillful prediction region in the North
Pacific (30◦–40◦N, 180◦–150◦W) at about 2 years’ lead time. We also analyzed the co-
variability among ensemble members and found the long-lasting ENSO/ENSO-Modoki
in the tropical Pacific seems to contribute to the predictability source. The result may
be useful to develop systematic and synergistic attempts to predict marine ecosystem
responses to regional and global climate variations.

Keywords: seasonal-interannual prediction, sea level, climate model, dynamical system, skill assessment

INTRODUCTION

The North Pacific marine ecosystems are primary sources of ecosystem services (e.g., fishing,
shipping, and recreation) for its surrounding countries including Canada, U.S., China, Russia,
Korea, and Japan. Coastlines of the North Pacific are seriously damaged by extreme sea
level rise (Nicholls et al., 2007). In particular, the coastal zones are immediately affected by
submergence and increased flooding of coastal land, as well as saltwater intrusion of surface waters
(Nicholls and Cazenave, 2010).

In addition to the rising sea level trend associated with the global warming, extreme sea level
events occur in association with natural climate variability such as the Pacific Decadal Oscillation
(PDO), the Interdecadal Pacific Oscillation (IPO), the North Pacific Gyre Oscillation (NPGO), and
the El Niño-Southern Oscillation (ENSO) in the North Pacific (Mantua et al., 1997; Zhang et al.,
1997; McGowan et al., 1998; Lombard et al., 2005; Di Lorenzo et al., 2008; Hamlington et al.,
2019; Han et al., 2019). To address relatively short-term risks, stakeholders desire a forecast of
monthly/seasonal rising or falling sea levels caused by those climate variabilities. Hinkel et al. (2019)
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analyzed user needs for sea level rise information, and how
they are able to be met given the state-of-the-art of sea
level forecast science. Jacox et al. (2020) reviewed statistical
and dynamical marine ecosystem forecasting methods and
highlighted examples of their application along U.S. coastlines
for seasonal-to-interannual prediction. Payne et al. (2017) also
reviewed the state of the art marine ecological forecasts and
suggested forecasts ranging from seasonal to decadal time scales
are now a reality. Tommasi et al. (2017a) evaluated the multi-
annual SST predictions over Large Marine Ecosystems (LMEs),
a coastal scale relevant to managed fisheries stocks. Tommasi
et al. (2017b) also highlighted advances in seasonal to decadal
prediction of managing living marine resources in a dynamic
environment. Those previous studies provide information
relevant for supporting coastal adaptation decision making.

Although skillful predictions of SST have already proven
useful for a number of marine resource applications (e.g.,
Hobday et al., 2014; Stock et al., 2015), further studies
about sea level anomaly are necessary. Rebert et al. (1985)
showed that the oceanic Kelvin and Rossby waves have a
direct relation between thermocline depth and sea level, while
they have only an indirect relation to SST. These ocean
dynamics are responsible for the relatively high skill of sea
level prediction relative to SST prediction (Miles et al., 2014).
Zainuddin et al. (2017) found that SST was an important
variable for detecting hotspots of skipjack tuna distribution,
as they are sensitive to the changes in temperature. Sea
level anomaly is related to the changes in the depth of the
thermocline and mesoscale variability. They combined these
variables to improve detection of potential pelagic hotspots
for skipjack tuna.

To expand prediction of large-scale sea level anomalies into
coastal areas and to further the understanding of its potential
predictability, it is necessary to evaluate the lead-time and
locations in which a dynamical, physics-based prediction system
performs well. It might allow coastal communities to better
adapt for the impacts of severe flooding and erosion driven by
high sea levels.

Although decadal climate variation is more predictable than
previously thought, it is still challenging (Meehl et al., 2014;
Smith et al., 2019). Here, our focus is on seasonal-to-interannual
prediction. Generally speaking, the most important potential
source of seasonal-to-interannual predictability is often from
ENSO events, which develop via air-sea coupled feedback.
Therefore, application of an ocean-atmosphere coupled general
circulation model (GCM) is naturally a proven approach to
overcome shortcomings of stand-alone atmospheric/oceanic
models. Miles et al. (2014) initially attempted to apply a coupled
GCM to predict seasonal sea level anomalies, and assessed the
skill globally for up to 7 months in advance. McIntosh et al. (2015)
showed the prediction skill by dynamical GCMs is better relative
to statistical approaches for coastal sea level. Polkova et al. (2015)
used the decadal prediction system and found predictability in
the subtropics. Roberts et al. (2016) assessed the predictability
of large-scale dynamic sea level anomalies up to 15 months
using a climate model and found that prediction of seasonal-
to-interannual sea level variability in the extratropics will be

governed by the predictability of surface wind stress and modes
of atmospheric variability.

This study is a follow-up study of those pioneering
studies. Here, we have revisited the predictability of sea
level up to about 2 years in advance by analyzing results
of a coupled ocean–atmosphere general circulation model
“SINTEX-F.” Such a long lead time retrospective forecast
is beyond most current operational capabilities, and hence
a skill assessment of the model results is conducted here
as a first attempt. We believe that the obtained result is
useful to attempt systematic and synergistic prediction
of marine ecosystem responses to regional and global
climate variations.

MATERIALS AND METHODS

Dynamical Prediction System
The Scale Interaction Experiment-Frontier ver. 1 (SINTEX-F1)
prediction system was used here, which is based on a fully
coupled global ocean–atmosphere circulation model (CGCM)
developed under the EU-Japan collaborative framework (Luo
et al., 2003; Luo et al., 2005; Masson et al., 2005). The atmospheric
component has a horizontal resolution of 1.125◦ (T106) with
19 vertical levels. The oceanic component has a horizontal
resolution of about 2◦

× 2◦ but with meridional refinement to
0.58◦ in the tropics. It has 31 vertical levels from the surface to
the bottom with a relatively finer resolution of 10 m from the sea
surface to 110 m depth. This system adopts a relatively simple
initialization scheme based only on the nudging of observed
SST. In consideration of uncertainties of both initial conditions
and model physics, it has nine ensemble members. More details
about the prediction system are available in Luo et al. (2005).
This system has demonstrated high performance for prediction
of ENSO (Jin et al., 2008). In particular, Luo et al. (2008) showed
that several ENSO events can be predicted at lead times of up to
2 years by this system, which can be a strong advantage in this
study. The quasi real-time predictions are updated every month
and made publicly available from 2005 (see http://www.jamstec.
go.jp/aplinfo/sintexf/e/seasonal/outlook.html).

We have analyzed the reforecasting experiments for the 1993–
2018 period issued on the first day of March, June, September, and
December with about 2-year lead time. The prediction anomalies
were determined by removing the model mean climatology at
each lead-time over the same period. To evaluate the prediction
results, we have used the multi-mission altimeter satellite
gridded sea surface heights (SEALEVEL_GLO_PHY_L4_REP_
OBSERVATIONS_008_047; available from http://marine.cop
ernicus.eu/services-portfolio/access-to-products/?option=com_
csw&view=details&product_id=SEALEVEL_GLO_PHY_L4_RE
P_OBSERVATIONS_008_047) for sea level, the NOAA OISSTv2
(Reynolds et al., 2002) for SST, and the NCEP/NCAR reanalysis
data (Kalnay et al., 1996) for atmospheric variables anomalies.
The monthly climatologies of these datasets are also calculated
by averaging monthly data over the same period, and then
anomalies are derived through deviations from those mean
climatologies. All anomalies are linearly detrended, which can
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FIGURE 1 | (A) The correlation coefficient for seasonal-to-interannual prediction for sea level anomalies (ensemble mean) from the 0–2 months lead average up to
the 21–23 months lead average issued on March 1, 1993–2018. Black dots indicate regions where the correlation is below the persistence (lag autocorrelation of
observation). Considering that the degree of freedom based on the sample size, the correlation beyond 0.3 is statistically significant at a 90% level. So, the
correlation greater than 0.3 is masked out. (B–D) Same as (A), but for the prediction issued on June 1, September 1, and December 1. The target area in the North
Pacific (30◦–40◦N, 180◦–150◦W) is shown by a red box in MAM2 prediction issued on June 1.
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FIGURE 2 | Time series of sea level anomaly averaged over 30◦–40◦N, 180◦–150◦W during March-April-May (cm). Gray column: observation, Red cross: ensemble
mean prediction issued on June 1, 2-year before (21–23 months lead average), orange dot: each ensemble member prediction, black line: observation after
removing 5-years running mean, red line: ensemble mean prediction after removing 5-years running mean.

prevent long time scale changes from artificially increasing
correlation analysis.

RESULTS

Skill Assessment up to 2-Year Lead
The correlation coefficient (Pearson’s “r”) between two time series
of observed and predicted anomalies for each grid points is used
as a deterministic prediction skill score of the phase variation.
The persistence method is the simplest way of producing a
forecast; it assumes that the conditions will not change. The
persistence method works well when anomalies vary very slowly.
Therefore, the correlation of the persistence is generally used
to assess the advantage of prediction models. Skillful prediction
of sea level is found mainly in the tropical Pacific (Figure 1).

It drops outside of the oceanic Kelvin, Rossby, and coastally
trapped waveguides in the tropical Pacific region. The correlation
often exceeds the skill of persistence and 0.6 in many regions
within 20◦ of the equator at the first season (0–2 months lead).
The correlation decreases at longer lead times but generally
remaining above 0.5 in the waveguides up to 11 months lead
times. The advantage of the SINTEX-F prediction relative to
the persistence increases at longer lead times. This suggests that
the skill is mainly derived from the ability to predict ENSO
accurately as expected from the previous works (Miles et al.,
2014). It is also found skillful prediction regions off the west coast
of Australia and California, which may be related to the successful
predictions of the Ningaloo Niño/Niña (Doi et al., 2013, 2015a)
and the California Niño/Niña (Doi et al., 2015b); some of those
events are strongly linked with coastally trapped ocean waves
forced by ENSO events.
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FIGURE 3 | (A) Inter-ensemble member correlation between sea level anomaly averaged in 30◦–40◦N, 180◦–150◦W (shown by a box) and a horizontal distribution of
SST anomaly in a nine-member ensemble reforecast for the 21–23 months lead average issued on June 1. (B) Same as (A), but for regional wind-induced Ekman
downwelling. (C) Same as (A), but for surface heat flux. (D–F) Same as (A–C), but for correlation using the ensemble mean prediction. The color scale is different
from that in (A–C) because the sample size is different (198 and 22). Considering the degree of freedom based on the sample size, the correlation below 0.25 (0.40)
is masked out in the upper (lower) panel.

We can also find the seasonal dependence of the correlation,
likely because of the so-called spring predictability barrier in
forecasting the development of ENSO (e.g., Latif et al., 1998).
Prediction of sea level anomalies in the 3–5 months lead average
issued on March 1 shows low correlation in many regions
relative to that issued on other seasons. Also, we see a quick
decrease in the correlation from prediction of the December-
January-February (DJF) average into that of the March-April-
May (MAM) average.

At the extratropical latitudes in 20◦–30◦N, the skill still
remains in some regions in the North Pacific up to about 2-year
lead. This is likely due to the slowly propagating Rossby wave
features and some stationary anomalies. In the extratropics of
the North Pacific, which is often defined the latitude bands of
30◦–60◦N, interestingly, we found the predictability of a region
in the North Pacific (30◦–40◦N, 180◦–150◦W) to be skillful up
to 2 years ahead. This is not yet discussed by the previous work.
Figure 2 shows its time series for the MAM seasonal average.
The time series at first glance shows the presence of a decadal
variability. The correlation of the 2-year lead prediction is 0.67
for 26 samples (1993–2018 years). After removing the 5-years
running mean, it is 0.65 for 22 samples (1995–2016 years). The
spread of the ensemble of prediction provides information about
the uncertainty inherent. The large uncertainty suggests low
potential predictability of sea level anomalies here. Interestingly,
however, the sea level anomaly in 2000 exhibits relatively high
predictability. We will discuss the details later.

How about the other oceans? We can find some skillful
prediction regions in the southern Indian Ocean beyond 1-year
lead (Figure 1). This may be related to the successful prediction
of the Subtropical Indian Ocean Dipole (Beherea and Yamagata,
2001; Yuan et al., 2014). In the Atlantic, prediction beyond 1-year
lead is relatively challenging. For example, the pattern associated

with the North Atlantic Oscillation, which is the dominant
climate mode in the Atlantic Ocean, is not represented well by
the model. We need further analysis to understand similarities
and differences among the ocean basins.

Inter-Ensemble Members Relationship
Why is the skillful prediction found about 2-year lead in a region
in the North Pacific (30◦–40◦N, 180◦–150◦W)? Investigating
co-variability of inter-member anomalies (defined as deviations
from the ensemble mean) may provide useful insights into
possible precursors and teleconnection patterns related to a
climate event considering the intrinsic variability (Ma et al., 2017;
Ogata et al., 2019; Doi et al., 2020a,b). Figure 3A shows the
correlation coefficients among the inter-ensemble members of
the reforecast for the March–May average of 1995–2016 (198
sample: 9 members times 22 years after removing 5-years running
mean) at 2-year lead. In this analysis, the conventional time
dimension could be enlarged by the ensemble dimension. The co-
variability between the sea level anomaly in that region and the
tropical Pacific condition shows a pattern resembling a mixture
of the Modoki-type and the canonical-type of ENSO (Ashok
et al., 2007; Karnauskas, 2013). Also, a similar co-variability
is seen between the sea level and local wind-induced Ekman
downwelling in that region (Figure 3B). Since the similar features
are able to be captured by liner regression analysis to ENSO
(Vimont, 2005; Zhang and Church, 2012; Han et al., 2019),
the successful prediction of ENSO and/or ENSO-Modoki in the
tropical Pacific may be related to the success in predicting sea
level anomaly in that region at about 2-year lead. Note that
a corresponding co-variability with the surface heat flux was
not found in that region (Figure 3C). This may suggest that
the dynamic process is more important in that region than the
thermodynamic process.
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FIGURE 4 | (A) Three-month averaged variations of sea level anomaly (cm) from June–August 1998 (upper) through March–May 2000 (bottom). The box shows the
study region of 30◦–40◦N, 180◦–150◦W based on observation. (B) Same as (A), but for prediction issued on June 1, 1998 (ensemble mean). Pattern correlation is
shown in the upper right corner. (C,D) Same as (A,B), but for SST (◦C).
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FIGURE 5 | (A) Anomalous surface wind stress (vector: N m−2) and its induced-Ekman vertical velocity (shaded: 10−6 m s−1) averaged in June 1998–February
2000 based on the reanalysis data. Positive values show downwelling. The rectangle box demarcates the region of 30◦–40◦N, 180◦–150◦W. (B) Same as (A), but
for surface heat flux (W m−2). Positive values show that it warms ocean. (C,D) Same as (A,B), but for prediction issued on June 1, 1998 (ensemble mean).

We see a similar relation with SST anomalies when an
ensemble mean of the prediction was considered (Figure 3D),
which shows the horizontal map of the correlation coefficients
between the ensemble mean of the sea level anomalies averaged
in the box and the ensemble mean of the SST fields (22 sample:
22 years of the reforecast). However, the correlation with local
wind-induced Ekman downwelling does not show a clear relation
(Figure 3E). Since the signal-to-noise ratio is relatively low in
the mid-latitude atmosphere (Scaife and Smith, 2018), the sample
size of 22 may not be enough to capture the signal reasonably in
the ensemble mean.

Case Study for the 2000 Event
The successful prediction of the high sea level in 2000 (Figure 2)
demonstrates the model’s high skill to predict such events. As in
the observations, the sea level anomaly developed from boreal
summer of 1998 and reached about 7 cm during March–May
2000. The prediction issued on June 1, 1998, captured the
subsequent development in the tropical Pacific and the target
region (30◦–40◦N, 180◦W–150◦W), albeit a bit weaker than in
observations (Figures 4A,B). This is supported by the pattern
correlations shown in the upper right corner of each panel of
Figure 4B, which are calculated after interpolating the horizontal
distributions of the observational data to those of the prediction
output. At 3–5 months lead, the pattern correlation for the
sea level prediction is 0.70. At this time, a La Niña Modoki
was observed (Figures 4C,D) in the tropical Pacific. Then,
the pattern correlation reduced at longer lead time, however
it is still 0.47 at 21–23 months lead time. Local processes

seem to contribute to the variability in 30◦–40◦N, 180◦–150◦W
relative to remote processes such as a propagation of Rossby
waves. Dynamic process associated with the local wind-driven
Ekman downwelling may be responsible for that (Figures 5A,C),
while the heat flux anomaly acted as the damping of the anomaly
in the reanalysis (Figure 5B) and showed very weak values in
the model (Figure 5D). Those features are consistent with the
results shown by the previous subsection. We note that the
signal in the Kuroshio Extension region was not represented
well in this prediction system. Nonaka et al. (2016) revealed that
stochastic variability in that region limits deterministic potential
predictability of its interannual variability through three-member
ensemble simulations with an eddy-resolving ocean model. Even
if the spatial resolution of the SINTEX-F is enhanced, it might be
intrinsically difficult to improve the prediction skill in that region.

DISCUSSION

Sea level anomalies in the region of (30◦–40◦N, 180◦–150◦W)
may be related to the PDO. The PDO is now interpreted as
an empirical mode, which includes teleconnection from ENSO
and stochastic atmospheric/oceanic fluctuations (Schneider and
Cornuelle, 2005; Newman et al., 2016). Decadal or longer
timescale signals appear also to be important for the 2000 event.
About 50% of the sea level anomaly averaged over 30◦–40◦N,
180◦–150◦W during March-April-May 2000 is due to the decadal
signal in the prediction (Figure 2). Actually, 2000 is an extreme
year for decadal variations in the IPO index and also basin-wide
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sea level in the Pacific (see Figure 3 in Lyu et al., 2017), which
is closely related to the ENSO-like low-frequency variability.
Although low-frequency sea level variations with periods longer
than interannual time scales are interesting, it might be difficult to
clearly separate the interannual variations from the decadal and
longer timescale variations mainly due to limitation of the sample
size and the lead time of the reforecast experiments. Although the
focus of this study is on seasonal-to-interannual scale prediction,
in the future, we may need to develop skillful seamless prediction
abilities from seasonal-to-decadal (S2D) timescale.

Tropical and North Pacific processes are interlinked, which
means that the North Pacific processes might also contribute
to ENSO predictability (e.g., Ogata et al., 2019). The build-up
of subsurface ocean heat content in the tropical western Pacific
as well as the northeastern subtropical Pacific is identified as
ENSO precursors (Capotondi et al., 2015; Yu and Paek, 2015).
Chikamoto et al. (2015) also showed that the low-frequency
trans-basin tropical climate variations between the Pacific and
the other two adjacent ocean basins can be predicted up to
3 years ahead. Further studies are necessary to estimate the
role of the inter-basin coupling on multi-year predictability
of the tropical and North Pacific using partial assimilation
reforecast experiments.

Since our results are based on a single-model system, we need
to check them by a multi-model ensemble system (e.g., Kirtman
et al., 2014; Tompkins et al., 2017; Widlansky et al., 2017).

A noble path to systematic and synergistic prediction of
marine ecosystem variations may be to develop an earth
system model, to incorporate biogeochemical processes into a
climate model to represent the interacting physical, chemical,
and biological processes. It can provide outlooks for marine-
resource–relevant changes beyond physical variables. Along this
line, Park et al. (2019) showed that an earth system model can
skillfully predict seasonal to multiannual chlorophyll fluctuations
in many regions.

Although predictability of open-ocean anomalies was
the focus in this study, its connection to coastal sea
level is also important. However, it is still challenging
to resolve the complicated topography near the coastal
regions for the resolution used in current climate
models. Therefore, downscaling techniques are helpful to
capture the open-ocean and coastal region connections
(e.g., Jacox et al., 2020) in a manner similar to
successful examples for atmospheric downscaling (e.g.,
Ratnam et al., 2016, 2017).

Enhancement of the relatively coarse ocean model grid
will help to resolve more accurately some islands and narrow
upwelling regions. Higher resolution in the atmospheric model
may also help to improve winds that are an important component
of the ENSO teleconnection. In addition, the accuracy should
be improved by better initial conditions by explicit use of
altimeter data and in situ subsurface ocean temperature and
salinity observation from the expendable bathythermographs
(XBTs), mooring buoys, sea stations, Argo floats, etc. Increasing
the ensemble size may be beneficial for improving prediction
of the extratropics, where the signal-to-noise ratio is relatively
low. Actually, we have been developing the new version of

the SINTEX-F prediction system called as SINTEX-F2 based
on a high-resolution model by updating the initialization
scheme and increasing the ensemble size (Doi et al., 2016,
2017, 2019, 2020a; Morioka et al., 2019). However, because the
computational cost is expensive, the SINTEX-F2 mainly targets
for prediction up to 11-month lead time at this stage. We are now
extending the lead time up to 23 months because its benefit was
shown in this paper.

CONCLUSION

We assessed the prediction skill of sea level anomaly up to
23 months in advance by the SINTEX-F system and found
a skillful prediction region in the North Pacific (30–40 N,
180–150 W) at about 2-year lead. The successful prediction
of the long-lasting ENSO/ENSO-Modoki in the tropical Pacific
seems to contribute to that sea level predictability. The
result may be useful to attempt systematic and synergistic
prediction of marine ecosystem responses to regional and global
climate variations.
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